summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/random/RandomDataImpl.java
blob: d5749e9eed12bde326eddee07d34e9db5c92198c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.random;

import org.apache.commons.math3.distribution.IntegerDistribution;
import org.apache.commons.math3.distribution.RealDistribution;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NotANumberException;
import org.apache.commons.math3.exception.NotFiniteNumberException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;

import java.io.Serializable;
import java.security.NoSuchAlgorithmException;
import java.security.NoSuchProviderException;
import java.util.Collection;

/**
 * Generates random deviates and other random data using a {@link RandomGenerator} instance to
 * generate non-secure data and a {@link java.security.SecureRandom} instance to provide data for
 * the <code>nextSecureXxx</code> methods. If no <code>RandomGenerator</code> is provided in the
 * constructor, the default is to use a {@link Well19937c} generator. To plug in a different
 * implementation, either implement <code>RandomGenerator</code> directly or extend {@link
 * AbstractRandomGenerator}.
 *
 * <p>Supports reseeding the underlying pseudo-random number generator (PRNG). The <code>
 * SecurityProvider</code> and <code>Algorithm</code> used by the <code>SecureRandom</code> instance
 * can also be reset.
 *
 * <p>For details on the default PRNGs, see {@link java.util.Random} and {@link
 * java.security.SecureRandom}.
 *
 * <p><strong>Usage Notes</strong>:
 *
 * <ul>
 *   <li>Instance variables are used to maintain <code>RandomGenerator</code> and <code>SecureRandom
 *       </code> instances used in data generation. Therefore, to generate a random sequence of
 *       values or strings, you should use just <strong>one</strong> <code>RandomDataGenerator
 *       </code> instance repeatedly.
 *   <li>The "secure" methods are *much* slower. These should be used only when a cryptographically
 *       secure random sequence is required. A secure random sequence is a sequence of pseudo-random
 *       values which, in addition to being well-dispersed (so no subsequence of values is an any
 *       more likely than other subsequence of the the same length), also has the additional
 *       property that knowledge of values generated up to any point in the sequence does not make
 *       it any easier to predict subsequent values.
 *   <li>When a new <code>RandomDataGenerator</code> is created, the underlying random number
 *       generators are <strong>not</strong> initialized. If you do not explicitly seed the default
 *       non-secure generator, it is seeded with the current time in milliseconds plus the system
 *       identity hash code on first use. The same holds for the secure generator. If you provide a
 *       <code>RandomGenerator</code> to the constructor, however, this generator is not reseeded by
 *       the constructor nor is it reseeded on first use.
 *   <li>The <code>reSeed</code> and <code>reSeedSecure</code> methods delegate to the corresponding
 *       methods on the underlying <code>RandomGenerator</code> and <code>SecureRandom</code>
 *       instances. Therefore, <code>reSeed(long)</code> fully resets the initial state of the
 *       non-secure random number generator (so that reseeding with a specific value always results
 *       in the same subsequent random sequence); whereas reSeedSecure(long) does
 *       <strong>not</strong> reinitialize the secure random number generator (so secure sequences
 *       started with calls to reseedSecure(long) won't be identical).
 *   <li>This implementation is not synchronized. The underlying <code>RandomGenerator</code> or
 *       <code>SecureRandom</code> instances are not protected by synchronization and are not
 *       guaranteed to be thread-safe. Therefore, if an instance of this class is concurrently
 *       utilized by multiple threads, it is the responsibility of client code to synchronize access
 *       to seeding and data generation methods.
 * </ul>
 *
 * @deprecated to be removed in 4.0. Use {@link RandomDataGenerator} instead
 */
@Deprecated
public class RandomDataImpl implements RandomData, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = -626730818244969716L;

    /** RandomDataGenerator delegate */
    private final RandomDataGenerator delegate;

    /**
     * Construct a RandomDataImpl, using a default random generator as the source of randomness.
     *
     * <p>The default generator is a {@link Well19937c} seeded with {@code
     * System.currentTimeMillis() + System.identityHashCode(this))}. The generator is initialized
     * and seeded on first use.
     */
    public RandomDataImpl() {
        delegate = new RandomDataGenerator();
    }

    /**
     * Construct a RandomDataImpl using the supplied {@link RandomGenerator} as the source of
     * (non-secure) random data.
     *
     * @param rand the source of (non-secure) random data (may be null, resulting in the default
     *     generator)
     * @since 1.1
     */
    public RandomDataImpl(RandomGenerator rand) {
        delegate = new RandomDataGenerator(rand);
    }

    /**
     * @return the delegate object.
     * @deprecated To be removed in 4.0.
     */
    @Deprecated
    RandomDataGenerator getDelegate() {
        return delegate;
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description:</strong> hex strings are generated using a 2-step process.
     *
     * <ol>
     *   <li>{@code len / 2 + 1} binary bytes are generated using the underlying Random
     *   <li>Each binary byte is translated into 2 hex digits
     * </ol>
     *
     * @param len the desired string length.
     * @return the random string.
     * @throws NotStrictlyPositiveException if {@code len <= 0}.
     */
    public String nextHexString(int len) throws NotStrictlyPositiveException {
        return delegate.nextHexString(len);
    }

    /** {@inheritDoc} */
    public int nextInt(int lower, int upper) throws NumberIsTooLargeException {
        return delegate.nextInt(lower, upper);
    }

    /** {@inheritDoc} */
    public long nextLong(long lower, long upper) throws NumberIsTooLargeException {
        return delegate.nextLong(lower, upper);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description:</strong> hex strings are generated in 40-byte segments
     * using a 3-step process.
     *
     * <ol>
     *   <li>20 random bytes are generated using the underlying <code>SecureRandom</code>.
     *   <li>SHA-1 hash is applied to yield a 20-byte binary digest.
     *   <li>Each byte of the binary digest is converted to 2 hex digits.
     * </ol>
     */
    public String nextSecureHexString(int len) throws NotStrictlyPositiveException {
        return delegate.nextSecureHexString(len);
    }

    /** {@inheritDoc} */
    public int nextSecureInt(int lower, int upper) throws NumberIsTooLargeException {
        return delegate.nextSecureInt(lower, upper);
    }

    /** {@inheritDoc} */
    public long nextSecureLong(long lower, long upper) throws NumberIsTooLargeException {
        return delegate.nextSecureLong(lower, upper);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>:
     *
     * <ul>
     *   <li>For small means, uses simulation of a Poisson process using Uniform deviates, as
     *       described <a href="http://irmi.epfl.ch/cmos/Pmmi/interactive/rng7.htm">here.</a> The
     *       Poisson process (and hence value returned) is bounded by 1000 * mean.
     *   <li>For large means, uses the rejection algorithm described in <br>
     *       Devroye, Luc. (1981).<i>The Computer Generation of Poisson Random Variables</i>
     *       <strong>Computing</strong> vol. 26 pp. 197-207.
     * </ul>
     */
    public long nextPoisson(double mean) throws NotStrictlyPositiveException {
        return delegate.nextPoisson(mean);
    }

    /** {@inheritDoc} */
    public double nextGaussian(double mu, double sigma) throws NotStrictlyPositiveException {
        return delegate.nextGaussian(mu, sigma);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: Uses the Algorithm SA (Ahrens) from p. 876 in:
     * [1]: Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential
     * and normal distributions. Communications of the ACM, 15, 873-882.
     */
    public double nextExponential(double mean) throws NotStrictlyPositiveException {
        return delegate.nextExponential(mean);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: scales the output of Random.nextDouble(), but
     * rejects 0 values (i.e., will generate another random double if Random.nextDouble() returns
     * 0). This is necessary to provide a symmetric output interval (both endpoints excluded).
     */
    public double nextUniform(double lower, double upper)
            throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
        return delegate.nextUniform(lower, upper);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: if the lower bound is excluded, scales the output
     * of Random.nextDouble(), but rejects 0 values (i.e., will generate another random double if
     * Random.nextDouble() returns 0). This is necessary to provide a symmetric output interval
     * (both endpoints excluded).
     *
     * @since 3.0
     */
    public double nextUniform(double lower, double upper, boolean lowerInclusive)
            throws NumberIsTooLargeException, NotFiniteNumberException, NotANumberException {
        return delegate.nextUniform(lower, upper, lowerInclusive);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.BetaDistribution Beta Distribution}. This
     * implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} to generate
     * random values.
     *
     * @param alpha first distribution shape parameter
     * @param beta second distribution shape parameter
     * @return random value sampled from the beta(alpha, beta) distribution
     * @since 2.2
     */
    public double nextBeta(double alpha, double beta) {
        return delegate.nextBeta(alpha, beta);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.BinomialDistribution Binomial Distribution}. This
     * implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} to generate
     * random values.
     *
     * @param numberOfTrials number of trials of the Binomial distribution
     * @param probabilityOfSuccess probability of success of the Binomial distribution
     * @return random value sampled from the Binomial(numberOfTrials, probabilityOfSuccess)
     *     distribution
     * @since 2.2
     */
    public int nextBinomial(int numberOfTrials, double probabilityOfSuccess) {
        return delegate.nextBinomial(numberOfTrials, probabilityOfSuccess);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.CauchyDistribution Cauchy Distribution}. This
     * implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} to generate
     * random values.
     *
     * @param median the median of the Cauchy distribution
     * @param scale the scale parameter of the Cauchy distribution
     * @return random value sampled from the Cauchy(median, scale) distribution
     * @since 2.2
     */
    public double nextCauchy(double median, double scale) {
        return delegate.nextCauchy(median, scale);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.ChiSquaredDistribution ChiSquare Distribution}. This
     * implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} to generate
     * random values.
     *
     * @param df the degrees of freedom of the ChiSquare distribution
     * @return random value sampled from the ChiSquare(df) distribution
     * @since 2.2
     */
    public double nextChiSquare(double df) {
        return delegate.nextChiSquare(df);
    }

    /**
     * Generates a random value from the {@link org.apache.commons.math3.distribution.FDistribution
     * F Distribution}. This implementation uses {@link #nextInversionDeviate(RealDistribution)
     * inversion} to generate random values.
     *
     * @param numeratorDf the numerator degrees of freedom of the F distribution
     * @param denominatorDf the denominator degrees of freedom of the F distribution
     * @return random value sampled from the F(numeratorDf, denominatorDf) distribution
     * @throws NotStrictlyPositiveException if {@code numeratorDf <= 0} or {@code denominatorDf <=
     *     0}.
     * @since 2.2
     */
    public double nextF(double numeratorDf, double denominatorDf)
            throws NotStrictlyPositiveException {
        return delegate.nextF(numeratorDf, denominatorDf);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.GammaDistribution Gamma Distribution}.
     *
     * <p>This implementation uses the following algorithms:
     *
     * <p>For 0 < shape < 1: <br>
     * Ahrens, J. H. and Dieter, U., <i>Computer methods for sampling from gamma, beta, Poisson and
     * binomial distributions.</i> Computing, 12, 223-246, 1974.
     *
     * <p>For shape >= 1: <br>
     * Marsaglia and Tsang, <i>A Simple Method for Generating Gamma Variables.</i> ACM Transactions
     * on Mathematical Software, Volume 26 Issue 3, September, 2000.
     *
     * @param shape the median of the Gamma distribution
     * @param scale the scale parameter of the Gamma distribution
     * @return random value sampled from the Gamma(shape, scale) distribution
     * @throws NotStrictlyPositiveException if {@code shape <= 0} or {@code scale <= 0}.
     * @since 2.2
     */
    public double nextGamma(double shape, double scale) throws NotStrictlyPositiveException {
        return delegate.nextGamma(shape, scale);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.HypergeometricDistribution Hypergeometric
     * Distribution}. This implementation uses {@link #nextInversionDeviate(IntegerDistribution)
     * inversion} to generate random values.
     *
     * @param populationSize the population size of the Hypergeometric distribution
     * @param numberOfSuccesses number of successes in the population of the Hypergeometric
     *     distribution
     * @param sampleSize the sample size of the Hypergeometric distribution
     * @return random value sampled from the Hypergeometric(numberOfSuccesses, sampleSize)
     *     distribution
     * @throws NumberIsTooLargeException if {@code numberOfSuccesses > populationSize}, or {@code
     *     sampleSize > populationSize}.
     * @throws NotStrictlyPositiveException if {@code populationSize <= 0}.
     * @throws NotPositiveException if {@code numberOfSuccesses < 0}.
     * @since 2.2
     */
    public int nextHypergeometric(int populationSize, int numberOfSuccesses, int sampleSize)
            throws NotPositiveException, NotStrictlyPositiveException, NumberIsTooLargeException {
        return delegate.nextHypergeometric(populationSize, numberOfSuccesses, sampleSize);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.PascalDistribution Pascal Distribution}. This
     * implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} to generate
     * random values.
     *
     * @param r the number of successes of the Pascal distribution
     * @param p the probability of success of the Pascal distribution
     * @return random value sampled from the Pascal(r, p) distribution
     * @since 2.2
     * @throws NotStrictlyPositiveException if the number of successes is not positive
     * @throws OutOfRangeException if the probability of success is not in the range {@code [0, 1]}.
     */
    public int nextPascal(int r, double p)
            throws NotStrictlyPositiveException, OutOfRangeException {
        return delegate.nextPascal(r, p);
    }

    /**
     * Generates a random value from the {@link org.apache.commons.math3.distribution.TDistribution
     * T Distribution}. This implementation uses {@link #nextInversionDeviate(RealDistribution)
     * inversion} to generate random values.
     *
     * @param df the degrees of freedom of the T distribution
     * @return random value from the T(df) distribution
     * @since 2.2
     * @throws NotStrictlyPositiveException if {@code df <= 0}
     */
    public double nextT(double df) throws NotStrictlyPositiveException {
        return delegate.nextT(df);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.WeibullDistribution Weibull Distribution}. This
     * implementation uses {@link #nextInversionDeviate(RealDistribution) inversion} to generate
     * random values.
     *
     * @param shape the shape parameter of the Weibull distribution
     * @param scale the scale parameter of the Weibull distribution
     * @return random value sampled from the Weibull(shape, size) distribution
     * @since 2.2
     * @throws NotStrictlyPositiveException if {@code shape <= 0} or {@code scale <= 0}.
     */
    public double nextWeibull(double shape, double scale) throws NotStrictlyPositiveException {
        return delegate.nextWeibull(shape, scale);
    }

    /**
     * Generates a random value from the {@link
     * org.apache.commons.math3.distribution.ZipfDistribution Zipf Distribution}. This
     * implementation uses {@link #nextInversionDeviate(IntegerDistribution) inversion} to generate
     * random values.
     *
     * @param numberOfElements the number of elements of the ZipfDistribution
     * @param exponent the exponent of the ZipfDistribution
     * @return random value sampled from the Zipf(numberOfElements, exponent) distribution
     * @since 2.2
     * @exception NotStrictlyPositiveException if {@code numberOfElements <= 0} or {@code exponent
     *     <= 0}.
     */
    public int nextZipf(int numberOfElements, double exponent) throws NotStrictlyPositiveException {
        return delegate.nextZipf(numberOfElements, exponent);
    }

    /**
     * Reseeds the random number generator with the supplied seed.
     *
     * <p>Will create and initialize if null.
     *
     * @param seed the seed value to use
     */
    public void reSeed(long seed) {
        delegate.reSeed(seed);
    }

    /**
     * Reseeds the secure random number generator with the current time in milliseconds.
     *
     * <p>Will create and initialize if null.
     */
    public void reSeedSecure() {
        delegate.reSeedSecure();
    }

    /**
     * Reseeds the secure random number generator with the supplied seed.
     *
     * <p>Will create and initialize if null.
     *
     * @param seed the seed value to use
     */
    public void reSeedSecure(long seed) {
        delegate.reSeedSecure(seed);
    }

    /**
     * Reseeds the random number generator with {@code System.currentTimeMillis() +
     * System.identityHashCode(this))}.
     */
    public void reSeed() {
        delegate.reSeed();
    }

    /**
     * Sets the PRNG algorithm for the underlying SecureRandom instance using the Security Provider
     * API. The Security Provider API is defined in <a href =
     * "http://java.sun.com/j2se/1.3/docs/guide/security/CryptoSpec.html#AppA"> Java Cryptography
     * Architecture API Specification & Reference.</a>
     *
     * <p><strong>USAGE NOTE:</strong> This method carries <i>significant</i> overhead and may take
     * several seconds to execute.
     *
     * @param algorithm the name of the PRNG algorithm
     * @param provider the name of the provider
     * @throws NoSuchAlgorithmException if the specified algorithm is not available
     * @throws NoSuchProviderException if the specified provider is not installed
     */
    public void setSecureAlgorithm(String algorithm, String provider)
            throws NoSuchAlgorithmException, NoSuchProviderException {
        delegate.setSecureAlgorithm(algorithm, provider);
    }

    /**
     * {@inheritDoc}
     *
     * <p>Uses a 2-cycle permutation shuffle. The shuffling process is described <a
     * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">here</a>.
     */
    public int[] nextPermutation(int n, int k)
            throws NotStrictlyPositiveException, NumberIsTooLargeException {
        return delegate.nextPermutation(n, k);
    }

    /**
     * {@inheritDoc}
     *
     * <p><strong>Algorithm Description</strong>: Uses a 2-cycle permutation shuffle to generate a
     * random permutation of <code>c.size()</code> and then returns the elements whose indexes
     * correspond to the elements of the generated permutation. This technique is described, and
     * proven to generate random samples <a
     * href="http://www.maths.abdn.ac.uk/~igc/tch/mx4002/notes/node83.html">here</a>
     */
    public Object[] nextSample(Collection<?> c, int k)
            throws NotStrictlyPositiveException, NumberIsTooLargeException {
        return delegate.nextSample(c, k);
    }

    /**
     * Generate a random deviate from the given distribution using the <a
     * href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">inversion method.</a>
     *
     * @param distribution Continuous distribution to generate a random value from
     * @return a random value sampled from the given distribution
     * @throws MathIllegalArgumentException if the underlynig distribution throws one
     * @since 2.2
     * @deprecated use the distribution's sample() method
     */
    @Deprecated
    public double nextInversionDeviate(RealDistribution distribution)
            throws MathIllegalArgumentException {
        return distribution.inverseCumulativeProbability(nextUniform(0, 1));
    }

    /**
     * Generate a random deviate from the given distribution using the <a
     * href="http://en.wikipedia.org/wiki/Inverse_transform_sampling">inversion method.</a>
     *
     * @param distribution Integer distribution to generate a random value from
     * @return a random value sampled from the given distribution
     * @throws MathIllegalArgumentException if the underlynig distribution throws one
     * @since 2.2
     * @deprecated use the distribution's sample() method
     */
    @Deprecated
    public int nextInversionDeviate(IntegerDistribution distribution)
            throws MathIllegalArgumentException {
        return distribution.inverseCumulativeProbability(nextUniform(0, 1));
    }
}