summaryrefslogtreecommitdiff
path: root/core/SkScalar.h
diff options
context:
space:
mode:
Diffstat (limited to 'core/SkScalar.h')
-rw-r--r--core/SkScalar.h341
1 files changed, 341 insertions, 0 deletions
diff --git a/core/SkScalar.h b/core/SkScalar.h
new file mode 100644
index 0000000..2dd7a62
--- /dev/null
+++ b/core/SkScalar.h
@@ -0,0 +1,341 @@
+
+/*
+ * Copyright 2006 The Android Open Source Project
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+
+#ifndef SkScalar_DEFINED
+#define SkScalar_DEFINED
+
+#include "SkFixed.h"
+#include "SkFloatingPoint.h"
+
+/** \file SkScalar.h
+
+ Types and macros for the data type SkScalar. This is the fractional numeric type
+ that, depending on the compile-time flag SK_SCALAR_IS_FLOAT, may be implemented
+ either as an IEEE float, or as a 16.16 SkFixed. The macros in this file are written
+ to allow the calling code to manipulate SkScalar values without knowing which representation
+ is in effect.
+*/
+
+#ifdef SK_SCALAR_IS_FLOAT
+
+ /** SkScalar is our type for fractional values and coordinates. Depending on
+ compile configurations, it is either represented as an IEEE float, or
+ as a 16.16 fixed point integer.
+ */
+ typedef float SkScalar;
+
+ /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar
+ */
+ #define SK_Scalar1 (1.0f)
+ /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar
+ */
+ #define SK_ScalarHalf (0.5f)
+ /** SK_ScalarInfinity is defined to be infinity as an SkScalar
+ */
+ #define SK_ScalarInfinity SK_FloatInfinity
+ /** SK_ScalarNegativeInfinity is defined to be negative infinity as an SkScalar
+ */
+ #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity
+ /** SK_ScalarMax is defined to be the largest value representable as an SkScalar
+ */
+ #define SK_ScalarMax (3.402823466e+38f)
+ /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar
+ */
+ #define SK_ScalarMin (-SK_ScalarMax)
+ /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar
+ */
+ #define SK_ScalarNaN SK_FloatNaN
+ /** SkScalarIsNaN(n) returns true if argument is not a number
+ */
+ static inline bool SkScalarIsNaN(float x) { return x != x; }
+
+ /** Returns true if x is not NaN and not infinite */
+ static inline bool SkScalarIsFinite(float x) {
+ // We rely on the following behavior of infinities and nans
+ // 0 * finite --> 0
+ // 0 * infinity --> NaN
+ // 0 * NaN --> NaN
+ float prod = x * 0;
+ // At this point, prod will either be NaN or 0
+ // Therefore we can return (prod == prod) or (0 == prod).
+ return prod == prod;
+ }
+
+ /** SkIntToScalar(n) returns its integer argument as an SkScalar
+ */
+ #define SkIntToScalar(n) ((float)(n))
+ /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar
+ */
+ #define SkFixedToScalar(x) SkFixedToFloat(x)
+ /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed
+ */
+ #define SkScalarToFixed(x) SkFloatToFixed(x)
+
+ #define SkScalarToFloat(n) (n)
+ #define SkFloatToScalar(n) (n)
+
+ #define SkScalarToDouble(n) (double)(n)
+ #define SkDoubleToScalar(n) (float)(n)
+
+ /** SkScalarFraction(x) returns the signed fractional part of the argument
+ */
+ #define SkScalarFraction(x) sk_float_mod(x, 1.0f)
+
+ #define SkScalarFloorToScalar(x) sk_float_floor(x)
+ #define SkScalarCeilToScalar(x) sk_float_ceil(x)
+ #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f)
+
+ #define SkScalarFloorToInt(x) sk_float_floor2int(x)
+ #define SkScalarCeilToInt(x) sk_float_ceil2int(x)
+ #define SkScalarRoundToInt(x) sk_float_round2int(x)
+ #define SkScalarTruncToInt(x) static_cast<int>(x)
+
+ /** Returns the absolute value of the specified SkScalar
+ */
+ #define SkScalarAbs(x) sk_float_abs(x)
+ /** Return x with the sign of y
+ */
+ #define SkScalarCopySign(x, y) sk_float_copysign(x, y)
+ /** Returns the value pinned between 0 and max inclusive
+ */
+ inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) {
+ return x < 0 ? 0 : x > max ? max : x;
+ }
+ /** Returns the value pinned between min and max inclusive
+ */
+ inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) {
+ return x < min ? min : x > max ? max : x;
+ }
+ /** Returns the specified SkScalar squared (x*x)
+ */
+ inline SkScalar SkScalarSquare(SkScalar x) { return x * x; }
+ /** Returns the product of two SkScalars
+ */
+ #define SkScalarMul(a, b) ((float)(a) * (b))
+ /** Returns the product of two SkScalars plus a third SkScalar
+ */
+ #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c))
+ /** Returns the product of a SkScalar and an int rounded to the nearest integer value
+ */
+ #define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b))
+ /** Returns the product of a SkScalar and an int promoted to the next larger int
+ */
+ #define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b))
+ /** Returns the product of a SkScalar and an int truncated to the next smaller int
+ */
+ #define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b))
+ /** Returns the quotient of two SkScalars (a/b)
+ */
+ #define SkScalarDiv(a, b) ((float)(a) / (b))
+ /** Returns the mod of two SkScalars (a mod b)
+ */
+ #define SkScalarMod(x,y) sk_float_mod(x,y)
+ /** Returns the product of the first two arguments, divided by the third argument
+ */
+ #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c))
+ /** Returns the multiplicative inverse of the SkScalar (1/x)
+ */
+ #define SkScalarInvert(x) (SK_Scalar1 / (x))
+ #define SkScalarFastInvert(x) (SK_Scalar1 / (x))
+ /** Returns the square root of the SkScalar
+ */
+ #define SkScalarSqrt(x) sk_float_sqrt(x)
+ /** Returns b to the e
+ */
+ #define SkScalarPow(b, e) sk_float_pow(b, e)
+ /** Returns the average of two SkScalars (a+b)/2
+ */
+ #define SkScalarAve(a, b) (((a) + (b)) * 0.5f)
+ /** Returns the geometric mean of two SkScalars
+ */
+ #define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b))
+ /** Returns one half of the specified SkScalar
+ */
+ #define SkScalarHalf(a) ((a) * 0.5f)
+
+ #define SK_ScalarSqrt2 1.41421356f
+ #define SK_ScalarPI 3.14159265f
+ #define SK_ScalarTanPIOver8 0.414213562f
+ #define SK_ScalarRoot2Over2 0.707106781f
+
+ #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180))
+ float SkScalarSinCos(SkScalar radians, SkScalar* cosValue);
+ #define SkScalarSin(radians) (float)sk_float_sin(radians)
+ #define SkScalarCos(radians) (float)sk_float_cos(radians)
+ #define SkScalarTan(radians) (float)sk_float_tan(radians)
+ #define SkScalarASin(val) (float)sk_float_asin(val)
+ #define SkScalarACos(val) (float)sk_float_acos(val)
+ #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x)
+ #define SkScalarExp(x) (float)sk_float_exp(x)
+ #define SkScalarLog(x) (float)sk_float_log(x)
+
+ inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; }
+ inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; }
+
+ static inline bool SkScalarIsInt(SkScalar x) {
+ return x == (float)(int)x;
+ }
+#else
+ typedef SkFixed SkScalar;
+
+ #define SK_Scalar1 SK_Fixed1
+ #define SK_ScalarHalf SK_FixedHalf
+ #define SK_ScalarInfinity SK_FixedMax
+ #define SK_ScalarNegativeInfinity SK_FixedMin
+ #define SK_ScalarMax SK_FixedMax
+ #define SK_ScalarMin SK_FixedMin
+ #define SK_ScalarNaN SK_FixedNaN
+ #define SkScalarIsNaN(x) ((x) == SK_FixedNaN)
+ #define SkScalarIsFinite(x) ((x) != SK_FixedNaN)
+
+ #define SkIntToScalar(n) SkIntToFixed(n)
+ #define SkFixedToScalar(x) (x)
+ #define SkScalarToFixed(x) (x)
+ #define SkScalarToFloat(n) SkFixedToFloat(n)
+ #define SkFloatToScalar(n) SkFloatToFixed(n)
+
+ #define SkScalarToDouble(n) SkFixedToDouble(n)
+ #define SkDoubleToScalar(n) SkDoubleToFixed(n)
+ #define SkScalarFraction(x) SkFixedFraction(x)
+
+ #define SkScalarFloorToScalar(x) SkFixedFloorToFixed(x)
+ #define SkScalarCeilToScalar(x) SkFixedCeilToFixed(x)
+ #define SkScalarRoundToScalar(x) SkFixedRoundToFixed(x)
+
+ #define SkScalarFloorToInt(x) SkFixedFloorToInt(x)
+ #define SkScalarCeilToInt(x) SkFixedCeilToInt(x)
+ #define SkScalarRoundToInt(x) SkFixedRoundToInt(x)
+ #define SkScalarTruncToInt(x) (((x) < 0) ? SkScalarCeilToInt(x) : SkScalarFloorToInt(x))
+
+ #define SkScalarAbs(x) SkFixedAbs(x)
+ #define SkScalarCopySign(x, y) SkCopySign32(x, y)
+ #define SkScalarClampMax(x, max) SkClampMax(x, max)
+ #define SkScalarPin(x, min, max) SkPin32(x, min, max)
+ #define SkScalarSquare(x) SkFixedSquare(x)
+ #define SkScalarMul(a, b) SkFixedMul(a, b)
+ #define SkScalarMulAdd(a, b, c) SkFixedMulAdd(a, b, c)
+ #define SkScalarMulRound(a, b) SkFixedMulCommon(a, b, SK_FixedHalf)
+ #define SkScalarMulCeil(a, b) SkFixedMulCommon(a, b, SK_Fixed1 - 1)
+ #define SkScalarMulFloor(a, b) SkFixedMulCommon(a, b, 0)
+ #define SkScalarDiv(a, b) SkFixedDiv(a, b)
+ #define SkScalarMod(a, b) SkFixedMod(a, b)
+ #define SkScalarMulDiv(a, b, c) SkMulDiv(a, b, c)
+ #define SkScalarInvert(x) SkFixedInvert(x)
+ #define SkScalarFastInvert(x) SkFixedFastInvert(x)
+ #define SkScalarSqrt(x) SkFixedSqrt(x)
+ #define SkScalarAve(a, b) SkFixedAve(a, b)
+ #define SkScalarMean(a, b) SkFixedMean(a, b)
+ #define SkScalarHalf(a) ((a) >> 1)
+
+ #define SK_ScalarSqrt2 SK_FixedSqrt2
+ #define SK_ScalarPI SK_FixedPI
+ #define SK_ScalarTanPIOver8 SK_FixedTanPIOver8
+ #define SK_ScalarRoot2Over2 SK_FixedRoot2Over2
+
+ #define SkDegreesToRadians(degrees) SkFractMul(degrees, SK_FractPIOver180)
+ #define SkScalarSinCos(radians, cosPtr) SkFixedSinCos(radians, cosPtr)
+ #define SkScalarSin(radians) SkFixedSin(radians)
+ #define SkScalarCos(radians) SkFixedCos(radians)
+ #define SkScalarTan(val) SkFixedTan(val)
+ #define SkScalarASin(val) SkFixedASin(val)
+ #define SkScalarACos(val) SkFixedACos(val)
+ #define SkScalarATan2(y, x) SkFixedATan2(y,x)
+ #define SkScalarExp(x) SkFixedExp(x)
+ #define SkScalarLog(x) SkFixedLog(x)
+
+ #define SkMaxScalar(a, b) SkMax32(a, b)
+ #define SkMinScalar(a, b) SkMin32(a, b)
+
+ static inline bool SkScalarIsInt(SkFixed x) {
+ return 0 == (x & 0xffff);
+ }
+#endif
+
+// DEPRECATED : use ToInt or ToScalar variant
+#define SkScalarFloor(x) SkScalarFloorToInt(x)
+#define SkScalarCeil(x) SkScalarCeilToInt(x)
+#define SkScalarRound(x) SkScalarRoundToInt(x)
+
+/**
+ * Returns -1 || 0 || 1 depending on the sign of value:
+ * -1 if x < 0
+ * 0 if x == 0
+ * 1 if x > 0
+ */
+static inline int SkScalarSignAsInt(SkScalar x) {
+ return x < 0 ? -1 : (x > 0);
+}
+
+// Scalar result version of above
+static inline SkScalar SkScalarSignAsScalar(SkScalar x) {
+ return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0);
+}
+
+#define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12))
+
+static inline bool SkScalarNearlyZero(SkScalar x,
+ SkScalar tolerance = SK_ScalarNearlyZero) {
+ SkASSERT(tolerance >= 0);
+ return SkScalarAbs(x) <= tolerance;
+}
+
+static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y,
+ SkScalar tolerance = SK_ScalarNearlyZero) {
+ SkASSERT(tolerance >= 0);
+ return SkScalarAbs(x-y) <= tolerance;
+}
+
+/** Linearly interpolate between A and B, based on t.
+ If t is 0, return A
+ If t is 1, return B
+ else interpolate.
+ t must be [0..SK_Scalar1]
+*/
+static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) {
+ SkASSERT(t >= 0 && t <= SK_Scalar1);
+ return A + SkScalarMul(B - A, t);
+}
+
+static inline SkScalar SkScalarLog2(SkScalar x) {
+ static const SkScalar log2_conversion_factor = SkScalarDiv(1, SkScalarLog(2));
+
+ return SkScalarMul(SkScalarLog(x), log2_conversion_factor);
+}
+
+/** Interpolate along the function described by (keys[length], values[length])
+ for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length]
+ clamp to the min or max value. This function was inspired by a desire
+ to change the multiplier for thickness in fakeBold; therefore it assumes
+ the number of pairs (length) will be small, and a linear search is used.
+ Repeated keys are allowed for discontinuous functions (so long as keys is
+ monotonically increasing), and if key is the value of a repeated scalar in
+ keys, the first one will be used. However, that may change if a binary
+ search is used.
+*/
+SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[],
+ const SkScalar values[], int length);
+
+/*
+ * Helper to compare an array of scalars.
+ */
+static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) {
+#ifdef SK_SCALAR_IS_FLOAT
+ SkASSERT(n >= 0);
+ for (int i = 0; i < n; ++i) {
+ if (a[i] != b[i]) {
+ return false;
+ }
+ }
+ return true;
+#else
+ return 0 == memcmp(a, b, n * sizeof(SkScalar));
+#endif
+}
+
+#endif