aboutsummaryrefslogtreecommitdiff
path: root/pl/math/atan2f_3u.c
diff options
context:
space:
mode:
Diffstat (limited to 'pl/math/atan2f_3u.c')
-rw-r--r--pl/math/atan2f_3u.c167
1 files changed, 167 insertions, 0 deletions
diff --git a/pl/math/atan2f_3u.c b/pl/math/atan2f_3u.c
new file mode 100644
index 0000000..38e1df5
--- /dev/null
+++ b/pl/math/atan2f_3u.c
@@ -0,0 +1,167 @@
+/*
+ * Single-precision scalar atan2(x) function.
+ *
+ * Copyright (c) 2021-2023, Arm Limited.
+ * SPDX-License-Identifier: MIT OR Apache-2.0 WITH LLVM-exception
+ */
+
+#include <stdbool.h>
+
+#include "atanf_common.h"
+#include "math_config.h"
+#include "pl_sig.h"
+#include "pl_test.h"
+
+#define Pi (0x1.921fb6p+1f)
+#define PiOver2 (0x1.921fb6p+0f)
+#define PiOver4 (0x1.921fb6p-1f)
+#define SignMask (0x80000000)
+
+/* We calculate atan2f by P(n/d), where n and d are similar to the input
+ arguments, and P is a polynomial. The polynomial may underflow.
+ POLY_UFLOW_BOUND is the lower bound of the difference in exponents of n and d
+ for which P underflows, and is used to special-case such inputs. */
+#define POLY_UFLOW_BOUND 24
+
+static inline int32_t
+biased_exponent (float f)
+{
+ uint32_t fi = asuint (f);
+ int32_t ex = (int32_t) ((fi & 0x7f800000) >> 23);
+ if (unlikely (ex == 0))
+ {
+ /* Subnormal case - we still need to get the exponent right for subnormal
+ numbers as division may take us back inside the normal range. */
+ return ex - __builtin_clz (fi << 9);
+ }
+ return ex;
+}
+
+/* Fast implementation of scalar atan2f. Largest observed error is
+ 2.88ulps in [99.0, 101.0] x [99.0, 101.0]:
+ atan2f(0x1.9332d8p+6, 0x1.8cb6c4p+6) got 0x1.964646p-1
+ want 0x1.964640p-1. */
+float
+atan2f (float y, float x)
+{
+ uint32_t ix = asuint (x);
+ uint32_t iy = asuint (y);
+
+ uint32_t sign_x = ix & SignMask;
+ uint32_t sign_y = iy & SignMask;
+
+ uint32_t iax = ix & ~SignMask;
+ uint32_t iay = iy & ~SignMask;
+
+ /* x or y is NaN. */
+ if ((iax > 0x7f800000) || (iay > 0x7f800000))
+ return x + y;
+
+ /* m = 2 * sign(x) + sign(y). */
+ uint32_t m = ((iy >> 31) & 1) | ((ix >> 30) & 2);
+
+ /* The following follows glibc ieee754 implementation, except
+ that we do not use +-tiny shifts (non-nearest rounding mode). */
+
+ int32_t exp_diff = biased_exponent (x) - biased_exponent (y);
+
+ /* Special case for (x, y) either on or very close to the x axis. Either y =
+ 0, or y is tiny and x is huge (difference in exponents >=
+ POLY_UFLOW_BOUND). In the second case, we only want to use this special
+ case when x is negative (i.e. quadrants 2 or 3). */
+ if (unlikely (iay == 0 || (exp_diff >= POLY_UFLOW_BOUND && m >= 2)))
+ {
+ switch (m)
+ {
+ case 0:
+ case 1:
+ return y; /* atan(+-0,+anything)=+-0. */
+ case 2:
+ return Pi; /* atan(+0,-anything) = pi. */
+ case 3:
+ return -Pi; /* atan(-0,-anything) =-pi. */
+ }
+ }
+ /* Special case for (x, y) either on or very close to the y axis. Either x =
+ 0, or x is tiny and y is huge (difference in exponents >=
+ POLY_UFLOW_BOUND). */
+ if (unlikely (iax == 0 || exp_diff <= -POLY_UFLOW_BOUND))
+ return sign_y ? -PiOver2 : PiOver2;
+
+ /* x is INF. */
+ if (iax == 0x7f800000)
+ {
+ if (iay == 0x7f800000)
+ {
+ switch (m)
+ {
+ case 0:
+ return PiOver4; /* atan(+INF,+INF). */
+ case 1:
+ return -PiOver4; /* atan(-INF,+INF). */
+ case 2:
+ return 3.0f * PiOver4; /* atan(+INF,-INF). */
+ case 3:
+ return -3.0f * PiOver4; /* atan(-INF,-INF). */
+ }
+ }
+ else
+ {
+ switch (m)
+ {
+ case 0:
+ return 0.0f; /* atan(+...,+INF). */
+ case 1:
+ return -0.0f; /* atan(-...,+INF). */
+ case 2:
+ return Pi; /* atan(+...,-INF). */
+ case 3:
+ return -Pi; /* atan(-...,-INF). */
+ }
+ }
+ }
+ /* y is INF. */
+ if (iay == 0x7f800000)
+ return sign_y ? -PiOver2 : PiOver2;
+
+ uint32_t sign_xy = sign_x ^ sign_y;
+
+ float ax = asfloat (iax);
+ float ay = asfloat (iay);
+
+ bool pred_aygtax = (ay > ax);
+
+ /* Set up z for call to atanf. */
+ float n = pred_aygtax ? -ax : ay;
+ float d = pred_aygtax ? ay : ax;
+ float z = n / d;
+
+ float ret;
+ if (unlikely (m < 2 && exp_diff >= POLY_UFLOW_BOUND))
+ {
+ /* If (x, y) is very close to x axis and x is positive, the polynomial
+ will underflow and evaluate to z. */
+ ret = z;
+ }
+ else
+ {
+ /* Work out the correct shift. */
+ float shift = sign_x ? -2.0f : 0.0f;
+ shift = pred_aygtax ? shift + 1.0f : shift;
+ shift *= PiOver2;
+
+ ret = eval_poly (z, z, shift);
+ }
+
+ /* Account for the sign of x and y. */
+ return asfloat (asuint (ret) ^ sign_xy);
+}
+
+/* Arity of 2 means no mathbench entry emitted. See test/mathbench_funcs.h. */
+PL_SIG (S, F, 2, atan2)
+PL_TEST_ULP (atan2f, 2.4)
+PL_TEST_INTERVAL (atan2f, -10.0, 10.0, 50000)
+PL_TEST_INTERVAL (atan2f, -1.0, 1.0, 40000)
+PL_TEST_INTERVAL (atan2f, 0.0, 1.0, 40000)
+PL_TEST_INTERVAL (atan2f, 1.0, 100.0, 40000)
+PL_TEST_INTERVAL (atan2f, 1e6, 1e32, 40000)