aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/arch/MSA/MathFunctions.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/arch/MSA/MathFunctions.h')
-rw-r--r--Eigen/src/Core/arch/MSA/MathFunctions.h387
1 files changed, 387 insertions, 0 deletions
diff --git a/Eigen/src/Core/arch/MSA/MathFunctions.h b/Eigen/src/Core/arch/MSA/MathFunctions.h
new file mode 100644
index 000000000..f5181b90e
--- /dev/null
+++ b/Eigen/src/Core/arch/MSA/MathFunctions.h
@@ -0,0 +1,387 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2007 Julien Pommier
+// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
+// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Copyright (C) 2018 Wave Computing, Inc.
+// Written by:
+// Chris Larsen
+// Alexey Frunze (afrunze@wavecomp.com)
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/* The sin, cos, exp, and log functions of this file come from
+ * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
+ */
+
+/* The tanh function of this file is an adaptation of
+ * template<typename T> T generic_fast_tanh_float(const T&)
+ * from MathFunctionsImpl.h.
+ */
+
+#ifndef EIGEN_MATH_FUNCTIONS_MSA_H
+#define EIGEN_MATH_FUNCTIONS_MSA_H
+
+namespace Eigen {
+
+namespace internal {
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
+plog<Packet4f>(const Packet4f& _x) {
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292e-2f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, -1.1514610310e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, -1.2420140846e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, +1.4249322787e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, -1.6668057665e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, +2.0000714765e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, -2.4999993993e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, +3.3333331174e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
+ static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
+ static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
+
+ // Convert negative argument into NAN (quiet negative, to be specific).
+ Packet4f zero = (Packet4f)__builtin_msa_ldi_w(0);
+ Packet4i neg_mask = __builtin_msa_fclt_w(_x, zero);
+ Packet4i zero_mask = __builtin_msa_fceq_w(_x, zero);
+ Packet4f non_neg_x_or_nan = padd(_x, (Packet4f)neg_mask); // Add 0.0 or NAN.
+ Packet4f x = non_neg_x_or_nan;
+
+ // Extract exponent from x = mantissa * 2**exponent, where 1.0 <= mantissa < 2.0.
+ // N.B. the exponent is one less of what frexpf() would return.
+ Packet4i e_int = __builtin_msa_ftint_s_w(__builtin_msa_flog2_w(x));
+ // Multiply x by 2**(-exponent-1) to get 0.5 <= x < 1.0 as from frexpf().
+ x = __builtin_msa_fexp2_w(x, (Packet4i)__builtin_msa_nori_b((v16u8)e_int, 0));
+
+ /*
+ if (x < SQRTHF) {
+ x = x + x - 1.0;
+ } else {
+ e += 1;
+ x = x - 1.0;
+ }
+ */
+ Packet4f xx = padd(x, x);
+ Packet4i ge_mask = __builtin_msa_fcle_w(p4f_cephes_SQRTHF, x);
+ e_int = psub(e_int, ge_mask);
+ x = (Packet4f)__builtin_msa_bsel_v((v16u8)ge_mask, (v16u8)xx, (v16u8)x);
+ x = psub(x, p4f_1);
+ Packet4f e = __builtin_msa_ffint_s_w(e_int);
+
+ Packet4f x2 = pmul(x, x);
+ Packet4f x3 = pmul(x2, x);
+
+ Packet4f y, y1, y2;
+ y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
+ y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
+ y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
+ y = pmadd(y, x, p4f_cephes_log_p2);
+ y1 = pmadd(y1, x, p4f_cephes_log_p5);
+ y2 = pmadd(y2, x, p4f_cephes_log_p8);
+ y = pmadd(y, x3, y1);
+ y = pmadd(y, x3, y2);
+ y = pmul(y, x3);
+
+ y = pmadd(e, p4f_cephes_log_q1, y);
+ x = __builtin_msa_fmsub_w(x, x2, p4f_half);
+ x = padd(x, y);
+ x = pmadd(e, p4f_cephes_log_q2, x);
+
+ // x is now the logarithm result candidate. We still need to handle the
+ // extreme arguments of zero and positive infinity, though.
+ // N.B. if the argument is +INFINITY, x is NAN because the polynomial terms
+ // contain infinities of both signs (see the coefficients and code above).
+ // INFINITY - INFINITY is NAN.
+
+ // If the argument is +INFINITY, make it the new result candidate.
+ // To achieve that we choose the smaller of the result candidate and the
+ // argument.
+ // This is correct for all finite pairs of values (the logarithm is smaller
+ // than the argument).
+ // This is also correct in the special case when the argument is +INFINITY
+ // and the result candidate is NAN. This is because the fmin.df instruction
+ // prefers non-NANs to NANs.
+ x = __builtin_msa_fmin_w(x, non_neg_x_or_nan);
+
+ // If the argument is zero (including -0.0), the result becomes -INFINITY.
+ Packet4i neg_infs = __builtin_msa_slli_w(zero_mask, 23);
+ x = (Packet4f)__builtin_msa_bsel_v((v16u8)zero_mask, (v16u8)x, (v16u8)neg_infs);
+
+ return x;
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
+pexp<Packet4f>(const Packet4f& _x) {
+ // Limiting single-precision pexp's argument to [-128, +128] lets pexp
+ // reach 0 and INFINITY naturally.
+ static _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -128.0f);
+ static _EIGEN_DECLARE_CONST_Packet4f(exp_hi, +128.0f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507e-3f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073e-3f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894e-2f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
+ static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
+
+ Packet4f x = _x;
+
+ // Clamp x.
+ x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(x, p4f_exp_lo), (v16u8)x,
+ (v16u8)p4f_exp_lo);
+ x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_exp_hi, x), (v16u8)x,
+ (v16u8)p4f_exp_hi);
+
+ // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
+ Packet4f x2_add = (Packet4f)__builtin_msa_binsli_w((v4u32)p4f_half, (v4u32)x, 0);
+ Packet4f x2 = pmadd(x, p4f_cephes_LOG2EF, x2_add);
+ Packet4i x2_int = __builtin_msa_ftrunc_s_w(x2);
+ Packet4f x2_int_f = __builtin_msa_ffint_s_w(x2_int);
+
+ x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C1);
+ x = __builtin_msa_fmsub_w(x, x2_int_f, p4f_cephes_exp_C2);
+
+ Packet4f z = pmul(x, x);
+
+ Packet4f y = p4f_cephes_exp_p0;
+ y = pmadd(y, x, p4f_cephes_exp_p1);
+ y = pmadd(y, x, p4f_cephes_exp_p2);
+ y = pmadd(y, x, p4f_cephes_exp_p3);
+ y = pmadd(y, x, p4f_cephes_exp_p4);
+ y = pmadd(y, x, p4f_cephes_exp_p5);
+ y = pmadd(y, z, x);
+ y = padd(y, p4f_1);
+
+ // y *= 2**exponent.
+ y = __builtin_msa_fexp2_w(y, x2_int);
+
+ return y;
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
+ptanh<Packet4f>(const Packet4f& _x) {
+ static _EIGEN_DECLARE_CONST_Packet4f(tanh_tiny, 1e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(tanh_hi, 9.0f);
+ // The monomial coefficients of the numerator polynomial (odd).
+ static _EIGEN_DECLARE_CONST_Packet4f(alpha_1, 4.89352455891786e-3f);
+ static _EIGEN_DECLARE_CONST_Packet4f(alpha_3, 6.37261928875436e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(alpha_5, 1.48572235717979e-5f);
+ static _EIGEN_DECLARE_CONST_Packet4f(alpha_7, 5.12229709037114e-8f);
+ static _EIGEN_DECLARE_CONST_Packet4f(alpha_9, -8.60467152213735e-11f);
+ static _EIGEN_DECLARE_CONST_Packet4f(alpha_11, 2.00018790482477e-13f);
+ static _EIGEN_DECLARE_CONST_Packet4f(alpha_13, -2.76076847742355e-16f);
+ // The monomial coefficients of the denominator polynomial (even).
+ static _EIGEN_DECLARE_CONST_Packet4f(beta_0, 4.89352518554385e-3f);
+ static _EIGEN_DECLARE_CONST_Packet4f(beta_2, 2.26843463243900e-3f);
+ static _EIGEN_DECLARE_CONST_Packet4f(beta_4, 1.18534705686654e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(beta_6, 1.19825839466702e-6f);
+
+ Packet4f x = pabs(_x);
+ Packet4i tiny_mask = __builtin_msa_fclt_w(x, p4f_tanh_tiny);
+
+ // Clamp the inputs to the range [-9, 9] since anything outside
+ // this range is -/+1.0f in single-precision.
+ x = (Packet4f)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_w(p4f_tanh_hi, x), (v16u8)x,
+ (v16u8)p4f_tanh_hi);
+
+ // Since the polynomials are odd/even, we need x**2.
+ Packet4f x2 = pmul(x, x);
+
+ // Evaluate the numerator polynomial p.
+ Packet4f p = pmadd(x2, p4f_alpha_13, p4f_alpha_11);
+ p = pmadd(x2, p, p4f_alpha_9);
+ p = pmadd(x2, p, p4f_alpha_7);
+ p = pmadd(x2, p, p4f_alpha_5);
+ p = pmadd(x2, p, p4f_alpha_3);
+ p = pmadd(x2, p, p4f_alpha_1);
+ p = pmul(x, p);
+
+ // Evaluate the denominator polynomial q.
+ Packet4f q = pmadd(x2, p4f_beta_6, p4f_beta_4);
+ q = pmadd(x2, q, p4f_beta_2);
+ q = pmadd(x2, q, p4f_beta_0);
+
+ // Divide the numerator by the denominator.
+ p = pdiv(p, q);
+
+ // Reinstate the sign.
+ p = (Packet4f)__builtin_msa_binsli_w((v4u32)p, (v4u32)_x, 0);
+
+ // When the argument is very small in magnitude it's more accurate to just return it.
+ p = (Packet4f)__builtin_msa_bsel_v((v16u8)tiny_mask, (v16u8)p, (v16u8)_x);
+
+ return p;
+}
+
+template <bool sine>
+Packet4f psincos_inner_msa_float(const Packet4f& _x) {
+ static _EIGEN_DECLARE_CONST_Packet4f(sincos_max_arg, 13176795.0f); // Approx. (2**24) / (4/Pi).
+ static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1, -0.78515625f);
+ static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
+ static _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891e-4f);
+ static _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736e-3f);
+ static _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611e-1f);
+ static _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948e-5f);
+ static _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765e-3f);
+ static _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827e-2f);
+ static _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4/Pi.
+ static _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
+ static _EIGEN_DECLARE_CONST_Packet4f(1, 1.0f);
+
+ Packet4f x = pabs(_x);
+
+ // Translate infinite arguments into NANs.
+ Packet4f zero_or_nan_if_inf = psub(_x, _x);
+ x = padd(x, zero_or_nan_if_inf);
+ // Prevent sin/cos from generating values larger than 1.0 in magnitude
+ // for very large arguments by setting x to 0.0.
+ Packet4i small_or_nan_mask = __builtin_msa_fcult_w(x, p4f_sincos_max_arg);
+ x = pand(x, (Packet4f)small_or_nan_mask);
+
+ // Scale x by 4/Pi to find x's octant.
+ Packet4f y = pmul(x, p4f_cephes_FOPI);
+ // Get the octant. We'll reduce x by this number of octants or by one more than it.
+ Packet4i y_int = __builtin_msa_ftrunc_s_w(y);
+ // x's from even-numbered octants will translate to octant 0: [0, +Pi/4].
+ // x's from odd-numbered octants will translate to octant -1: [-Pi/4, 0].
+ // Adjustment for odd-numbered octants: octant = (octant + 1) & (~1).
+ Packet4i y_int1 = __builtin_msa_addvi_w(y_int, 1);
+ Packet4i y_int2 = (Packet4i)__builtin_msa_bclri_w((Packet4ui)y_int1, 0); // bclri = bit-clear
+ y = __builtin_msa_ffint_s_w(y_int2);
+
+ // Compute the sign to apply to the polynomial.
+ Packet4i sign_mask = sine ? pxor(__builtin_msa_slli_w(y_int1, 29), (Packet4i)_x)
+ : __builtin_msa_slli_w(__builtin_msa_addvi_w(y_int, 3), 29);
+
+ // Get the polynomial selection mask.
+ // We'll calculate both (sin and cos) polynomials and then select from the two.
+ Packet4i poly_mask = __builtin_msa_ceqi_w(__builtin_msa_slli_w(y_int2, 30), 0);
+
+ // Reduce x by y octants to get: -Pi/4 <= x <= +Pi/4.
+ // The magic pass: "Extended precision modular arithmetic"
+ // x = ((x - y * DP1) - y * DP2) - y * DP3
+ Packet4f tmp1 = pmul(y, p4f_minus_cephes_DP1);
+ Packet4f tmp2 = pmul(y, p4f_minus_cephes_DP2);
+ Packet4f tmp3 = pmul(y, p4f_minus_cephes_DP3);
+ x = padd(x, tmp1);
+ x = padd(x, tmp2);
+ x = padd(x, tmp3);
+
+ // Evaluate the cos(x) polynomial.
+ y = p4f_coscof_p0;
+ Packet4f z = pmul(x, x);
+ y = pmadd(y, z, p4f_coscof_p1);
+ y = pmadd(y, z, p4f_coscof_p2);
+ y = pmul(y, z);
+ y = pmul(y, z);
+ y = __builtin_msa_fmsub_w(y, z, p4f_half);
+ y = padd(y, p4f_1);
+
+ // Evaluate the sin(x) polynomial.
+ Packet4f y2 = p4f_sincof_p0;
+ y2 = pmadd(y2, z, p4f_sincof_p1);
+ y2 = pmadd(y2, z, p4f_sincof_p2);
+ y2 = pmul(y2, z);
+ y2 = pmadd(y2, x, x);
+
+ // Select the correct result from the two polynomials.
+ y = sine ? (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y, (v16u8)y2)
+ : (Packet4f)__builtin_msa_bsel_v((v16u8)poly_mask, (v16u8)y2, (v16u8)y);
+
+ // Update the sign.
+ sign_mask = pxor(sign_mask, (Packet4i)y);
+ y = (Packet4f)__builtin_msa_binsli_w((v4u32)y, (v4u32)sign_mask, 0); // binsli = bit-insert-left
+ return y;
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
+psin<Packet4f>(const Packet4f& x) {
+ return psincos_inner_msa_float</* sine */ true>(x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet4f
+pcos<Packet4f>(const Packet4f& x) {
+ return psincos_inner_msa_float</* sine */ false>(x);
+}
+
+template <>
+EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED Packet2d
+pexp<Packet2d>(const Packet2d& _x) {
+ // Limiting double-precision pexp's argument to [-1024, +1024] lets pexp
+ // reach 0 and INFINITY naturally.
+ static _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -1024.0);
+ static _EIGEN_DECLARE_CONST_Packet2d(exp_hi, +1024.0);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
+ static _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);
+ static _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);
+ static _EIGEN_DECLARE_CONST_Packet2d(1, 1.0);
+ static _EIGEN_DECLARE_CONST_Packet2d(2, 2.0);
+
+ Packet2d x = _x;
+
+ // Clamp x.
+ x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(x, p2d_exp_lo), (v16u8)x,
+ (v16u8)p2d_exp_lo);
+ x = (Packet2d)__builtin_msa_bsel_v((v16u8)__builtin_msa_fclt_d(p2d_exp_hi, x), (v16u8)x,
+ (v16u8)p2d_exp_hi);
+
+ // Round to nearest integer by adding 0.5 (with x's sign) and truncating.
+ Packet2d x2_add = (Packet2d)__builtin_msa_binsli_d((v2u64)p2d_half, (v2u64)x, 0);
+ Packet2d x2 = pmadd(x, p2d_cephes_LOG2EF, x2_add);
+ Packet2l x2_long = __builtin_msa_ftrunc_s_d(x2);
+ Packet2d x2_long_d = __builtin_msa_ffint_s_d(x2_long);
+
+ x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C1);
+ x = __builtin_msa_fmsub_d(x, x2_long_d, p2d_cephes_exp_C2);
+
+ x2 = pmul(x, x);
+
+ Packet2d px = p2d_cephes_exp_p0;
+ px = pmadd(px, x2, p2d_cephes_exp_p1);
+ px = pmadd(px, x2, p2d_cephes_exp_p2);
+ px = pmul(px, x);
+
+ Packet2d qx = p2d_cephes_exp_q0;
+ qx = pmadd(qx, x2, p2d_cephes_exp_q1);
+ qx = pmadd(qx, x2, p2d_cephes_exp_q2);
+ qx = pmadd(qx, x2, p2d_cephes_exp_q3);
+
+ x = pdiv(px, psub(qx, px));
+ x = pmadd(p2d_2, x, p2d_1);
+
+ // x *= 2**exponent.
+ x = __builtin_msa_fexp2_d(x, x2_long);
+
+ return x;
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATH_FUNCTIONS_MSA_H