summaryrefslogtreecommitdiff
path: root/base/memory/scoped_ptr.h
diff options
context:
space:
mode:
Diffstat (limited to 'base/memory/scoped_ptr.h')
-rw-r--r--base/memory/scoped_ptr.h450
1 files changed, 450 insertions, 0 deletions
diff --git a/base/memory/scoped_ptr.h b/base/memory/scoped_ptr.h
new file mode 100644
index 0000000..5c3e931
--- /dev/null
+++ b/base/memory/scoped_ptr.h
@@ -0,0 +1,450 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef I18N_PHONENUMBERS_BASE_MEMORY_SCOPED_PTR_H_
+#define I18N_PHONENUMBERS_BASE_MEMORY_SCOPED_PTR_H_
+
+#if defined(I18N_PHONENUMBERS_USE_BOOST)
+
+#include <boost/scoped_ptr.hpp>
+using boost::scoped_ptr;
+
+#else // !I18N_PHONENUMBERS_USE_BOOST
+
+// This is an implementation designed to match the anticipated future TR2
+// implementation of the scoped_ptr class and scoped_ptr_malloc (deprecated).
+
+#include <assert.h>
+#include <stddef.h>
+#include <stdlib.h>
+
+#include <algorithm> // For std::swap().
+
+#include "phonenumbers/base/basictypes.h"
+#include "phonenumbers/base/template_util.h"
+
+namespace i18n {
+namespace phonenumbers {
+
+// Function object which deletes its parameter, which must be a pointer.
+// If C is an array type, invokes 'delete[]' on the parameter; otherwise,
+// invokes 'delete'. The default deleter for scoped_ptr<T>.
+template <class T>
+struct DefaultDeleter {
+ DefaultDeleter() {}
+ template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
+ // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
+ // if U* is implicitly convertible to T* and U is not an array type.
+ //
+ // Correct implementation should use SFINAE to disable this
+ // constructor. However, since there are no other 1-argument constructors,
+ // using a COMPILE_ASSERT() based on is_convertible<> and requiring
+ // complete types is simpler and will cause compile failures for equivalent
+ // misuses.
+ //
+ // Note, the is_convertible<U*, T*> check also ensures that U is not an
+ // array. T is guaranteed to be a non-array, so any U* where U is an array
+ // cannot convert to T*.
+ enum { T_must_be_complete = sizeof(T) };
+ enum { U_must_be_complete = sizeof(U) };
+ COMPILE_ASSERT((is_convertible<U*, T*>::value),
+ U_ptr_must_implicitly_convert_to_T_ptr);
+ }
+ inline void operator()(T* ptr) const {
+ enum { type_must_be_complete = sizeof(T) };
+ delete ptr;
+ }
+};
+
+// Specialization of DefaultDeleter for array types.
+template <class T>
+struct DefaultDeleter<T[]> {
+ inline void operator()(T* ptr) const {
+ enum { type_must_be_complete = sizeof(T) };
+ delete[] ptr;
+ }
+
+ private:
+ // Disable this operator for any U != T because it is undefined to execute
+ // an array delete when the static type of the array mismatches the dynamic
+ // type.
+ //
+ // References:
+ // C++98 [expr.delete]p3
+ // http://cplusplus.github.com/LWG/lwg-defects.html#938
+ template <typename U> void operator()(U* array) const;
+};
+
+template <class T, int n>
+struct DefaultDeleter<T[n]> {
+ // Never allow someone to declare something like scoped_ptr<int[10]>.
+ COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
+};
+
+// Function object which invokes 'free' on its parameter, which must be
+// a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
+//
+// scoped_ptr<int, base::FreeDeleter> foo_ptr(
+// static_cast<int*>(malloc(sizeof(int))));
+struct FreeDeleter {
+ inline void operator()(void* ptr) const {
+ free(ptr);
+ }
+};
+
+// Minimal implementation of the core logic of scoped_ptr, suitable for
+// reuse in both scoped_ptr and its specializations.
+template <class T, class D>
+class scoped_ptr_impl {
+ public:
+ explicit scoped_ptr_impl(T* p) : data_(p) { }
+
+ // Initializer for deleters that have data parameters.
+ scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
+
+ // Templated constructor that destructively takes the value from another
+ // scoped_ptr_impl.
+ template <typename U, typename V>
+ scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
+ : data_(other->release(), other->get_deleter()) {
+ // We do not support move-only deleters. We could modify our move
+ // emulation to have base::subtle::move() and base::subtle::forward()
+ // functions that are imperfect emulations of their C++11 equivalents,
+ // but until there's a requirement, just assume deleters are copyable.
+ }
+
+ template <typename U, typename V>
+ void TakeState(scoped_ptr_impl<U, V>* other) {
+ // See comment in templated constructor above regarding lack of support
+ // for move-only deleters.
+ reset(other->release());
+ get_deleter() = other->get_deleter();
+ }
+
+ ~scoped_ptr_impl() {
+ if (data_.ptr != NULL) {
+ // Not using get_deleter() saves one function call in non-optimized
+ // builds.
+ static_cast<D&>(data_)(data_.ptr);
+ }
+ }
+
+ void reset(T* p) {
+ // This is a self-reset, which is no longer allowed: http://crbug.com/162971
+ if (p != NULL && p == data_.ptr)
+ abort();
+
+ // Note that running data_.ptr = p can lead to undefined behavior if
+ // get_deleter()(get()) deletes this. In order to pevent this, reset()
+ // should update the stored pointer before deleting its old value.
+ //
+ // However, changing reset() to use that behavior may cause current code to
+ // break in unexpected ways. If the destruction of the owned object
+ // dereferences the scoped_ptr when it is destroyed by a call to reset(),
+ // then it will incorrectly dispatch calls to |p| rather than the original
+ // value of |data_.ptr|.
+ //
+ // During the transition period, set the stored pointer to NULL while
+ // deleting the object. Eventually, this safety check will be removed to
+ // prevent the scenario initially described from occuring and
+ // http://crbug.com/176091 can be closed.
+ T* old = data_.ptr;
+ data_.ptr = NULL;
+ if (old != NULL)
+ static_cast<D&>(data_)(old);
+ data_.ptr = p;
+ }
+
+ T* get() const { return data_.ptr; }
+
+ D& get_deleter() { return data_; }
+ const D& get_deleter() const { return data_; }
+
+ void swap(scoped_ptr_impl& p2) {
+ // Standard swap idiom: 'using std::swap' ensures that std::swap is
+ // present in the overload set, but we call swap unqualified so that
+ // any more-specific overloads can be used, if available.
+ using std::swap;
+ swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
+ swap(data_.ptr, p2.data_.ptr);
+ }
+
+ T* release() {
+ T* old_ptr = data_.ptr;
+ data_.ptr = NULL;
+ return old_ptr;
+ }
+
+ private:
+ // Needed to allow type-converting constructor.
+ template <typename U, typename V> friend class scoped_ptr_impl;
+
+ // Use the empty base class optimization to allow us to have a D
+ // member, while avoiding any space overhead for it when D is an
+ // empty class. See e.g. http://www.cantrip.org/emptyopt.html for a good
+ // discussion of this technique.
+ struct Data : public D {
+ explicit Data(T* ptr_in) : ptr(ptr_in) {}
+ Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
+ T* ptr;
+ };
+
+ Data data_;
+
+ DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
+};
+
+// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
+// automatically deletes the pointer it holds (if any).
+// That is, scoped_ptr<T> owns the T object that it points to.
+// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
+// Also like T*, scoped_ptr<T> is thread-compatible, and once you
+// dereference it, you get the thread safety guarantees of T.
+//
+// The size of scoped_ptr is small. On most compilers, when using the
+// DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
+// increase the size proportional to whatever state they need to have. See
+// comments inside scoped_ptr_impl<> for details.
+//
+// Current implementation targets having a strict subset of C++11's
+// unique_ptr<> features. Known deficiencies include not supporting move-only
+// deleteres, function pointers as deleters, and deleters with reference
+// types.
+template <class T, class D = DefaultDeleter<T> >
+class scoped_ptr {
+ public:
+ // The element and deleter types.
+ typedef T element_type;
+ typedef D deleter_type;
+
+ // Constructor. Defaults to initializing with NULL.
+ scoped_ptr() : impl_(NULL) { }
+
+ // Constructor. Takes ownership of p.
+ explicit scoped_ptr(element_type* p) : impl_(p) { }
+
+ // Constructor. Allows initialization of a stateful deleter.
+ scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
+
+ // Constructor. Allows construction from a scoped_ptr rvalue for a
+ // convertible type and deleter.
+ //
+ // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
+ // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
+ // has different post-conditions if D is a reference type. Since this
+ // implementation does not support deleters with reference type,
+ // we do not need a separate move constructor allowing us to avoid one
+ // use of SFINAE. You only need to care about this if you modify the
+ // implementation of scoped_ptr.
+ template <typename U, typename V>
+ scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
+ COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
+ }
+
+ // operator=. Allows assignment from a scoped_ptr rvalue for a convertible
+ // type and deleter.
+ //
+ // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
+ // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
+ // form has different requirements on for move-only Deleters. Since this
+ // implementation does not support move-only Deleters, we do not need a
+ // separate move assignment operator allowing us to avoid one use of SFINAE.
+ // You only need to care about this if you modify the implementation of
+ // scoped_ptr.
+ template <typename U, typename V>
+ scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
+ COMPILE_ASSERT(!is_array<U>::value, U_cannot_be_an_array);
+ impl_.TakeState(&rhs.impl_);
+ return *this;
+ }
+
+ // Reset. Deletes the currently owned object, if any.
+ // Then takes ownership of a new object, if given.
+ void reset(element_type* p = NULL) { impl_.reset(p); }
+
+ // Accessors to get the owned object.
+ // operator* and operator-> will assert() if there is no current object.
+ element_type& operator*() const {
+ assert(impl_.get() != NULL);
+ return *impl_.get();
+ }
+ element_type* operator->() const {
+ assert(impl_.get() != NULL);
+ return impl_.get();
+ }
+ element_type* get() const { return impl_.get(); }
+
+ // Access to the deleter.
+ deleter_type& get_deleter() { return impl_.get_deleter(); }
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+ // implicitly convertible to a real bool (which is dangerous).
+ private:
+ typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable;
+
+ public:
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
+
+ // Comparison operators.
+ // These return whether two scoped_ptr refer to the same object, not just to
+ // two different but equal objects.
+ bool operator==(const element_type* p) const { return impl_.get() == p; }
+ bool operator!=(const element_type* p) const { return impl_.get() != p; }
+
+ // Swap two scoped pointers.
+ void swap(scoped_ptr& p2) {
+ impl_.swap(p2.impl_);
+ }
+
+ // Release a pointer.
+ // The return value is the current pointer held by this object.
+ // If this object holds a NULL pointer, the return value is NULL.
+ // After this operation, this object will hold a NULL pointer,
+ // and will not own the object any more.
+ element_type* release() {
+ return impl_.release();
+ }
+
+ private:
+ // Needed to reach into |impl_| in the constructor.
+ template <typename U, typename V> friend class scoped_ptr;
+ scoped_ptr_impl<element_type, deleter_type> impl_;
+
+ // Forbid comparison of scoped_ptr types. If U != T, it totally
+ // doesn't make sense, and if U == T, it still doesn't make sense
+ // because you should never have the same object owned by two different
+ // scoped_ptrs.
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const;
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
+};
+
+template <class T, class D>
+class scoped_ptr<T[], D> {
+ public:
+ // The element and deleter types.
+ typedef T element_type;
+ typedef D deleter_type;
+
+ // Constructor. Defaults to initializing with NULL.
+ scoped_ptr() : impl_(NULL) { }
+
+ // Constructor. Stores the given array. Note that the argument's type
+ // must exactly match T*. In particular:
+ // - it cannot be a pointer to a type derived from T, because it is
+ // inherently unsafe in the general case to access an array through a
+ // pointer whose dynamic type does not match its static type (eg., if
+ // T and the derived types had different sizes access would be
+ // incorrectly calculated). Deletion is also always undefined
+ // (C++98 [expr.delete]p3). If you're doing this, fix your code.
+ // - it cannot be NULL, because NULL is an integral expression, not a
+ // pointer to T. Use the no-argument version instead of explicitly
+ // passing NULL.
+ // - it cannot be const-qualified differently from T per unique_ptr spec
+ // (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
+ // to work around this may use implicit_cast<const T*>().
+ // However, because of the first bullet in this comment, users MUST
+ // NOT use implicit_cast<Base*>() to upcast the static type of the array.
+ explicit scoped_ptr(element_type* array) : impl_(array) { }
+
+ // Reset. Deletes the currently owned array, if any.
+ // Then takes ownership of a new object, if given.
+ void reset(element_type* array = NULL) { impl_.reset(array); }
+
+ // Accessors to get the owned array.
+ element_type& operator[](size_t i) const {
+ assert(impl_.get() != NULL);
+ return impl_.get()[i];
+ }
+ element_type* get() const { return impl_.get(); }
+
+ // Access to the deleter.
+ deleter_type& get_deleter() { return impl_.get_deleter(); }
+ const deleter_type& get_deleter() const { return impl_.get_deleter(); }
+
+ // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
+ // implicitly convertible to a real bool (which is dangerous).
+ private:
+ typedef scoped_ptr_impl<element_type, deleter_type> scoped_ptr::*Testable;
+
+ public:
+ operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
+
+ // Comparison operators.
+ // These return whether two scoped_ptr refer to the same object, not just to
+ // two different but equal objects.
+ bool operator==(element_type* array) const { return impl_.get() == array; }
+ bool operator!=(element_type* array) const { return impl_.get() != array; }
+
+ // Swap two scoped pointers.
+ void swap(scoped_ptr& p2) {
+ impl_.swap(p2.impl_);
+ }
+
+ // Release a pointer.
+ // The return value is the current pointer held by this object.
+ // If this object holds a NULL pointer, the return value is NULL.
+ // After this operation, this object will hold a NULL pointer,
+ // and will not own the object any more.
+ element_type* release() {
+ return impl_.release();
+ }
+
+ private:
+ // Force element_type to be a complete type.
+ enum { type_must_be_complete = sizeof(element_type) };
+
+ // Actually hold the data.
+ scoped_ptr_impl<element_type, deleter_type> impl_;
+
+ // Disable initialization from any type other than element_type*, by
+ // providing a constructor that matches such an initialization, but is
+ // private and has no definition. This is disabled because it is not safe to
+ // call delete[] on an array whose static type does not match its dynamic
+ // type.
+ template <typename U> explicit scoped_ptr(U* array);
+ explicit scoped_ptr(int disallow_construction_from_null);
+
+ // Disable reset() from any type other than element_type*, for the same
+ // reasons as the constructor above.
+ template <typename U> void reset(U* array);
+ void reset(int disallow_reset_from_null);
+
+ // Forbid comparison of scoped_ptr types. If U != T, it totally
+ // doesn't make sense, and if U == T, it still doesn't make sense
+ // because you should never have the same object owned by two different
+ // scoped_ptrs.
+ template <class U> bool operator==(scoped_ptr<U> const& p2) const;
+ template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
+};
+
+// Free functions
+template <class T, class D>
+void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) {
+ p1.swap(p2);
+}
+
+template <class T, class D>
+bool operator==(T* p1, const scoped_ptr<T, D>& p2) {
+ return p1 == p2.get();
+}
+
+template <class T, class D>
+bool operator!=(T* p1, const scoped_ptr<T, D>& p2) {
+ return p1 != p2.get();
+}
+
+// A function to convert T* into scoped_ptr<T>
+// Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation
+// for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
+template <typename T>
+scoped_ptr<T> make_scoped_ptr(T* ptr) {
+ return scoped_ptr<T>(ptr);
+}
+
+} // namespace phonenumbers
+} // namespace i18n
+
+#endif // !I18N_PHONENUMBERS_USE_BOOST
+#endif // I18N_PHONENUMBERS_BASE_MEMORY_SCOPED_PTR_H_