aboutsummaryrefslogtreecommitdiff
path: root/include/ceres/numeric_diff_cost_function.h
blob: de6b74ad552881ebbf8ab29d9d700e94448f29e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
// http://code.google.com/p/ceres-solver/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
//   this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
//   this list of conditions and the following disclaimer in the documentation
//   and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
//   used to endorse or promote products derived from this software without
//   specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: keir@google.com (Keir Mierle)
//         sameeragarwal@google.com (Sameer Agarwal)
//
// Create CostFunctions as needed by the least squares framework with jacobians
// computed via numeric (a.k.a. finite) differentiation. For more details see
// http://en.wikipedia.org/wiki/Numerical_differentiation.
//
// To get an numerically differentiated cost function, you must define
// a class with a operator() (a functor) that computes the residuals.
//
// The function must write the computed value in the last argument
// (the only non-const one) and return true to indicate success.
// Please see cost_function.h for details on how the return value
// maybe used to impose simple constraints on the parameter block.
//
// For example, consider a scalar error e = k - x'y, where both x and y are
// two-dimensional column vector parameters, the prime sign indicates
// transposition, and k is a constant. The form of this error, which is the
// difference between a constant and an expression, is a common pattern in least
// squares problems. For example, the value x'y might be the model expectation
// for a series of measurements, where there is an instance of the cost function
// for each measurement k.
//
// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
// the squaring is implicitly done by the optimization framework.
//
// To write an numerically-differentiable cost function for the above model, first
// define the object
//
//   class MyScalarCostFunctor {
//     MyScalarCostFunctor(double k): k_(k) {}
//
//     bool operator()(const double* const x,
//                     const double* const y,
//                     double* residuals) const {
//       residuals[0] = k_ - x[0] * y[0] + x[1] * y[1];
//       return true;
//     }
//
//    private:
//     double k_;
//   };
//
// Note that in the declaration of operator() the input parameters x
// and y come first, and are passed as const pointers to arrays of
// doubles. If there were three input parameters, then the third input
// parameter would come after y. The output is always the last
// parameter, and is also a pointer to an array. In the example above,
// the residual is a scalar, so only residuals[0] is set.
//
// Then given this class definition, the numerically differentiated
// cost function with central differences used for computing the
// derivative can be constructed as follows.
//
//   CostFunction* cost_function
//       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, 1, 2, 2>(
//           new MyScalarCostFunctor(1.0));                    ^     ^  ^  ^
//                                                             |     |  |  |
//                                 Finite Differencing Scheme -+     |  |  |
//                                 Dimension of residual ------------+  |  |
//                                 Dimension of x ----------------------+  |
//                                 Dimension of y -------------------------+
//
// In this example, there is usually an instance for each measurement of k.
//
// In the instantiation above, the template parameters following
// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing
// a 1-dimensional output from two arguments, both 2-dimensional.
//
// NumericDiffCostFunction also supports cost functions with a
// runtime-determined number of residuals. For example:
//
//   CostFunction* cost_function
//       = new NumericDiffCostFunction<MyScalarCostFunctor, CENTRAL, DYNAMIC, 2, 2>(
//           new CostFunctorWithDynamicNumResiduals(1.0),               ^     ^  ^
//           TAKE_OWNERSHIP,                                            |     |  |
//           runtime_number_of_residuals); <----+                       |     |  |
//                                              |                       |     |  |
//                                              |                       |     |  |
//             Actual number of residuals ------+                       |     |  |
//             Indicate dynamic number of residuals --------------------+     |  |
//             Dimension of x ------------------------------------------------+  |
//             Dimension of y ---------------------------------------------------+
//
// The framework can currently accommodate cost functions of up to 10
// independent variables, and there is no limit on the dimensionality
// of each of them.
//
// The central difference method is considerably more accurate at the cost of
// twice as many function evaluations than forward difference. Consider using
// central differences begin with, and only after that works, trying forward
// difference to improve performance.
//
// WARNING #1: A common beginner's error when first using
// NumericDiffCostFunction is to get the sizing wrong. In particular,
// there is a tendency to set the template parameters to (dimension of
// residual, number of parameters) instead of passing a dimension
// parameter for *every parameter*. In the example above, that would
// be <MyScalarCostFunctor, 1, 2>, which is missing the last '2'
// argument. Please be careful when setting the size parameters.
//
////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////
//
// ALTERNATE INTERFACE
//
// For a variety of reason, including compatibility with legacy code,
// NumericDiffCostFunction can also take CostFunction objects as
// input. The following describes how.
//
// To get a numerically differentiated cost function, define a
// subclass of CostFunction such that the Evaluate() function ignores
// the jacobian parameter. The numeric differentiation wrapper will
// fill in the jacobian parameter if necessary by repeatedly calling
// the Evaluate() function with small changes to the appropriate
// parameters, and computing the slope. For performance, the numeric
// differentiation wrapper class is templated on the concrete cost
// function, even though it could be implemented only in terms of the
// virtual CostFunction interface.
//
// The numerically differentiated version of a cost function for a cost function
// can be constructed as follows:
//
//   CostFunction* cost_function
//       = new NumericDiffCostFunction<MyCostFunction, CENTRAL, 1, 4, 8>(
//           new MyCostFunction(...), TAKE_OWNERSHIP);
//
// where MyCostFunction has 1 residual and 2 parameter blocks with sizes 4 and 8
// respectively. Look at the tests for a more detailed example.
//
// TODO(keir): Characterize accuracy; mention pitfalls; provide alternatives.

#ifndef CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_
#define CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_

#include "Eigen/Dense"
#include "ceres/cost_function.h"
#include "ceres/internal/numeric_diff.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/sized_cost_function.h"
#include "ceres/types.h"
#include "glog/logging.h"

namespace ceres {

template <typename CostFunctor,
          NumericDiffMethod method = CENTRAL,
          int kNumResiduals = 0,  // Number of residuals, or ceres::DYNAMIC
          int N0 = 0,   // Number of parameters in block 0.
          int N1 = 0,   // Number of parameters in block 1.
          int N2 = 0,   // Number of parameters in block 2.
          int N3 = 0,   // Number of parameters in block 3.
          int N4 = 0,   // Number of parameters in block 4.
          int N5 = 0,   // Number of parameters in block 5.
          int N6 = 0,   // Number of parameters in block 6.
          int N7 = 0,   // Number of parameters in block 7.
          int N8 = 0,   // Number of parameters in block 8.
          int N9 = 0>   // Number of parameters in block 9.
class NumericDiffCostFunction
    : public SizedCostFunction<kNumResiduals,
                               N0, N1, N2, N3, N4,
                               N5, N6, N7, N8, N9> {
 public:
  NumericDiffCostFunction(CostFunctor* functor,
                          Ownership ownership = TAKE_OWNERSHIP,
                          int num_residuals = kNumResiduals,
                          const double relative_step_size = 1e-6)
      :functor_(functor),
       ownership_(ownership),
       relative_step_size_(relative_step_size) {
    if (kNumResiduals == DYNAMIC) {
      SizedCostFunction<kNumResiduals,
                        N0, N1, N2, N3, N4,
                        N5, N6, N7, N8, N9>
          ::set_num_residuals(num_residuals);
    }
  }

  ~NumericDiffCostFunction() {
    if (ownership_ != TAKE_OWNERSHIP) {
      functor_.release();
    }
  }

  virtual bool Evaluate(double const* const* parameters,
                        double* residuals,
                        double** jacobians) const {
    using internal::FixedArray;
    using internal::NumericDiff;

    const int kNumParameters = N0 + N1 + N2 + N3 + N4 + N5 + N6 + N7 + N8 + N9;
    const int kNumParameterBlocks =
        (N0 > 0) + (N1 > 0) + (N2 > 0) + (N3 > 0) + (N4 > 0) +
        (N5 > 0) + (N6 > 0) + (N7 > 0) + (N8 > 0) + (N9 > 0);

    // Get the function value (residuals) at the the point to evaluate.
    if (!internal::EvaluateImpl<CostFunctor,
                                N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>(
                                    functor_.get(),
                                    parameters,
                                    residuals,
                                    functor_.get())) {
      return false;
    }

    if (jacobians == NULL) {
      return true;
    }

    // Create a copy of the parameters which will get mutated.
    FixedArray<double> parameters_copy(kNumParameters);
    FixedArray<double*> parameters_reference_copy(kNumParameterBlocks);

    parameters_reference_copy[0] = parameters_copy.get();
    if (N1) parameters_reference_copy[1] = parameters_reference_copy[0] + N0;
    if (N2) parameters_reference_copy[2] = parameters_reference_copy[1] + N1;
    if (N3) parameters_reference_copy[3] = parameters_reference_copy[2] + N2;
    if (N4) parameters_reference_copy[4] = parameters_reference_copy[3] + N3;
    if (N5) parameters_reference_copy[5] = parameters_reference_copy[4] + N4;
    if (N6) parameters_reference_copy[6] = parameters_reference_copy[5] + N5;
    if (N7) parameters_reference_copy[7] = parameters_reference_copy[6] + N6;
    if (N8) parameters_reference_copy[8] = parameters_reference_copy[7] + N7;
    if (N9) parameters_reference_copy[9] = parameters_reference_copy[8] + N8;

#define COPY_PARAMETER_BLOCK(block)                                     \
  if (N ## block) memcpy(parameters_reference_copy[block],              \
                         parameters[block],                             \
                         sizeof(double) * N ## block);  // NOLINT

    COPY_PARAMETER_BLOCK(0);
    COPY_PARAMETER_BLOCK(1);
    COPY_PARAMETER_BLOCK(2);
    COPY_PARAMETER_BLOCK(3);
    COPY_PARAMETER_BLOCK(4);
    COPY_PARAMETER_BLOCK(5);
    COPY_PARAMETER_BLOCK(6);
    COPY_PARAMETER_BLOCK(7);
    COPY_PARAMETER_BLOCK(8);
    COPY_PARAMETER_BLOCK(9);

#undef COPY_PARAMETER_BLOCK

#define EVALUATE_JACOBIAN_FOR_BLOCK(block)                              \
    if (N ## block && jacobians[block] != NULL) {                       \
      if (!NumericDiff<CostFunctor,                                     \
                       method,                                          \
                       kNumResiduals,                                   \
                       N0, N1, N2, N3, N4, N5, N6, N7, N8, N9,          \
                       block,                                           \
                       N ## block >::EvaluateJacobianForParameterBlock( \
                           functor_.get(),                              \
                           residuals,                                   \
                           relative_step_size_,                         \
                          SizedCostFunction<kNumResiduals,              \
                           N0, N1, N2, N3, N4,                          \
                           N5, N6, N7, N8, N9>::num_residuals(),        \
                           parameters_reference_copy.get(),             \
                           jacobians[block])) {                         \
        return false;                                                   \
      }                                                                 \
    }

    EVALUATE_JACOBIAN_FOR_BLOCK(0);
    EVALUATE_JACOBIAN_FOR_BLOCK(1);
    EVALUATE_JACOBIAN_FOR_BLOCK(2);
    EVALUATE_JACOBIAN_FOR_BLOCK(3);
    EVALUATE_JACOBIAN_FOR_BLOCK(4);
    EVALUATE_JACOBIAN_FOR_BLOCK(5);
    EVALUATE_JACOBIAN_FOR_BLOCK(6);
    EVALUATE_JACOBIAN_FOR_BLOCK(7);
    EVALUATE_JACOBIAN_FOR_BLOCK(8);
    EVALUATE_JACOBIAN_FOR_BLOCK(9);

#undef EVALUATE_JACOBIAN_FOR_BLOCK

    return true;
  }

 private:
  internal::scoped_ptr<CostFunctor> functor_;
  Ownership ownership_;
  const double relative_step_size_;
};

}  // namespace ceres

#endif  // CERES_PUBLIC_NUMERIC_DIFF_COST_FUNCTION_H_