summaryrefslogtreecommitdiff
path: root/src/main/java/org/apache/commons/math3/special/Erf.java
blob: 325b15c277c0250020cca3511e3821fd67cc591e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.special;

import org.apache.commons.math3.util.FastMath;

/** This is a utility class that provides computation methods related to the error functions. */
public class Erf {

    /**
     * The number {@code X_CRIT} is used by {@link #erf(double, double)} internally. This number
     * solves {@code erf(x)=0.5} within 1ulp. More precisely, the current implementations of {@link
     * #erf(double)} and {@link #erfc(double)} satisfy:<br>
     * {@code erf(X_CRIT) < 0.5},<br>
     * {@code erf(Math.nextUp(X_CRIT) > 0.5},<br>
     * {@code erfc(X_CRIT) = 0.5}, and<br>
     * {@code erfc(Math.nextUp(X_CRIT) < 0.5}
     */
    private static final double X_CRIT = 0.4769362762044697;

    /** Default constructor. Prohibit instantiation. */
    private Erf() {}

    /**
     * Returns the error function.
     *
     * <p>erf(x) = 2/&radic;&pi; <sub>0</sub>&int;<sup>x</sup> e<sup>-t<sup>2</sup></sup>dt
     *
     * <p>This implementation computes erf(x) using the {@link Gamma#regularizedGammaP(double,
     * double, double, int) regularized gamma function}, following <a
     * href="http://mathworld.wolfram.com/Erf.html">Erf</a>, equation (3)
     *
     * <p>The value returned is always between -1 and 1 (inclusive). If {@code abs(x) > 40}, then
     * {@code erf(x)} is indistinguishable from either 1 or -1 as a double, so the appropriate
     * extreme value is returned.
     *
     * @param x the value.
     * @return the error function erf(x)
     * @throws org.apache.commons.math3.exception.MaxCountExceededException if the algorithm fails
     *     to converge.
     * @see Gamma#regularizedGammaP(double, double, double, int)
     */
    public static double erf(double x) {
        if (FastMath.abs(x) > 40) {
            return x > 0 ? 1 : -1;
        }
        final double ret = Gamma.regularizedGammaP(0.5, x * x, 1.0e-15, 10000);
        return x < 0 ? -ret : ret;
    }

    /**
     * Returns the complementary error function.
     *
     * <p>erfc(x) = 2/&radic;&pi; <sub>x</sub>&int;<sup>&infin;</sup> e<sup>-t<sup>2</sup></sup>dt
     * <br>
     * = 1 - {@link #erf(double) erf(x)}
     *
     * <p>This implementation computes erfc(x) using the {@link Gamma#regularizedGammaQ(double,
     * double, double, int) regularized gamma function}, following <a
     * href="http://mathworld.wolfram.com/Erf.html">Erf</a>, equation (3).
     *
     * <p>The value returned is always between 0 and 2 (inclusive). If {@code abs(x) > 40}, then
     * {@code erf(x)} is indistinguishable from either 0 or 2 as a double, so the appropriate
     * extreme value is returned.
     *
     * @param x the value
     * @return the complementary error function erfc(x)
     * @throws org.apache.commons.math3.exception.MaxCountExceededException if the algorithm fails
     *     to converge.
     * @see Gamma#regularizedGammaQ(double, double, double, int)
     * @since 2.2
     */
    public static double erfc(double x) {
        if (FastMath.abs(x) > 40) {
            return x > 0 ? 0 : 2;
        }
        final double ret = Gamma.regularizedGammaQ(0.5, x * x, 1.0e-15, 10000);
        return x < 0 ? 2 - ret : ret;
    }

    /**
     * Returns the difference between erf(x1) and erf(x2).
     *
     * <p>The implementation uses either erf(double) or erfc(double) depending on which provides the
     * most precise result.
     *
     * @param x1 the first value
     * @param x2 the second value
     * @return erf(x2) - erf(x1)
     */
    public static double erf(double x1, double x2) {
        if (x1 > x2) {
            return -erf(x2, x1);
        }

        return x1 < -X_CRIT
                ? x2 < 0.0 ? erfc(-x2) - erfc(-x1) : erf(x2) - erf(x1)
                : x2 > X_CRIT && x1 > 0.0 ? erfc(x1) - erfc(x2) : erf(x2) - erf(x1);
    }

    /**
     * Returns the inverse erf.
     *
     * <p>This implementation is described in the paper: <a
     * href="http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf">Approximating the erfinv
     * function</a> by Mike Giles, Oxford-Man Institute of Quantitative Finance, which was published
     * in GPU Computing Gems, volume 2, 2010. The source code is available <a
     * href="http://gpucomputing.net/?q=node/1828">here</a>.
     *
     * @param x the value
     * @return t such that x = erf(t)
     * @since 3.2
     */
    public static double erfInv(final double x) {

        // beware that the logarithm argument must be
        // commputed as (1.0 - x) * (1.0 + x),
        // it must NOT be simplified as 1.0 - x * x as this
        // would induce rounding errors near the boundaries +/-1
        double w = -FastMath.log((1.0 - x) * (1.0 + x));
        double p;

        if (w < 6.25) {
            w -= 3.125;
            p = -3.6444120640178196996e-21;
            p = -1.685059138182016589e-19 + p * w;
            p = 1.2858480715256400167e-18 + p * w;
            p = 1.115787767802518096e-17 + p * w;
            p = -1.333171662854620906e-16 + p * w;
            p = 2.0972767875968561637e-17 + p * w;
            p = 6.6376381343583238325e-15 + p * w;
            p = -4.0545662729752068639e-14 + p * w;
            p = -8.1519341976054721522e-14 + p * w;
            p = 2.6335093153082322977e-12 + p * w;
            p = -1.2975133253453532498e-11 + p * w;
            p = -5.4154120542946279317e-11 + p * w;
            p = 1.051212273321532285e-09 + p * w;
            p = -4.1126339803469836976e-09 + p * w;
            p = -2.9070369957882005086e-08 + p * w;
            p = 4.2347877827932403518e-07 + p * w;
            p = -1.3654692000834678645e-06 + p * w;
            p = -1.3882523362786468719e-05 + p * w;
            p = 0.0001867342080340571352 + p * w;
            p = -0.00074070253416626697512 + p * w;
            p = -0.0060336708714301490533 + p * w;
            p = 0.24015818242558961693 + p * w;
            p = 1.6536545626831027356 + p * w;
        } else if (w < 16.0) {
            w = FastMath.sqrt(w) - 3.25;
            p = 2.2137376921775787049e-09;
            p = 9.0756561938885390979e-08 + p * w;
            p = -2.7517406297064545428e-07 + p * w;
            p = 1.8239629214389227755e-08 + p * w;
            p = 1.5027403968909827627e-06 + p * w;
            p = -4.013867526981545969e-06 + p * w;
            p = 2.9234449089955446044e-06 + p * w;
            p = 1.2475304481671778723e-05 + p * w;
            p = -4.7318229009055733981e-05 + p * w;
            p = 6.8284851459573175448e-05 + p * w;
            p = 2.4031110387097893999e-05 + p * w;
            p = -0.0003550375203628474796 + p * w;
            p = 0.00095328937973738049703 + p * w;
            p = -0.0016882755560235047313 + p * w;
            p = 0.0024914420961078508066 + p * w;
            p = -0.0037512085075692412107 + p * w;
            p = 0.005370914553590063617 + p * w;
            p = 1.0052589676941592334 + p * w;
            p = 3.0838856104922207635 + p * w;
        } else if (!Double.isInfinite(w)) {
            w = FastMath.sqrt(w) - 5.0;
            p = -2.7109920616438573243e-11;
            p = -2.5556418169965252055e-10 + p * w;
            p = 1.5076572693500548083e-09 + p * w;
            p = -3.7894654401267369937e-09 + p * w;
            p = 7.6157012080783393804e-09 + p * w;
            p = -1.4960026627149240478e-08 + p * w;
            p = 2.9147953450901080826e-08 + p * w;
            p = -6.7711997758452339498e-08 + p * w;
            p = 2.2900482228026654717e-07 + p * w;
            p = -9.9298272942317002539e-07 + p * w;
            p = 4.5260625972231537039e-06 + p * w;
            p = -1.9681778105531670567e-05 + p * w;
            p = 7.5995277030017761139e-05 + p * w;
            p = -0.00021503011930044477347 + p * w;
            p = -0.00013871931833623122026 + p * w;
            p = 1.0103004648645343977 + p * w;
            p = 4.8499064014085844221 + p * w;
        } else {
            // this branch does not appears in the original code, it
            // was added because the previous branch does not handle
            // x = +/-1 correctly. In this case, w is positive infinity
            // and as the first coefficient (-2.71e-11) is negative.
            // Once the first multiplication is done, p becomes negative
            // infinity and remains so throughout the polynomial evaluation.
            // So the branch above incorrectly returns negative infinity
            // instead of the correct positive infinity.
            p = Double.POSITIVE_INFINITY;
        }

        return p * x;
    }

    /**
     * Returns the inverse erfc.
     *
     * @param x the value
     * @return t such that x = erfc(t)
     * @since 3.2
     */
    public static double erfcInv(final double x) {
        return erfInv(1 - x);
    }
}