summaryrefslogtreecommitdiff
path: root/effects/gradients/SkTwoPointConicalGradient_gpu.cpp
blob: 7cdb62dc44c516154b24dabacb83c4cddb77172f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkTwoPointConicalGradient_gpu.h"

#include "SkTwoPointConicalGradient.h"

#if SK_SUPPORT_GPU
#include "GrTBackendEffectFactory.h"
// For brevity
typedef GrGLUniformManager::UniformHandle UniformHandle;

//////////////////////////////////////////////////////////////////////////////

static void set_matrix_default_conical(const SkTwoPointConicalGradient& shader,
                                       SkMatrix* invLMatrix) {
    // Inverse of the current local matrix is passed in then,
    // translate to center1, rotate so center2 is on x axis.
    const SkPoint& center1 = shader.getStartCenter();
    const SkPoint& center2 = shader.getEndCenter();

    invLMatrix->postTranslate(-center1.fX, -center1.fY);

    SkPoint diff = center2 - center1;
    SkScalar diffLen = diff.length();
    if (0 != diffLen) {
        SkScalar invDiffLen = SkScalarInvert(diffLen);
        SkMatrix rot;
        rot.setSinCos(-SkScalarMul(invDiffLen, diff.fY),
                       SkScalarMul(invDiffLen, diff.fX));
        invLMatrix->postConcat(rot);
    }
}

class GLDefault2PtConicalEffect;

class Default2PtConicalEffect : public GrGradientEffect {
public:

    static GrEffectRef* Create(GrContext* ctx,
                               const SkTwoPointConicalGradient& shader,
                               const SkMatrix& matrix,
                               SkShader::TileMode tm) {
        AutoEffectUnref effect(SkNEW_ARGS(Default2PtConicalEffect, (ctx, shader, matrix, tm)));
        return CreateEffectRef(effect);
    }

    virtual ~Default2PtConicalEffect() { }

    static const char* Name() { return "Two-Point Conical Gradient"; }
    virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE;

    // The radial gradient parameters can collapse to a linear (instead of quadratic) equation.
    bool isDegenerate() const { return SkScalarAbs(fDiffRadius) == SkScalarAbs(fCenterX1); }
    bool isFlipped() const { return fIsFlipped; }
    SkScalar center() const { return fCenterX1; }
    SkScalar diffRadius() const { return fDiffRadius; }
    SkScalar radius() const { return fRadius0; }

    typedef GLDefault2PtConicalEffect GLEffect;

private:
    virtual bool onIsEqual(const GrEffect& sBase) const SK_OVERRIDE {
        const Default2PtConicalEffect& s = CastEffect<Default2PtConicalEffect>(sBase);
        return (INHERITED::onIsEqual(sBase) &&
                this->fCenterX1 == s.fCenterX1 &&
                this->fRadius0 == s.fRadius0 &&
                this->fDiffRadius == s.fDiffRadius &&
                this->fIsFlipped == s.fIsFlipped);
    }

    Default2PtConicalEffect(GrContext* ctx,
                            const SkTwoPointConicalGradient& shader,
                            const SkMatrix& matrix,
                            SkShader::TileMode tm)
        : INHERITED(ctx, shader, matrix, tm),
        fCenterX1(shader.getCenterX1()),
        fRadius0(shader.getStartRadius()),
        fDiffRadius(shader.getDiffRadius()),
        fIsFlipped(shader.isFlippedGrad()) {
        // We pass the linear part of the quadratic as a varying.
        //    float b = -2.0 * (fCenterX1 * x + fRadius0 * fDiffRadius * z)
        fBTransform = this->getCoordTransform();
        SkMatrix& bMatrix = *fBTransform.accessMatrix();
        SkScalar r0dr = SkScalarMul(fRadius0, fDiffRadius);
        bMatrix[SkMatrix::kMScaleX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMScaleX]) +
                                            SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp0]));
        bMatrix[SkMatrix::kMSkewX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMSkewX]) +
                                           SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp1]));
        bMatrix[SkMatrix::kMTransX] = -2 * (SkScalarMul(fCenterX1, bMatrix[SkMatrix::kMTransX]) +
                                            SkScalarMul(r0dr, bMatrix[SkMatrix::kMPersp2]));
        this->addCoordTransform(&fBTransform);
    }

    GR_DECLARE_EFFECT_TEST;

    // @{
    // Cache of values - these can change arbitrarily, EXCEPT
    // we shouldn't change between degenerate and non-degenerate?!

    GrCoordTransform fBTransform;
    SkScalar         fCenterX1;
    SkScalar         fRadius0;
    SkScalar         fDiffRadius;
    bool             fIsFlipped;

    // @}

    typedef GrGradientEffect INHERITED;
};

class GLDefault2PtConicalEffect : public GrGLGradientEffect {
public:
    GLDefault2PtConicalEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&);
    virtual ~GLDefault2PtConicalEffect() { }

    virtual void emitCode(GrGLShaderBuilder*,
                          const GrDrawEffect&,
                          EffectKey,
                          const char* outputColor,
                          const char* inputColor,
                          const TransformedCoordsArray&,
                          const TextureSamplerArray&) SK_OVERRIDE;
    virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE;

    static EffectKey GenKey(const GrDrawEffect&, const GrGLCaps& caps);

protected:
    UniformHandle fParamUni;

    const char* fVSVaryingName;
    const char* fFSVaryingName;

    bool fIsDegenerate;
    bool fIsFlipped;

    // @{
    /// Values last uploaded as uniforms

    SkScalar fCachedCenter;
    SkScalar fCachedRadius;
    SkScalar fCachedDiffRadius;

    // @}

private:
    typedef GrGLGradientEffect INHERITED;

};

const GrBackendEffectFactory& Default2PtConicalEffect::getFactory() const {
    return GrTBackendEffectFactory<Default2PtConicalEffect>::getInstance();
}

GR_DEFINE_EFFECT_TEST(Default2PtConicalEffect);

GrEffectRef* Default2PtConicalEffect::TestCreate(SkRandom* random,
                                            GrContext* context,
                                            const GrDrawTargetCaps&,
                                            GrTexture**) {
    SkPoint center1 = {random->nextUScalar1(), random->nextUScalar1()};
    SkScalar radius1 = random->nextUScalar1();
    SkPoint center2;
    SkScalar radius2;
    do {
        center2.set(random->nextUScalar1(), random->nextUScalar1());
        radius2 = random->nextUScalar1 ();
        // If the circles are identical the factory will give us an empty shader.
    } while (radius1 == radius2 && center1 == center2);

    SkColor colors[kMaxRandomGradientColors];
    SkScalar stopsArray[kMaxRandomGradientColors];
    SkScalar* stops = stopsArray;
    SkShader::TileMode tm;
    int colorCount = RandomGradientParams(random, colors, &stops, &tm);
    SkAutoTUnref<SkShader> shader(SkGradientShader::CreateTwoPointConical(center1, radius1,
                                                                          center2, radius2,
                                                                          colors, stops, colorCount,
                                                                          tm));
    SkPaint paint;
    return shader->asNewEffect(context, paint);
}


/////////////////////////////////////////////////////////////////////

GLDefault2PtConicalEffect::GLDefault2PtConicalEffect(const GrBackendEffectFactory& factory,
                                           const GrDrawEffect& drawEffect)
    : INHERITED(factory)
    , fVSVaryingName(NULL)
    , fFSVaryingName(NULL)
    , fCachedCenter(SK_ScalarMax)
    , fCachedRadius(-SK_ScalarMax)
    , fCachedDiffRadius(-SK_ScalarMax) {

    const Default2PtConicalEffect& data = drawEffect.castEffect<Default2PtConicalEffect>();
    fIsDegenerate = data.isDegenerate();
    fIsFlipped = data.isFlipped();
}

void GLDefault2PtConicalEffect::emitCode(GrGLShaderBuilder* builder,
                                    const GrDrawEffect&,
                                    EffectKey key,
                                    const char* outputColor,
                                    const char* inputColor,
                                    const TransformedCoordsArray& coords,
                                    const TextureSamplerArray& samplers) {
    this->emitUniforms(builder, key);
    fParamUni = builder->addUniformArray(GrGLShaderBuilder::kFragment_Visibility,
                                         kFloat_GrSLType, "Conical2FSParams", 6);

    SkString cName("c");
    SkString ac4Name("ac4");
    SkString dName("d");
    SkString qName("q");
    SkString r0Name("r0");
    SkString r1Name("r1");
    SkString tName("t");
    SkString p0; // 4a
    SkString p1; // 1/a
    SkString p2; // distance between centers
    SkString p3; // start radius
    SkString p4; // start radius squared
    SkString p5; // difference in radii (r1 - r0)

    builder->getUniformVariable(fParamUni).appendArrayAccess(0, &p0);
    builder->getUniformVariable(fParamUni).appendArrayAccess(1, &p1);
    builder->getUniformVariable(fParamUni).appendArrayAccess(2, &p2);
    builder->getUniformVariable(fParamUni).appendArrayAccess(3, &p3);
    builder->getUniformVariable(fParamUni).appendArrayAccess(4, &p4);
    builder->getUniformVariable(fParamUni).appendArrayAccess(5, &p5);

    // We interpolate the linear component in coords[1].
    SkASSERT(coords[0].type() == coords[1].type());
    const char* coords2D;
    SkString bVar;
    if (kVec3f_GrSLType == coords[0].type()) {
        builder->fsCodeAppendf("\tvec3 interpolants = vec3(%s.xy, %s.x) / %s.z;\n",
                               coords[0].c_str(), coords[1].c_str(), coords[0].c_str());
        coords2D = "interpolants.xy";
        bVar = "interpolants.z";
    } else {
        coords2D = coords[0].c_str();
        bVar.printf("%s.x", coords[1].c_str());
    }

    // output will default to transparent black (we simply won't write anything
    // else to it if invalid, instead of discarding or returning prematurely)
    builder->fsCodeAppendf("\t%s = vec4(0.0,0.0,0.0,0.0);\n", outputColor);

    // c = (x^2)+(y^2) - params[4]
    builder->fsCodeAppendf("\tfloat %s = dot(%s, %s) - %s;\n",
                           cName.c_str(), coords2D, coords2D, p4.c_str());

    // Non-degenerate case (quadratic)
    if (!fIsDegenerate) {

        // ac4 = params[0] * c
        builder->fsCodeAppendf("\tfloat %s = %s * %s;\n", ac4Name.c_str(), p0.c_str(),
                               cName.c_str());

        // d = b^2 - ac4
        builder->fsCodeAppendf("\tfloat %s = %s * %s - %s;\n", dName.c_str(),
                               bVar.c_str(), bVar.c_str(), ac4Name.c_str());

        // only proceed if discriminant is >= 0
        builder->fsCodeAppendf("\tif (%s >= 0.0) {\n", dName.c_str());

        // intermediate value we'll use to compute the roots
        // q = -0.5 * (b +/- sqrt(d))
        builder->fsCodeAppendf("\t\tfloat %s = -0.5 * (%s + (%s < 0.0 ? -1.0 : 1.0)"
                               " * sqrt(%s));\n", qName.c_str(), bVar.c_str(),
                               bVar.c_str(), dName.c_str());

        // compute both roots
        // r0 = q * params[1]
        builder->fsCodeAppendf("\t\tfloat %s = %s * %s;\n", r0Name.c_str(),
                               qName.c_str(), p1.c_str());
        // r1 = c / q
        builder->fsCodeAppendf("\t\tfloat %s = %s / %s;\n", r1Name.c_str(),
                               cName.c_str(), qName.c_str());

        // Note: If there are two roots that both generate radius(t) > 0, the
        // Canvas spec says to choose the larger t.

        // so we'll look at the larger one first (or smaller if flipped):
        if (!fIsFlipped) {
            builder->fsCodeAppendf("\t\tfloat %s = max(%s, %s);\n", tName.c_str(),
                                   r0Name.c_str(), r1Name.c_str());
        } else {
            builder->fsCodeAppendf("\t\tfloat %s = min(%s, %s);\n", tName.c_str(),
                                   r0Name.c_str(), r1Name.c_str());
        }

        // if r(t) > 0, then we're done; t will be our x coordinate
        builder->fsCodeAppendf("\t\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
                               p5.c_str(), p3.c_str());

        builder->fsCodeAppend("\t\t");
        this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);

        // otherwise, if r(t) for the larger root was <= 0, try the other root
        builder->fsCodeAppend("\t\t} else {\n");
        if (!fIsFlipped) {
            builder->fsCodeAppendf("\t\t\t%s = min(%s, %s);\n", tName.c_str(),
                                   r0Name.c_str(), r1Name.c_str());
        } else {
            builder->fsCodeAppendf("\t\t\t%s = max(%s, %s);\n", tName.c_str(),
                                   r0Name.c_str(), r1Name.c_str());
        }

        // if r(t) > 0 for the smaller root, then t will be our x coordinate
        builder->fsCodeAppendf("\t\t\tif (%s * %s + %s > 0.0) {\n",
                               tName.c_str(), p5.c_str(), p3.c_str());

        builder->fsCodeAppend("\t\t\t");
        this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);

        // end if (r(t) > 0) for smaller root
        builder->fsCodeAppend("\t\t\t}\n");
        // end if (r(t) > 0), else, for larger root
        builder->fsCodeAppend("\t\t}\n");
        // end if (discriminant >= 0)
        builder->fsCodeAppend("\t}\n");
    } else {

        // linear case: t = -c/b
        builder->fsCodeAppendf("\tfloat %s = -(%s / %s);\n", tName.c_str(),
                               cName.c_str(), bVar.c_str());

        // if r(t) > 0, then t will be the x coordinate
        builder->fsCodeAppendf("\tif (%s * %s + %s > 0.0) {\n", tName.c_str(),
                               p5.c_str(), p3.c_str());
        builder->fsCodeAppend("\t");
        this->emitColor(builder, tName.c_str(), key, outputColor, inputColor, samplers);
        builder->fsCodeAppend("\t}\n");
    }
}

void GLDefault2PtConicalEffect::setData(const GrGLUniformManager& uman,
                                   const GrDrawEffect& drawEffect) {
    INHERITED::setData(uman, drawEffect);
    const Default2PtConicalEffect& data = drawEffect.castEffect<Default2PtConicalEffect>();
    SkASSERT(data.isDegenerate() == fIsDegenerate);
    SkASSERT(data.isFlipped() == fIsFlipped);
    SkScalar centerX1 = data.center();
    SkScalar radius0 = data.radius();
    SkScalar diffRadius = data.diffRadius();

    if (fCachedCenter != centerX1 ||
        fCachedRadius != radius0 ||
        fCachedDiffRadius != diffRadius) {

        SkScalar a = SkScalarMul(centerX1, centerX1) - diffRadius * diffRadius;

        // When we're in the degenerate (linear) case, the second
        // value will be INF but the program doesn't read it. (We
        // use the same 6 uniforms even though we don't need them
        // all in the linear case just to keep the code complexity
        // down).
        float values[6] = {
            SkScalarToFloat(a * 4),
            1.f / (SkScalarToFloat(a)),
            SkScalarToFloat(centerX1),
            SkScalarToFloat(radius0),
            SkScalarToFloat(SkScalarMul(radius0, radius0)),
            SkScalarToFloat(diffRadius)
        };

        uman.set1fv(fParamUni, 6, values);
        fCachedCenter = centerX1;
        fCachedRadius = radius0;
        fCachedDiffRadius = diffRadius;
    }
}

GrGLEffect::EffectKey GLDefault2PtConicalEffect::GenKey(const GrDrawEffect& drawEffect,
                                                   const GrGLCaps&) {
    enum {
        kIsDegenerate = 1 << kBaseKeyBitCnt,
        kIsFlipped = 1 << (kBaseKeyBitCnt + 1),
    };

    EffectKey key = GenBaseGradientKey(drawEffect);
    if (drawEffect.castEffect<Default2PtConicalEffect>().isDegenerate()) {
        key |= kIsDegenerate;
    }
    if (drawEffect.castEffect<Default2PtConicalEffect>().isFlipped()) {
        key |= kIsFlipped;
    }
    return key;
}

//////////////////////////////////////////////////////////////////////////////

GrEffectRef* Gr2PtConicalGradientEffect::Create(GrContext* ctx,
                                                const SkTwoPointConicalGradient& shader,
                                                SkShader::TileMode tm) {

    SkMatrix matrix;
    if (!shader.getLocalMatrix().invert(&matrix)) {
        return NULL;
    }

    set_matrix_default_conical(shader, &matrix);
    return Default2PtConicalEffect::Create(ctx, shader, matrix, tm);
}

#endif