summaryrefslogtreecommitdiff
path: root/dl/sp/src/mips/omxSP_FFTInit_R_F32.c
blob: 15749e0d2a6f0678bdc0bf85d8d8c4939499d97e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/*
 *  Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 *
 */

#include <stdint.h>

#include "dl/api/omxtypes.h"
#include "dl/sp/api/omxSP.h"
#include "dl/sp/api/mipsSP.h"

static OMX_U16 SplitRadixPermutation(int i, int size, int inverse) {
  int m;
  if (size <= 2)
    return (i & 1);
  m = size >> 1;
  if (!(i & m))
    return SplitRadixPermutation(i, m, inverse) * 2;
  m >>= 1;
  if (inverse == !(i & m))
    return SplitRadixPermutation(i, m, inverse) * 4 + 1;

  return SplitRadixPermutation(i, m, inverse) * 4 - 1;
}

static void InitFFTOffsetsLUT(OMX_U16* offset_table,
                              int offset,
                              int size,
                              OMX_U32* index) {
  if (size < 16) {
    offset_table[*index] = (OMX_U16)(offset >> 2);
    (*index)++;
  } else {
    InitFFTOffsetsLUT(offset_table, offset, size >> 1, index);
    InitFFTOffsetsLUT(offset_table, offset + (size >> 1), size >> 2, index);
    InitFFTOffsetsLUT(offset_table, offset + 3 * (size >> 2), size >> 2, index);
  }
}

OMXResult omxSP_FFTInit_R_F32(OMXFFTSpec_R_F32* pFFTSpec, OMX_INT order) {
  OMX_U32 n;
  uint32_t fft_size;
  OMX_U16* p_bit_rev;
  OMX_U16* p_bit_rev_inv;
  OMX_U16* p_offset;
  OMX_F32* p_twiddle;
  OMX_F32* p_buf;
  OMX_U32 tmp;
  MIPSFFTSpec_R_FC32* pFFTStruct = (MIPSFFTSpec_R_FC32*)pFFTSpec;

  if (!pFFTSpec || (order < 1) || (order > TWIDDLE_TABLE_ORDER))
    return OMX_Sts_BadArgErr;

  /* For order larger than 4, compute Real FFT as Complex FFT of (order - 1). */
  if (order > 4)
    fft_size = 1 << (order - 1);
  else
    fft_size = 1 << order;

  p_twiddle = mipsSP_FFT_F32TwiddleTable;

  p_bit_rev = (OMX_U16*)((OMX_S8*)pFFTSpec + sizeof(MIPSFFTSpec_R_FC32));
  /* Align to 32 byte boundary. */
  tmp = ((uintptr_t)p_bit_rev) & 31;
  if (tmp)
    p_bit_rev = (OMX_U16*)((OMX_S8*)p_bit_rev + (32 - tmp));

  p_bit_rev_inv = (OMX_U16*)((OMX_S8*)p_bit_rev + fft_size * sizeof(OMX_U16));
  /* Align to 32 byte boundary. */
  tmp = ((uintptr_t)p_bit_rev_inv) & 31;
  if (tmp)
    p_bit_rev_inv = (OMX_U16*)((OMX_S8*)p_bit_rev_inv + (32 - tmp));

  p_offset = (OMX_U16*)((OMX_S8*)p_bit_rev_inv + fft_size * sizeof(OMX_U16));
  /* Align to 32 byte boundary. */
  tmp = ((uintptr_t)p_offset) & 31;
  if (tmp)
    p_offset = (OMX_U16*)((OMX_S8*)p_offset + (32 - tmp));

  p_buf = (OMX_F32*)((OMX_S8*)p_offset +
                     ((SUBTRANSFORM_CONST >> (16 - TWIDDLE_TABLE_ORDER)) | 1) *
                         sizeof(OMX_U16));

  /* Align to 32 byte boundary. */
  tmp = ((uintptr_t)p_buf) & 31;
  if (tmp)
    p_buf = (OMX_F32*)((OMX_S8*)p_buf + (32 - tmp));

  /* Calculate BitRevInv indexes. */
  for (uint32_t i = 0; i < fft_size; ++i)
    p_bit_rev_inv[-SplitRadixPermutation(i, fft_size, 0) & (fft_size - 1)] = i;

  /* Calculate BitRev indexes. */
  for (uint32_t i = 0; i < fft_size; ++i)
    p_bit_rev[p_bit_rev_inv[i]] = i;

  /* Calculate Offsets. */
  n = 0;
  InitFFTOffsetsLUT(p_offset, 0, 1 << TWIDDLE_TABLE_ORDER, &n);

  /*
   * Double-check if the offset tables are initialized correctly.
   * Note: the bit-reverse tables and the initialization algorithm for
   * pFFTStruct->pOffset table are thoroughly tested, so this check is
   * probabaly redundant. However, keeping this just to make sure the offsets
   * will not exceed the buffer boundaries.
   */
  if (order == 2) {
    /* Only check the offsets for the p_bit_rev_inv table. */
    for (uint32_t i = 0; i < fft_size; ++i) {
      if (p_bit_rev_inv[i] >= fft_size)
        return OMX_Sts_BadArgErr;
    }
  } else if (order < 5) {
    /* Check for p_offset table. */
    int shift = 2;
    int over = 4;
    int num_transforms = (SUBTRANSFORM_CONST >> (16 - order)) | 1;
    for (uint32_t i = 2; i < order; ++i) {
      for (uint32_t j = 0; j < num_transforms; ++j) {
        if (((p_offset[j] << shift) + over - 1) >= fft_size)
          return OMX_Sts_BadArgErr;
      }
      shift++;
      over <<= 1;
      num_transforms = (num_transforms >> 1) | 1;
    }
    /* Check for bit-reverse tables. */
    for (uint32_t i = 0; i < fft_size; ++i) {
      if ((p_bit_rev[i] >= fft_size) || (p_bit_rev_inv[i] >= fft_size))
        return OMX_Sts_BadArgErr;
    }
  } else {
    /* Check for p_offset table. */
    int shift = 2;
    int over = 4;
    int num_transforms = (SUBTRANSFORM_CONST >> (17 - order)) | 1;
    for (uint32_t i = 2; i < order; ++i) {
      for (uint32_t j = 0; j < num_transforms; ++j) {
        if (((p_offset[j] << shift) + over - 1) >= fft_size)
          return OMX_Sts_BadArgErr;
      }
      shift++;
      over <<= 1;
      num_transforms = (num_transforms >> 1) | 1;
    }
    /* Check for bit-reverse tables. */
    for (uint32_t i = 0; i < fft_size; ++i) {
      if ((p_bit_rev[i] >= fft_size) || (p_bit_rev_inv[i] >= fft_size))
        return OMX_Sts_BadArgErr;
    }
  }

  pFFTStruct->order = order;
  pFFTStruct->pBitRev = p_bit_rev;
  pFFTStruct->pBitRevInv = p_bit_rev_inv;
  pFFTStruct->pOffset = (const OMX_U16*)p_offset;
  pFFTStruct->pTwiddle = p_twiddle;
  pFFTStruct->pBuf = p_buf;

  return OMX_Sts_NoErr;
}