summaryrefslogtreecommitdiff
path: root/video_engine/overuse_frame_detector.cc
blob: 078c89a55bb8e55248efe2cc2be5a5e6b6e4727d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
/*
 *  Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "webrtc/video_engine/overuse_frame_detector.h"

#include <assert.h>
#include <math.h>

#include <algorithm>
#include <list>

#include "webrtc/modules/video_coding/utility/include/exp_filter.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/critical_section_wrapper.h"
#include "webrtc/system_wrappers/interface/logging.h"

namespace webrtc {

// TODO(mflodman) Test different values for all of these to trigger correctly,
// avoid fluctuations etc.
namespace {
const int64_t kProcessIntervalMs = 5000;

// Weight factor to apply to the standard deviation.
const float kWeightFactor = 0.997f;
// Weight factor to apply to the average.
const float kWeightFactorMean = 0.98f;

// Delay between consecutive rampups. (Used for quick recovery.)
const int kQuickRampUpDelayMs = 10 * 1000;
// Delay between rampup attempts. Initially uses standard, scales up to max.
const int kStandardRampUpDelayMs = 30 * 1000;
const int kMaxRampUpDelayMs = 120 * 1000;
// Expontential back-off factor, to prevent annoying up-down behaviour.
const double kRampUpBackoffFactor = 2.0;

// The initial average encode time (set to a fairly small value).
const float kInitialAvgEncodeTimeMs = 5.0f;

// The maximum exponent to use in VCMExpFilter.
const float kSampleDiffMs = 33.0f;
const float kMaxExp = 7.0f;

}  // namespace

Statistics::Statistics() :
    sum_(0.0),
    count_(0),
    filtered_samples_(new VCMExpFilter(kWeightFactorMean)),
    filtered_variance_(new VCMExpFilter(kWeightFactor)) {
  Reset();
}

void Statistics::SetOptions(const CpuOveruseOptions& options) {
  options_ = options;
}

void Statistics::Reset() {
  sum_ =  0.0;
  count_ = 0;
  filtered_variance_->Reset(kWeightFactor);
  filtered_variance_->Apply(1.0f, InitialVariance());
}

void Statistics::AddSample(float sample_ms) {
  sum_ += sample_ms;
  ++count_;

  if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
    // Initialize filtered samples.
    filtered_samples_->Reset(kWeightFactorMean);
    filtered_samples_->Apply(1.0f, InitialMean());
    return;
  }

  float exp = sample_ms / kSampleDiffMs;
  exp = std::min(exp, kMaxExp);
  filtered_samples_->Apply(exp, sample_ms);
  filtered_variance_->Apply(exp, (sample_ms - filtered_samples_->Value()) *
                                 (sample_ms - filtered_samples_->Value()));
}

float Statistics::InitialMean() const {
  if (count_ == 0)
    return 0.0;
  return sum_ / count_;
}

float Statistics::InitialVariance() const {
  // Start in between the underuse and overuse threshold.
  float average_stddev = (options_.low_capture_jitter_threshold_ms +
                          options_.high_capture_jitter_threshold_ms) / 2.0f;
  return average_stddev * average_stddev;
}

float Statistics::Mean() const { return filtered_samples_->Value(); }

float Statistics::StdDev() const {
  return sqrt(std::max(filtered_variance_->Value(), 0.0f));
}

uint64_t Statistics::Count() const { return count_; }


// Class for calculating the average encode time.
class OveruseFrameDetector::EncodeTimeAvg {
 public:
  EncodeTimeAvg()
      : kWeightFactor(0.5f),
        filtered_encode_time_ms_(new VCMExpFilter(kWeightFactor)) {
    filtered_encode_time_ms_->Apply(1.0f, kInitialAvgEncodeTimeMs);
  }
  ~EncodeTimeAvg() {}

  void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
    float exp =  diff_last_sample_ms / kSampleDiffMs;
    exp = std::min(exp, kMaxExp);
    filtered_encode_time_ms_->Apply(exp, encode_time_ms);
  }

  int filtered_encode_time_ms() const {
    return static_cast<int>(filtered_encode_time_ms_->Value() + 0.5);
  }

 private:
  const float kWeightFactor;
  scoped_ptr<VCMExpFilter> filtered_encode_time_ms_;
};

// Class for calculating the encode usage.
class OveruseFrameDetector::EncodeUsage {
 public:
  EncodeUsage()
      : kWeightFactorFrameDiff(0.998f),
        kWeightFactorEncodeTime(0.995f),
        kInitialSampleDiffMs(40.0f),
        kMaxSampleDiffMs(45.0f),
        count_(0),
        filtered_encode_time_ms_(new VCMExpFilter(kWeightFactorEncodeTime)),
        filtered_frame_diff_ms_(new VCMExpFilter(kWeightFactorFrameDiff)) {
    Reset();
  }
  ~EncodeUsage() {}

  void SetOptions(const CpuOveruseOptions& options) {
    options_ = options;
  }

  void Reset() {
    count_ = 0;
    filtered_frame_diff_ms_->Reset(kWeightFactorFrameDiff);
    filtered_frame_diff_ms_->Apply(1.0f, kInitialSampleDiffMs);
    filtered_encode_time_ms_->Reset(kWeightFactorEncodeTime);
    filtered_encode_time_ms_->Apply(1.0f, InitialEncodeTimeMs());
  }

  void AddSample(float sample_ms) {
    float exp = sample_ms / kSampleDiffMs;
    exp = std::min(exp, kMaxExp);
    filtered_frame_diff_ms_->Apply(exp, sample_ms);
  }

  void AddEncodeSample(float encode_time_ms, int64_t diff_last_sample_ms) {
    ++count_;
    float exp = diff_last_sample_ms / kSampleDiffMs;
    exp = std::min(exp, kMaxExp);
    filtered_encode_time_ms_->Apply(exp, encode_time_ms);
  }

  int UsageInPercent() const {
    if (count_ < static_cast<uint32_t>(options_.min_frame_samples)) {
      return static_cast<int>(InitialUsageInPercent() + 0.5f);
    }
    float frame_diff_ms = std::max(filtered_frame_diff_ms_->Value(), 1.0f);
    frame_diff_ms = std::min(frame_diff_ms, kMaxSampleDiffMs);
    float encode_usage_percent =
        100.0f * filtered_encode_time_ms_->Value() / frame_diff_ms;
    return static_cast<int>(encode_usage_percent + 0.5);
  }

  float InitialUsageInPercent() const {
    // Start in between the underuse and overuse threshold.
    return (options_.low_encode_usage_threshold_percent +
            options_.high_encode_usage_threshold_percent) / 2.0f;
  }

  float InitialEncodeTimeMs() const {
    return InitialUsageInPercent() * kInitialSampleDiffMs / 100;
  }

 private:
  const float kWeightFactorFrameDiff;
  const float kWeightFactorEncodeTime;
  const float kInitialSampleDiffMs;
  const float kMaxSampleDiffMs;
  uint64_t count_;
  CpuOveruseOptions options_;
  scoped_ptr<VCMExpFilter> filtered_encode_time_ms_;
  scoped_ptr<VCMExpFilter> filtered_frame_diff_ms_;
};

// Class for calculating the capture queue delay change.
class OveruseFrameDetector::CaptureQueueDelay {
 public:
  CaptureQueueDelay()
      : kWeightFactor(0.5f),
        delay_ms_(0),
        filtered_delay_ms_per_s_(new VCMExpFilter(kWeightFactor)) {
    filtered_delay_ms_per_s_->Apply(1.0f, 0.0f);
  }
  ~CaptureQueueDelay() {}

  void FrameCaptured(int64_t now) {
    const size_t kMaxSize = 200;
    if (frames_.size() > kMaxSize) {
      frames_.pop_front();
    }
    frames_.push_back(now);
  }

  void FrameProcessingStarted(int64_t now) {
    if (frames_.empty()) {
      return;
    }
    delay_ms_ = now - frames_.front();
    frames_.pop_front();
  }

  void CalculateDelayChange(int64_t diff_last_sample_ms) {
    if (diff_last_sample_ms <= 0) {
      return;
    }
    float exp = static_cast<float>(diff_last_sample_ms) / kProcessIntervalMs;
    exp = std::min(exp, kMaxExp);
    filtered_delay_ms_per_s_->Apply(exp,
                                    delay_ms_ * 1000.0f / diff_last_sample_ms);
    ClearFrames();
  }

  void ClearFrames() {
    frames_.clear();
  }

  int delay_ms() const {
    return delay_ms_;
  }

  int filtered_delay_ms_per_s() const {
    return static_cast<int>(filtered_delay_ms_per_s_->Value() + 0.5);
  }

 private:
  const float kWeightFactor;
  std::list<int64_t> frames_;
  int delay_ms_;
  scoped_ptr<VCMExpFilter> filtered_delay_ms_per_s_;
};

OveruseFrameDetector::OveruseFrameDetector(Clock* clock)
    : crit_(CriticalSectionWrapper::CreateCriticalSection()),
      observer_(NULL),
      clock_(clock),
      next_process_time_(clock_->TimeInMilliseconds()),
      num_process_times_(0),
      last_capture_time_(0),
      last_overuse_time_(0),
      checks_above_threshold_(0),
      last_rampup_time_(0),
      in_quick_rampup_(false),
      current_rampup_delay_ms_(kStandardRampUpDelayMs),
      num_pixels_(0),
      last_encode_sample_ms_(0),
      encode_time_(new EncodeTimeAvg()),
      encode_usage_(new EncodeUsage()),
      capture_queue_delay_(new CaptureQueueDelay()) {
}

OveruseFrameDetector::~OveruseFrameDetector() {
}

void OveruseFrameDetector::SetObserver(CpuOveruseObserver* observer) {
  CriticalSectionScoped cs(crit_.get());
  observer_ = observer;
}

void OveruseFrameDetector::SetOptions(const CpuOveruseOptions& options) {
  assert(options.min_frame_samples > 0);
  CriticalSectionScoped cs(crit_.get());
  if (options_.Equals(options)) {
    return;
  }
  options_ = options;
  capture_deltas_.SetOptions(options);
  encode_usage_->SetOptions(options);
  ResetAll(num_pixels_);
}

int OveruseFrameDetector::CaptureJitterMs() const {
  CriticalSectionScoped cs(crit_.get());
  return static_cast<int>(capture_deltas_.StdDev() + 0.5);
}

int OveruseFrameDetector::AvgEncodeTimeMs() const {
  CriticalSectionScoped cs(crit_.get());
  return encode_time_->filtered_encode_time_ms();
}

int OveruseFrameDetector::EncodeUsagePercent() const {
  CriticalSectionScoped cs(crit_.get());
  return encode_usage_->UsageInPercent();
}

int OveruseFrameDetector::AvgCaptureQueueDelayMsPerS() const {
  CriticalSectionScoped cs(crit_.get());
  return capture_queue_delay_->filtered_delay_ms_per_s();
}

int OveruseFrameDetector::CaptureQueueDelayMsPerS() const {
  CriticalSectionScoped cs(crit_.get());
  return capture_queue_delay_->delay_ms();
}

int32_t OveruseFrameDetector::TimeUntilNextProcess() {
  CriticalSectionScoped cs(crit_.get());
  return next_process_time_ - clock_->TimeInMilliseconds();
}

bool OveruseFrameDetector::FrameSizeChanged(int num_pixels) const {
  if (num_pixels != num_pixels_) {
    return true;
  }
  return false;
}

bool OveruseFrameDetector::FrameTimeoutDetected(int64_t now) const {
  if (last_capture_time_ == 0) {
    return false;
  }
  return (now - last_capture_time_) > options_.frame_timeout_interval_ms;
}

void OveruseFrameDetector::ResetAll(int num_pixels) {
  num_pixels_ = num_pixels;
  capture_deltas_.Reset();
  encode_usage_->Reset();
  capture_queue_delay_->ClearFrames();
  last_capture_time_ = 0;
  num_process_times_ = 0;
}

void OveruseFrameDetector::FrameCaptured(int width, int height) {
  CriticalSectionScoped cs(crit_.get());

  int64_t now = clock_->TimeInMilliseconds();
  if (FrameSizeChanged(width * height) || FrameTimeoutDetected(now)) {
    ResetAll(width * height);
  }

  if (last_capture_time_ != 0) {
    capture_deltas_.AddSample(now - last_capture_time_);
    encode_usage_->AddSample(now - last_capture_time_);
  }
  last_capture_time_ = now;

  capture_queue_delay_->FrameCaptured(now);
}

void OveruseFrameDetector::FrameProcessingStarted() {
  CriticalSectionScoped cs(crit_.get());
  capture_queue_delay_->FrameProcessingStarted(clock_->TimeInMilliseconds());
}

void OveruseFrameDetector::FrameEncoded(int encode_time_ms) {
  CriticalSectionScoped cs(crit_.get());
  int64_t time = clock_->TimeInMilliseconds();
  if (last_encode_sample_ms_ != 0) {
    int64_t diff_ms = time - last_encode_sample_ms_;
    encode_time_->AddEncodeSample(encode_time_ms, diff_ms);
    encode_usage_->AddEncodeSample(encode_time_ms, diff_ms);
  }
  last_encode_sample_ms_ = time;
}

int32_t OveruseFrameDetector::Process() {
  CriticalSectionScoped cs(crit_.get());

  int64_t now = clock_->TimeInMilliseconds();

  // Used to protect against Process() being called too often.
  if (now < next_process_time_)
    return 0;

  int64_t diff_ms = now - next_process_time_ + kProcessIntervalMs;
  next_process_time_ = now + kProcessIntervalMs;
  ++num_process_times_;

  capture_queue_delay_->CalculateDelayChange(diff_ms);

  if (num_process_times_ <= options_.min_process_count) {
    return 0;
  }

  if (IsOverusing()) {
    // If the last thing we did was going up, and now have to back down, we need
    // to check if this peak was short. If so we should back off to avoid going
    // back and forth between this load, the system doesn't seem to handle it.
    bool check_for_backoff = last_rampup_time_ > last_overuse_time_;
    if (check_for_backoff) {
      if (now - last_rampup_time_ < kStandardRampUpDelayMs) {
        // Going up was not ok for very long, back off.
        current_rampup_delay_ms_ *= kRampUpBackoffFactor;
        if (current_rampup_delay_ms_ > kMaxRampUpDelayMs)
          current_rampup_delay_ms_ = kMaxRampUpDelayMs;
      } else {
        // Not currently backing off, reset rampup delay.
        current_rampup_delay_ms_ = kStandardRampUpDelayMs;
      }
    }

    last_overuse_time_ = now;
    in_quick_rampup_ = false;
    checks_above_threshold_ = 0;

    if (observer_ != NULL)
      observer_->OveruseDetected();
  } else if (IsUnderusing(now)) {
    last_rampup_time_ = now;
    in_quick_rampup_ = true;

    if (observer_ != NULL)
      observer_->NormalUsage();
  }

  int rampup_delay =
      in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
  LOG(LS_VERBOSE) << "Capture input stats: avg: " << capture_deltas_.Mean()
                  << " std_dev " << capture_deltas_.StdDev()
                  << " rampup delay " << rampup_delay
                  << " overuse >= " << options_.high_capture_jitter_threshold_ms
                  << " underuse < " << options_.low_capture_jitter_threshold_ms;
  return 0;
}

bool OveruseFrameDetector::IsOverusing() {
  bool overusing = false;
  if (options_.enable_capture_jitter_method) {
    overusing = capture_deltas_.StdDev() >=
        options_.high_capture_jitter_threshold_ms;
  } else if (options_.enable_encode_usage_method) {
    overusing = encode_usage_->UsageInPercent() >=
        options_.high_encode_usage_threshold_percent;
  }

  if (overusing) {
    ++checks_above_threshold_;
  } else {
    checks_above_threshold_ = 0;
  }
  return checks_above_threshold_ >= options_.high_threshold_consecutive_count;
}

bool OveruseFrameDetector::IsUnderusing(int64_t time_now) {
  int delay = in_quick_rampup_ ? kQuickRampUpDelayMs : current_rampup_delay_ms_;
  if (time_now < last_rampup_time_ + delay)
    return false;

  bool underusing = false;
  if (options_.enable_capture_jitter_method) {
    underusing = capture_deltas_.StdDev() <
        options_.low_capture_jitter_threshold_ms;
  } else if (options_.enable_encode_usage_method) {
    underusing = encode_usage_->UsageInPercent() <
        options_.low_encode_usage_threshold_percent;
  }
  return underusing;
}
}  // namespace webrtc