aboutsummaryrefslogtreecommitdiff
path: root/internal/ceres/solver_impl_test.cc
diff options
context:
space:
mode:
Diffstat (limited to 'internal/ceres/solver_impl_test.cc')
-rw-r--r--internal/ceres/solver_impl_test.cc939
1 files changed, 2 insertions, 937 deletions
diff --git a/internal/ceres/solver_impl_test.cc b/internal/ceres/solver_impl_test.cc
index 583ef4e..2d517c6 100644
--- a/internal/ceres/solver_impl_test.cc
+++ b/internal/ceres/solver_impl_test.cc
@@ -1,5 +1,5 @@
// Ceres Solver - A fast non-linear least squares minimizer
-// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
+// Copyright 2014 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
@@ -42,660 +42,6 @@
namespace ceres {
namespace internal {
-// A cost function that sipmply returns its argument.
-class UnaryIdentityCostFunction : public SizedCostFunction<1, 1> {
- public:
- virtual bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const {
- residuals[0] = parameters[0][0];
- if (jacobians != NULL && jacobians[0] != NULL) {
- jacobians[0][0] = 1.0;
- }
- return true;
- }
-};
-
-// Templated base class for the CostFunction signatures.
-template <int kNumResiduals, int N0, int N1, int N2>
-class MockCostFunctionBase : public
-SizedCostFunction<kNumResiduals, N0, N1, N2> {
- public:
- virtual bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const {
- // Do nothing. This is never called.
- return true;
- }
-};
-
-class UnaryCostFunction : public MockCostFunctionBase<2, 1, 0, 0> {};
-class BinaryCostFunction : public MockCostFunctionBase<2, 1, 1, 0> {};
-class TernaryCostFunction : public MockCostFunctionBase<2, 1, 1, 1> {};
-
-TEST(SolverImpl, RemoveFixedBlocksNothingConstant) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
- problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z);
-
- string error;
- {
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
- ordering.AddElementToGroup(&y, 0);
- ordering.AddElementToGroup(&z, 0);
-
- Program program(*problem.mutable_program());
- EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
- &ordering,
- NULL,
- &error));
- EXPECT_EQ(program.NumParameterBlocks(), 3);
- EXPECT_EQ(program.NumResidualBlocks(), 3);
- EXPECT_EQ(ordering.NumElements(), 3);
- }
-}
-
-TEST(SolverImpl, RemoveFixedBlocksAllParameterBlocksConstant) {
- ProblemImpl problem;
- double x;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
- problem.SetParameterBlockConstant(&x);
-
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
-
- Program program(problem.program());
- string error;
- EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
- &ordering,
- NULL,
- &error));
- EXPECT_EQ(program.NumParameterBlocks(), 0);
- EXPECT_EQ(program.NumResidualBlocks(), 0);
- EXPECT_EQ(ordering.NumElements(), 0);
-}
-
-TEST(SolverImpl, RemoveFixedBlocksNoResidualBlocks) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
-
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
- ordering.AddElementToGroup(&y, 0);
- ordering.AddElementToGroup(&z, 0);
-
-
- Program program(problem.program());
- string error;
- EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
- &ordering,
- NULL,
- &error));
- EXPECT_EQ(program.NumParameterBlocks(), 0);
- EXPECT_EQ(program.NumResidualBlocks(), 0);
- EXPECT_EQ(ordering.NumElements(), 0);
-}
-
-TEST(SolverImpl, RemoveFixedBlocksOneParameterBlockConstant) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
-
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
- ordering.AddElementToGroup(&y, 0);
- ordering.AddElementToGroup(&z, 0);
-
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
- problem.SetParameterBlockConstant(&x);
-
-
- Program program(problem.program());
- string error;
- EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
- &ordering,
- NULL,
- &error));
- EXPECT_EQ(program.NumParameterBlocks(), 1);
- EXPECT_EQ(program.NumResidualBlocks(), 1);
- EXPECT_EQ(ordering.NumElements(), 1);
-}
-
-TEST(SolverImpl, RemoveFixedBlocksNumEliminateBlocks) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
- problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
- problem.SetParameterBlockConstant(&x);
-
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
- ordering.AddElementToGroup(&y, 0);
- ordering.AddElementToGroup(&z, 1);
-
- Program program(problem.program());
- string error;
- EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
- &ordering,
- NULL,
- &error));
- EXPECT_EQ(program.NumParameterBlocks(), 2);
- EXPECT_EQ(program.NumResidualBlocks(), 2);
- EXPECT_EQ(ordering.NumElements(), 2);
- EXPECT_EQ(ordering.GroupId(&y), 0);
- EXPECT_EQ(ordering.GroupId(&z), 1);
-}
-
-TEST(SolverImpl, RemoveFixedBlocksFixedCost) {
- ProblemImpl problem;
- double x = 1.23;
- double y = 4.56;
- double z = 7.89;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
- problem.AddResidualBlock(new UnaryIdentityCostFunction(), NULL, &x);
- problem.AddResidualBlock(new TernaryCostFunction(), NULL, &x, &y, &z);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
- problem.SetParameterBlockConstant(&x);
-
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
- ordering.AddElementToGroup(&y, 0);
- ordering.AddElementToGroup(&z, 1);
-
- double fixed_cost = 0.0;
- Program program(problem.program());
-
- double expected_fixed_cost;
- ResidualBlock *expected_removed_block = program.residual_blocks()[0];
- scoped_array<double> scratch(
- new double[expected_removed_block->NumScratchDoublesForEvaluate()]);
- expected_removed_block->Evaluate(true,
- &expected_fixed_cost,
- NULL,
- NULL,
- scratch.get());
-
- string error;
- EXPECT_TRUE(SolverImpl::RemoveFixedBlocksFromProgram(&program,
- &ordering,
- &fixed_cost,
- &error));
- EXPECT_EQ(program.NumParameterBlocks(), 2);
- EXPECT_EQ(program.NumResidualBlocks(), 2);
- EXPECT_EQ(ordering.NumElements(), 2);
- EXPECT_EQ(ordering.GroupId(&y), 0);
- EXPECT_EQ(ordering.GroupId(&z), 1);
- EXPECT_DOUBLE_EQ(fixed_cost, expected_fixed_cost);
-}
-
-TEST(SolverImpl, ReorderResidualBlockNormalFunction) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
-
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &y);
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);
-
- ParameterBlockOrdering* ordering = new ParameterBlockOrdering;
- ordering->AddElementToGroup(&x, 0);
- ordering->AddElementToGroup(&y, 0);
- ordering->AddElementToGroup(&z, 1);
-
- Solver::Options options;
- options.linear_solver_type = DENSE_SCHUR;
- options.linear_solver_ordering = ordering;
-
- const vector<ResidualBlock*>& residual_blocks =
- problem.program().residual_blocks();
-
- vector<ResidualBlock*> expected_residual_blocks;
-
- // This is a bit fragile, but it serves the purpose. We know the
- // bucketing algorithm that the reordering function uses, so we
- // expect the order for residual blocks for each e_block to be
- // filled in reverse.
- expected_residual_blocks.push_back(residual_blocks[4]);
- expected_residual_blocks.push_back(residual_blocks[1]);
- expected_residual_blocks.push_back(residual_blocks[0]);
- expected_residual_blocks.push_back(residual_blocks[5]);
- expected_residual_blocks.push_back(residual_blocks[2]);
- expected_residual_blocks.push_back(residual_blocks[3]);
-
- Program* program = problem.mutable_program();
- program->SetParameterOffsetsAndIndex();
-
- string error;
- EXPECT_TRUE(SolverImpl::LexicographicallyOrderResidualBlocks(
- 2,
- problem.mutable_program(),
- &error));
- EXPECT_EQ(residual_blocks.size(), expected_residual_blocks.size());
- for (int i = 0; i < expected_residual_blocks.size(); ++i) {
- EXPECT_EQ(residual_blocks[i], expected_residual_blocks[i]);
- }
-}
-
-TEST(SolverImpl, ReorderResidualBlockNormalFunctionWithFixedBlocks) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
-
- // Set one parameter block constant.
- problem.SetParameterBlockConstant(&z);
-
- // Mark residuals for x's row block with "x" for readability.
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x); // 0 x
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x); // 1 x
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 2
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 3
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); // 4 x
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y); // 5
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z); // 6 x
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y); // 7
-
- ParameterBlockOrdering* ordering = new ParameterBlockOrdering;
- ordering->AddElementToGroup(&x, 0);
- ordering->AddElementToGroup(&z, 0);
- ordering->AddElementToGroup(&y, 1);
-
- Solver::Options options;
- options.linear_solver_type = DENSE_SCHUR;
- options.linear_solver_ordering = ordering;
-
- // Create the reduced program. This should remove the fixed block "z",
- // marking the index to -1 at the same time. x and y also get indices.
- string error;
- scoped_ptr<Program> reduced_program(
- SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error));
-
- const vector<ResidualBlock*>& residual_blocks =
- problem.program().residual_blocks();
-
- // This is a bit fragile, but it serves the purpose. We know the
- // bucketing algorithm that the reordering function uses, so we
- // expect the order for residual blocks for each e_block to be
- // filled in reverse.
-
- vector<ResidualBlock*> expected_residual_blocks;
-
- // Row block for residuals involving "x". These are marked "x" in the block
- // of code calling AddResidual() above.
- expected_residual_blocks.push_back(residual_blocks[6]);
- expected_residual_blocks.push_back(residual_blocks[4]);
- expected_residual_blocks.push_back(residual_blocks[1]);
- expected_residual_blocks.push_back(residual_blocks[0]);
-
- // Row block for residuals involving "y".
- expected_residual_blocks.push_back(residual_blocks[7]);
- expected_residual_blocks.push_back(residual_blocks[5]);
- expected_residual_blocks.push_back(residual_blocks[3]);
- expected_residual_blocks.push_back(residual_blocks[2]);
-
- EXPECT_EQ(reduced_program->residual_blocks().size(),
- expected_residual_blocks.size());
- for (int i = 0; i < expected_residual_blocks.size(); ++i) {
- EXPECT_EQ(reduced_program->residual_blocks()[i],
- expected_residual_blocks[i]);
- }
-}
-
-TEST(SolverImpl, AutomaticSchurReorderingRespectsConstantBlocks) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
-
- // Set one parameter block constant.
- problem.SetParameterBlockConstant(&z);
-
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &x);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &x);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &z, &y);
- problem.AddResidualBlock(new BinaryCostFunction(), NULL, &x, &z);
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &y);
- problem.AddResidualBlock(new UnaryCostFunction(), NULL, &z);
-
- ParameterBlockOrdering* ordering = new ParameterBlockOrdering;
- ordering->AddElementToGroup(&x, 0);
- ordering->AddElementToGroup(&z, 0);
- ordering->AddElementToGroup(&y, 0);
-
- Solver::Options options;
- options.linear_solver_type = DENSE_SCHUR;
- options.linear_solver_ordering = ordering;
-
- string error;
- scoped_ptr<Program> reduced_program(
- SolverImpl::CreateReducedProgram(&options, &problem, NULL, &error));
-
- const vector<ResidualBlock*>& residual_blocks =
- reduced_program->residual_blocks();
- const vector<ParameterBlock*>& parameter_blocks =
- reduced_program->parameter_blocks();
-
- const vector<ResidualBlock*>& original_residual_blocks =
- problem.program().residual_blocks();
-
- EXPECT_EQ(residual_blocks.size(), 8);
- EXPECT_EQ(reduced_program->parameter_blocks().size(), 2);
-
- // Verify that right parmeter block and the residual blocks have
- // been removed.
- for (int i = 0; i < 8; ++i) {
- EXPECT_NE(residual_blocks[i], original_residual_blocks.back());
- }
- for (int i = 0; i < 2; ++i) {
- EXPECT_NE(parameter_blocks[i]->mutable_user_state(), &z);
- }
-}
-
-TEST(SolverImpl, ApplyUserOrderingOrderingTooSmall) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
-
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
- ordering.AddElementToGroup(&y, 1);
-
- Program program(problem.program());
- string error;
- EXPECT_FALSE(SolverImpl::ApplyUserOrdering(problem.parameter_map(),
- &ordering,
- &program,
- &error));
-}
-
-TEST(SolverImpl, ApplyUserOrderingNormal) {
- ProblemImpl problem;
- double x;
- double y;
- double z;
-
- problem.AddParameterBlock(&x, 1);
- problem.AddParameterBlock(&y, 1);
- problem.AddParameterBlock(&z, 1);
-
- ParameterBlockOrdering ordering;
- ordering.AddElementToGroup(&x, 0);
- ordering.AddElementToGroup(&y, 2);
- ordering.AddElementToGroup(&z, 1);
-
- Program* program = problem.mutable_program();
- string error;
-
- EXPECT_TRUE(SolverImpl::ApplyUserOrdering(problem.parameter_map(),
- &ordering,
- program,
- &error));
- const vector<ParameterBlock*>& parameter_blocks = program->parameter_blocks();
-
- EXPECT_EQ(parameter_blocks.size(), 3);
- EXPECT_EQ(parameter_blocks[0]->user_state(), &x);
- EXPECT_EQ(parameter_blocks[1]->user_state(), &z);
- EXPECT_EQ(parameter_blocks[2]->user_state(), &y);
-}
-
-#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
-TEST(SolverImpl, CreateLinearSolverNoSuiteSparse) {
- Solver::Options options;
- options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- // CreateLinearSolver assumes a non-empty ordering.
- options.linear_solver_ordering = new ParameterBlockOrdering;
- string error;
- EXPECT_FALSE(SolverImpl::CreateLinearSolver(&options, &error));
-}
-#endif
-
-TEST(SolverImpl, CreateLinearSolverNegativeMaxNumIterations) {
- Solver::Options options;
- options.linear_solver_type = DENSE_QR;
- options.max_linear_solver_iterations = -1;
- // CreateLinearSolver assumes a non-empty ordering.
- options.linear_solver_ordering = new ParameterBlockOrdering;
- string error;
- EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
- static_cast<LinearSolver*>(NULL));
-}
-
-TEST(SolverImpl, CreateLinearSolverNegativeMinNumIterations) {
- Solver::Options options;
- options.linear_solver_type = DENSE_QR;
- options.min_linear_solver_iterations = -1;
- // CreateLinearSolver assumes a non-empty ordering.
- options.linear_solver_ordering = new ParameterBlockOrdering;
- string error;
- EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
- static_cast<LinearSolver*>(NULL));
-}
-
-TEST(SolverImpl, CreateLinearSolverMaxLessThanMinIterations) {
- Solver::Options options;
- options.linear_solver_type = DENSE_QR;
- options.min_linear_solver_iterations = 10;
- options.max_linear_solver_iterations = 5;
- options.linear_solver_ordering = new ParameterBlockOrdering;
- string error;
- EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
- static_cast<LinearSolver*>(NULL));
-}
-
-TEST(SolverImpl, CreateLinearSolverDenseSchurMultipleThreads) {
- Solver::Options options;
- options.linear_solver_type = DENSE_SCHUR;
- options.num_linear_solver_threads = 2;
- // The Schur type solvers can only be created with the Ordering
- // contains at least one elimination group.
- options.linear_solver_ordering = new ParameterBlockOrdering;
- double x;
- double y;
- options.linear_solver_ordering->AddElementToGroup(&x, 0);
- options.linear_solver_ordering->AddElementToGroup(&y, 0);
-
- string error;
- scoped_ptr<LinearSolver> solver(
- SolverImpl::CreateLinearSolver(&options, &error));
- EXPECT_TRUE(solver != NULL);
- EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR);
- EXPECT_EQ(options.num_linear_solver_threads, 2);
-}
-
-TEST(SolverImpl, CreateIterativeLinearSolverForDogleg) {
- Solver::Options options;
- options.trust_region_strategy_type = DOGLEG;
- // CreateLinearSolver assumes a non-empty ordering.
- options.linear_solver_ordering = new ParameterBlockOrdering;
- string error;
- options.linear_solver_type = ITERATIVE_SCHUR;
- EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
- static_cast<LinearSolver*>(NULL));
-
- options.linear_solver_type = CGNR;
- EXPECT_EQ(SolverImpl::CreateLinearSolver(&options, &error),
- static_cast<LinearSolver*>(NULL));
-}
-
-TEST(SolverImpl, CreateLinearSolverNormalOperation) {
- Solver::Options options;
- scoped_ptr<LinearSolver> solver;
- options.linear_solver_type = DENSE_QR;
- // CreateLinearSolver assumes a non-empty ordering.
- options.linear_solver_ordering = new ParameterBlockOrdering;
- string error;
- solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
- EXPECT_EQ(options.linear_solver_type, DENSE_QR);
- EXPECT_TRUE(solver.get() != NULL);
-
- options.linear_solver_type = DENSE_NORMAL_CHOLESKY;
- solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
- EXPECT_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY);
- EXPECT_TRUE(solver.get() != NULL);
-
-#ifndef CERES_NO_SUITESPARSE
- options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- options.sparse_linear_algebra_library_type = SUITE_SPARSE;
- solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
- EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY);
- EXPECT_TRUE(solver.get() != NULL);
-#endif
-
-#ifndef CERES_NO_CXSPARSE
- options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- options.sparse_linear_algebra_library_type = CX_SPARSE;
- solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
- EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY);
- EXPECT_TRUE(solver.get() != NULL);
-#endif
-
- double x;
- double y;
- options.linear_solver_ordering->AddElementToGroup(&x, 0);
- options.linear_solver_ordering->AddElementToGroup(&y, 0);
-
- options.linear_solver_type = DENSE_SCHUR;
- solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
- EXPECT_EQ(options.linear_solver_type, DENSE_SCHUR);
- EXPECT_TRUE(solver.get() != NULL);
-
- options.linear_solver_type = SPARSE_SCHUR;
- solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
-
-#if defined(CERES_NO_SUITESPARSE) && defined(CERES_NO_CXSPARSE)
- EXPECT_TRUE(SolverImpl::CreateLinearSolver(&options, &error) == NULL);
-#else
- EXPECT_TRUE(solver.get() != NULL);
- EXPECT_EQ(options.linear_solver_type, SPARSE_SCHUR);
-#endif
-
- options.linear_solver_type = ITERATIVE_SCHUR;
- solver.reset(SolverImpl::CreateLinearSolver(&options, &error));
- EXPECT_EQ(options.linear_solver_type, ITERATIVE_SCHUR);
- EXPECT_TRUE(solver.get() != NULL);
-}
-
-struct QuadraticCostFunction {
- template <typename T> bool operator()(const T* const x,
- T* residual) const {
- residual[0] = T(5.0) - *x;
- return true;
- }
-};
-
-struct RememberingCallback : public IterationCallback {
- explicit RememberingCallback(double *x) : calls(0), x(x) {}
- virtual ~RememberingCallback() {}
- virtual CallbackReturnType operator()(const IterationSummary& summary) {
- x_values.push_back(*x);
- return SOLVER_CONTINUE;
- }
- int calls;
- double *x;
- vector<double> x_values;
-};
-
-TEST(SolverImpl, UpdateStateEveryIterationOption) {
- double x = 50.0;
- const double original_x = x;
-
- scoped_ptr<CostFunction> cost_function(
- new AutoDiffCostFunction<QuadraticCostFunction, 1, 1>(
- new QuadraticCostFunction));
-
- Problem::Options problem_options;
- problem_options.cost_function_ownership = DO_NOT_TAKE_OWNERSHIP;
- ProblemImpl problem(problem_options);
- problem.AddResidualBlock(cost_function.get(), NULL, &x);
-
- Solver::Options options;
- options.linear_solver_type = DENSE_QR;
-
- RememberingCallback callback(&x);
- options.callbacks.push_back(&callback);
-
- Solver::Summary summary;
-
- int num_iterations;
-
- // First try: no updating.
- SolverImpl::Solve(options, &problem, &summary);
- num_iterations = summary.num_successful_steps +
- summary.num_unsuccessful_steps;
- EXPECT_GT(num_iterations, 1);
- for (int i = 0; i < callback.x_values.size(); ++i) {
- EXPECT_EQ(50.0, callback.x_values[i]);
- }
-
- // Second try: with updating
- x = 50.0;
- options.update_state_every_iteration = true;
- callback.x_values.clear();
- SolverImpl::Solve(options, &problem, &summary);
- num_iterations = summary.num_successful_steps +
- summary.num_unsuccessful_steps;
- EXPECT_GT(num_iterations, 1);
- EXPECT_EQ(original_x, callback.x_values[0]);
- EXPECT_NE(original_x, callback.x_values[1]);
-}
-
// The parameters must be in separate blocks so that they can be individually
// set constant or not.
struct Quadratic4DCostFunction {
@@ -753,289 +99,8 @@ TEST(SolverImpl, ConstantParameterBlocksDoNotChangeAndStateInvariantKept) {
EXPECT_EQ(&y, problem.program().parameter_blocks()[1]->state());
EXPECT_EQ(&z, problem.program().parameter_blocks()[2]->state());
EXPECT_EQ(&w, problem.program().parameter_blocks()[3]->state());
-}
-
-TEST(SolverImpl, NoParameterBlocks) {
- ProblemImpl problem_impl;
- Solver::Options options;
- Solver::Summary summary;
- SolverImpl::Solve(options, &problem_impl, &summary);
- EXPECT_EQ(summary.termination_type, DID_NOT_RUN);
- EXPECT_EQ(summary.error, "Problem contains no parameter blocks.");
-}
-
-TEST(SolverImpl, NoResiduals) {
- ProblemImpl problem_impl;
- Solver::Options options;
- Solver::Summary summary;
- double x = 1;
- problem_impl.AddParameterBlock(&x, 1);
- SolverImpl::Solve(options, &problem_impl, &summary);
- EXPECT_EQ(summary.termination_type, DID_NOT_RUN);
- EXPECT_EQ(summary.error, "Problem contains no residual blocks.");
-}
-
-
-TEST(SolverImpl, ProblemIsConstant) {
- ProblemImpl problem_impl;
- Solver::Options options;
- Solver::Summary summary;
- double x = 1;
- problem_impl.AddResidualBlock(new UnaryIdentityCostFunction, NULL, &x);
- problem_impl.SetParameterBlockConstant(&x);
- SolverImpl::Solve(options, &problem_impl, &summary);
- EXPECT_EQ(summary.termination_type, FUNCTION_TOLERANCE);
- EXPECT_EQ(summary.initial_cost, 1.0 / 2.0);
- EXPECT_EQ(summary.final_cost, 1.0 / 2.0);
-}
-
-TEST(SolverImpl, AlternateLinearSolverForSchurTypeLinearSolver) {
- Solver::Options options;
-
- options.linear_solver_type = DENSE_QR;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, DENSE_QR);
-
- options.linear_solver_type = DENSE_NORMAL_CHOLESKY;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, DENSE_NORMAL_CHOLESKY);
-
- options.linear_solver_type = SPARSE_NORMAL_CHOLESKY;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY);
-
- options.linear_solver_type = CGNR;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, CGNR);
-
- options.linear_solver_type = DENSE_SCHUR;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, DENSE_QR);
-
- options.linear_solver_type = SPARSE_SCHUR;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, SPARSE_NORMAL_CHOLESKY);
-
- options.linear_solver_type = ITERATIVE_SCHUR;
- options.preconditioner_type = IDENTITY;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, CGNR);
- EXPECT_EQ(options.preconditioner_type, IDENTITY);
-
- options.linear_solver_type = ITERATIVE_SCHUR;
- options.preconditioner_type = JACOBI;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, CGNR);
- EXPECT_EQ(options.preconditioner_type, JACOBI);
-
- options.linear_solver_type = ITERATIVE_SCHUR;
- options.preconditioner_type = SCHUR_JACOBI;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, CGNR);
- EXPECT_EQ(options.preconditioner_type, JACOBI);
-
- options.linear_solver_type = ITERATIVE_SCHUR;
- options.preconditioner_type = CLUSTER_JACOBI;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, CGNR);
- EXPECT_EQ(options.preconditioner_type, JACOBI);
-
- options.linear_solver_type = ITERATIVE_SCHUR;
- options.preconditioner_type = CLUSTER_TRIDIAGONAL;
- SolverImpl::AlternateLinearSolverForSchurTypeLinearSolver(&options);
- EXPECT_EQ(options.linear_solver_type, CGNR);
- EXPECT_EQ(options.preconditioner_type, JACOBI);
-}
-
-TEST(SolverImpl, CreateJacobianBlockSparsityTranspose) {
- ProblemImpl problem;
- double x[2];
- double y[3];
- double z;
-
- problem.AddParameterBlock(x, 2);
- problem.AddParameterBlock(y, 3);
- problem.AddParameterBlock(&z, 1);
-
- problem.AddResidualBlock(new MockCostFunctionBase<2, 2, 0, 0>(), NULL, x);
- problem.AddResidualBlock(new MockCostFunctionBase<3, 1, 2, 0>(), NULL, &z, x);
- problem.AddResidualBlock(new MockCostFunctionBase<4, 1, 3, 0>(), NULL, &z, y);
- problem.AddResidualBlock(new MockCostFunctionBase<5, 1, 3, 0>(), NULL, &z, y);
- problem.AddResidualBlock(new MockCostFunctionBase<1, 2, 1, 0>(), NULL, x, &z);
- problem.AddResidualBlock(new MockCostFunctionBase<2, 1, 3, 0>(), NULL, &z, y);
- problem.AddResidualBlock(new MockCostFunctionBase<2, 2, 1, 0>(), NULL, x, &z);
- problem.AddResidualBlock(new MockCostFunctionBase<1, 3, 0, 0>(), NULL, y);
-
- TripletSparseMatrix expected_block_sparse_jacobian(3, 8, 14);
- {
- int* rows = expected_block_sparse_jacobian.mutable_rows();
- int* cols = expected_block_sparse_jacobian.mutable_cols();
- double* values = expected_block_sparse_jacobian.mutable_values();
- rows[0] = 0;
- cols[0] = 0;
-
- rows[1] = 2;
- cols[1] = 1;
- rows[2] = 0;
- cols[2] = 1;
-
- rows[3] = 2;
- cols[3] = 2;
- rows[4] = 1;
- cols[4] = 2;
-
- rows[5] = 2;
- cols[5] = 3;
- rows[6] = 1;
- cols[6] = 3;
-
- rows[7] = 0;
- cols[7] = 4;
- rows[8] = 2;
- cols[8] = 4;
-
- rows[9] = 2;
- cols[9] = 5;
- rows[10] = 1;
- cols[10] = 5;
-
- rows[11] = 0;
- cols[11] = 6;
- rows[12] = 2;
- cols[12] = 6;
-
- rows[13] = 1;
- cols[13] = 7;
- fill(values, values + 14, 1.0);
- expected_block_sparse_jacobian.set_num_nonzeros(14);
- }
-
- Program* program = problem.mutable_program();
- program->SetParameterOffsetsAndIndex();
-
- scoped_ptr<TripletSparseMatrix> actual_block_sparse_jacobian(
- SolverImpl::CreateJacobianBlockSparsityTranspose(program));
-
- Matrix expected_dense_jacobian;
- expected_block_sparse_jacobian.ToDenseMatrix(&expected_dense_jacobian);
-
- Matrix actual_dense_jacobian;
- actual_block_sparse_jacobian->ToDenseMatrix(&actual_dense_jacobian);
- EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0);
-}
-
-template <int kNumResiduals, int kNumParameterBlocks>
-class NumParameterBlocksCostFunction : public CostFunction {
- public:
- NumParameterBlocksCostFunction() {
- set_num_residuals(kNumResiduals);
- for (int i = 0; i < kNumParameterBlocks; ++i) {
- mutable_parameter_block_sizes()->push_back(1);
- }
- }
-
- virtual ~NumParameterBlocksCostFunction() {
- }
-
- virtual bool Evaluate(double const* const* parameters,
- double* residuals,
- double** jacobians) const {
- return true;
- }
-};
-
-TEST(SolverImpl, ReallocationInCreateJacobianBlockSparsityTranspose) {
- // CreateJacobianBlockSparsityTranspose starts with a conservative
- // estimate of the size of the sparsity pattern. This test ensures
- // that when those estimates are violated, the reallocation/resizing
- // logic works correctly.
-
- ProblemImpl problem;
- double x[20];
-
- vector<double*> parameter_blocks;
- for (int i = 0; i < 20; ++i) {
- problem.AddParameterBlock(x + i, 1);
- parameter_blocks.push_back(x + i);
- }
-
- problem.AddResidualBlock(new NumParameterBlocksCostFunction<1, 20>(),
- NULL,
- parameter_blocks);
-
- TripletSparseMatrix expected_block_sparse_jacobian(20, 1, 20);
- {
- int* rows = expected_block_sparse_jacobian.mutable_rows();
- int* cols = expected_block_sparse_jacobian.mutable_cols();
- for (int i = 0; i < 20; ++i) {
- rows[i] = i;
- cols[i] = 0;
- }
-
- double* values = expected_block_sparse_jacobian.mutable_values();
- fill(values, values + 20, 1.0);
- expected_block_sparse_jacobian.set_num_nonzeros(20);
- }
-
- Program* program = problem.mutable_program();
- program->SetParameterOffsetsAndIndex();
-
- scoped_ptr<TripletSparseMatrix> actual_block_sparse_jacobian(
- SolverImpl::CreateJacobianBlockSparsityTranspose(program));
-
- Matrix expected_dense_jacobian;
- expected_block_sparse_jacobian.ToDenseMatrix(&expected_dense_jacobian);
-
- Matrix actual_dense_jacobian;
- actual_block_sparse_jacobian->ToDenseMatrix(&actual_dense_jacobian);
- EXPECT_EQ((expected_dense_jacobian - actual_dense_jacobian).norm(), 0.0);
-}
-
-TEST(CompactifyArray, ContiguousEntries) {
- vector<int> array;
- array.push_back(0);
- array.push_back(1);
- vector<int> expected = array;
- SolverImpl::CompactifyArray(&array);
- EXPECT_EQ(array, expected);
- array.clear();
-
- array.push_back(1);
- array.push_back(0);
- expected = array;
- SolverImpl::CompactifyArray(&array);
- EXPECT_EQ(array, expected);
-}
-
-TEST(CompactifyArray, NonContiguousEntries) {
- vector<int> array;
- array.push_back(0);
- array.push_back(2);
- vector<int> expected;
- expected.push_back(0);
- expected.push_back(1);
- SolverImpl::CompactifyArray(&array);
- EXPECT_EQ(array, expected);
-}
-
-TEST(CompactifyArray, NonContiguousRepeatingEntries) {
- vector<int> array;
- array.push_back(3);
- array.push_back(1);
- array.push_back(0);
- array.push_back(0);
- array.push_back(0);
- array.push_back(5);
- vector<int> expected;
- expected.push_back(2);
- expected.push_back(1);
- expected.push_back(0);
- expected.push_back(0);
- expected.push_back(0);
- expected.push_back(3);
- SolverImpl::CompactifyArray(&array);
- EXPECT_EQ(array, expected);
+ EXPECT_TRUE(problem.program().IsValid());
}
} // namespace internal