aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/arch/SSE
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/arch/SSE')
-rw-r--r--Eigen/src/Core/arch/SSE/CMakeLists.txt6
-rw-r--r--Eigen/src/Core/arch/SSE/Complex.h436
-rw-r--r--Eigen/src/Core/arch/SSE/MathFunctions.h384
-rw-r--r--Eigen/src/Core/arch/SSE/PacketMath.h632
4 files changed, 1458 insertions, 0 deletions
diff --git a/Eigen/src/Core/arch/SSE/CMakeLists.txt b/Eigen/src/Core/arch/SSE/CMakeLists.txt
new file mode 100644
index 000000000..46ea7cc62
--- /dev/null
+++ b/Eigen/src/Core/arch/SSE/CMakeLists.txt
@@ -0,0 +1,6 @@
+FILE(GLOB Eigen_Core_arch_SSE_SRCS "*.h")
+
+INSTALL(FILES
+ ${Eigen_Core_arch_SSE_SRCS}
+ DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Core/arch/SSE COMPONENT Devel
+)
diff --git a/Eigen/src/Core/arch/SSE/Complex.h b/Eigen/src/Core/arch/SSE/Complex.h
new file mode 100644
index 000000000..12df98775
--- /dev/null
+++ b/Eigen/src/Core/arch/SSE/Complex.h
@@ -0,0 +1,436 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_COMPLEX_SSE_H
+#define EIGEN_COMPLEX_SSE_H
+
+namespace Eigen {
+
+namespace internal {
+
+//---------- float ----------
+struct Packet2cf
+{
+ EIGEN_STRONG_INLINE Packet2cf() {}
+ EIGEN_STRONG_INLINE explicit Packet2cf(const __m128& a) : v(a) {}
+ __m128 v;
+};
+
+template<> struct packet_traits<std::complex<float> > : default_packet_traits
+{
+ typedef Packet2cf type;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size = 2,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet2cf> { typedef std::complex<float> type; enum {size=2}; };
+
+template<> EIGEN_STRONG_INLINE Packet2cf padd<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_add_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf psub<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_sub_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf pnegate(const Packet2cf& a)
+{
+ const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
+ return Packet2cf(_mm_xor_ps(a.v,mask));
+}
+template<> EIGEN_STRONG_INLINE Packet2cf pconj(const Packet2cf& a)
+{
+ const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
+ return Packet2cf(_mm_xor_ps(a.v,mask));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cf pmul<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{
+ // TODO optimize it for SSE3 and 4
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return Packet2cf(_mm_addsub_ps(_mm_mul_ps(_mm_moveldup_ps(a.v), b.v),
+ _mm_mul_ps(_mm_movehdup_ps(a.v),
+ vec4f_swizzle1(b.v, 1, 0, 3, 2))));
+// return Packet2cf(_mm_addsub_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
+// _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
+// vec4f_swizzle1(b.v, 1, 0, 3, 2))));
+ #else
+ const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x00000000,0x80000000,0x00000000));
+ return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
+ _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
+ vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
+ #endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cf pand <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_and_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf por <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_or_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf pxor <Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_xor_ps(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet2cf pandnot<Packet2cf>(const Packet2cf& a, const Packet2cf& b) { return Packet2cf(_mm_andnot_ps(a.v,b.v)); }
+
+template<> EIGEN_STRONG_INLINE Packet2cf pload <Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_ALIGNED_LOAD return Packet2cf(pload<Packet4f>(&real_ref(*from))); }
+template<> EIGEN_STRONG_INLINE Packet2cf ploadu<Packet2cf>(const std::complex<float>* from) { EIGEN_DEBUG_UNALIGNED_LOAD return Packet2cf(ploadu<Packet4f>(&real_ref(*from))); }
+
+template<> EIGEN_STRONG_INLINE Packet2cf pset1<Packet2cf>(const std::complex<float>& from)
+{
+ Packet2cf res;
+ #if EIGEN_GNUC_AT_MOST(4,2)
+ // workaround annoying "may be used uninitialized in this function" warning with gcc 4.2
+ res.v = _mm_loadl_pi(_mm_set1_ps(0.0f), reinterpret_cast<const __m64*>(&from));
+ #else
+ res.v = _mm_loadl_pi(res.v, (const __m64*)&from);
+ #endif
+ return Packet2cf(_mm_movelh_ps(res.v,res.v));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cf ploaddup<Packet2cf>(const std::complex<float>* from) { return pset1<Packet2cf>(*from); }
+
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_ALIGNED_STORE pstore(&real_ref(*to), from.v); }
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<float> >(std::complex<float> * to, const Packet2cf& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(&real_ref(*to), from.v); }
+
+template<> EIGEN_STRONG_INLINE void prefetch<std::complex<float> >(const std::complex<float> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
+
+template<> EIGEN_STRONG_INLINE std::complex<float> pfirst<Packet2cf>(const Packet2cf& a)
+{
+ #if EIGEN_GNUC_AT_MOST(4,3)
+ // Workaround gcc 4.2 ICE - this is not performance wise ideal, but who cares...
+ // This workaround also fix invalid code generation with gcc 4.3
+ EIGEN_ALIGN16 std::complex<float> res[2];
+ _mm_store_ps((float*)res, a.v);
+ return res[0];
+ #else
+ std::complex<float> res;
+ _mm_storel_pi((__m64*)&res, a.v);
+ return res;
+ #endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cf preverse(const Packet2cf& a) { return Packet2cf(_mm_castpd_ps(preverse(_mm_castps_pd(a.v)))); }
+
+template<> EIGEN_STRONG_INLINE std::complex<float> predux<Packet2cf>(const Packet2cf& a)
+{
+ return pfirst(Packet2cf(_mm_add_ps(a.v, _mm_movehl_ps(a.v,a.v))));
+}
+
+template<> EIGEN_STRONG_INLINE Packet2cf preduxp<Packet2cf>(const Packet2cf* vecs)
+{
+ return Packet2cf(_mm_add_ps(_mm_movelh_ps(vecs[0].v,vecs[1].v), _mm_movehl_ps(vecs[1].v,vecs[0].v)));
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<float> predux_mul<Packet2cf>(const Packet2cf& a)
+{
+ return pfirst(pmul(a, Packet2cf(_mm_movehl_ps(a.v,a.v))));
+}
+
+template<int Offset>
+struct palign_impl<Offset,Packet2cf>
+{
+ static EIGEN_STRONG_INLINE void run(Packet2cf& first, const Packet2cf& second)
+ {
+ if (Offset==1)
+ {
+ first.v = _mm_movehl_ps(first.v, first.v);
+ first.v = _mm_movelh_ps(first.v, second.v);
+ }
+ }
+};
+
+template<> struct conj_helper<Packet2cf, Packet2cf, false,true>
+{
+ EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
+ {
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return internal::pmul(a, pconj(b));
+ #else
+ const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
+ return Packet2cf(_mm_add_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
+ _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
+ vec4f_swizzle1(b.v, 1, 0, 3, 2))));
+ #endif
+ }
+};
+
+template<> struct conj_helper<Packet2cf, Packet2cf, true,false>
+{
+ EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
+ {
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return internal::pmul(pconj(a), b);
+ #else
+ const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
+ return Packet2cf(_mm_add_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v),
+ _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
+ vec4f_swizzle1(b.v, 1, 0, 3, 2)), mask)));
+ #endif
+ }
+};
+
+template<> struct conj_helper<Packet2cf, Packet2cf, true,true>
+{
+ EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet2cf& y, const Packet2cf& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& a, const Packet2cf& b) const
+ {
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return pconj(internal::pmul(a, b));
+ #else
+ const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0x00000000,0x80000000,0x00000000,0x80000000));
+ return Packet2cf(_mm_sub_ps(_mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a.v, 0, 0, 2, 2), b.v), mask),
+ _mm_mul_ps(vec4f_swizzle1(a.v, 1, 1, 3, 3),
+ vec4f_swizzle1(b.v, 1, 0, 3, 2))));
+ #endif
+ }
+};
+
+template<> struct conj_helper<Packet4f, Packet2cf, false,false>
+{
+ EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet4f& x, const Packet2cf& y, const Packet2cf& c) const
+ { return padd(c, pmul(x,y)); }
+
+ EIGEN_STRONG_INLINE Packet2cf pmul(const Packet4f& x, const Packet2cf& y) const
+ { return Packet2cf(Eigen::internal::pmul(x, y.v)); }
+};
+
+template<> struct conj_helper<Packet2cf, Packet4f, false,false>
+{
+ EIGEN_STRONG_INLINE Packet2cf pmadd(const Packet2cf& x, const Packet4f& y, const Packet2cf& c) const
+ { return padd(c, pmul(x,y)); }
+
+ EIGEN_STRONG_INLINE Packet2cf pmul(const Packet2cf& x, const Packet4f& y) const
+ { return Packet2cf(Eigen::internal::pmul(x.v, y)); }
+};
+
+template<> EIGEN_STRONG_INLINE Packet2cf pdiv<Packet2cf>(const Packet2cf& a, const Packet2cf& b)
+{
+ // TODO optimize it for SSE3 and 4
+ Packet2cf res = conj_helper<Packet2cf,Packet2cf,false,true>().pmul(a,b);
+ __m128 s = _mm_mul_ps(b.v,b.v);
+ return Packet2cf(_mm_div_ps(res.v,_mm_add_ps(s,_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(s), 0xb1)))));
+}
+
+EIGEN_STRONG_INLINE Packet2cf pcplxflip/*<Packet2cf>*/(const Packet2cf& x)
+{
+ return Packet2cf(vec4f_swizzle1(x.v, 1, 0, 3, 2));
+}
+
+
+//---------- double ----------
+struct Packet1cd
+{
+ EIGEN_STRONG_INLINE Packet1cd() {}
+ EIGEN_STRONG_INLINE explicit Packet1cd(const __m128d& a) : v(a) {}
+ __m128d v;
+};
+
+template<> struct packet_traits<std::complex<double> > : default_packet_traits
+{
+ typedef Packet1cd type;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 0,
+ size = 1,
+
+ HasAdd = 1,
+ HasSub = 1,
+ HasMul = 1,
+ HasDiv = 1,
+ HasNegate = 1,
+ HasAbs = 0,
+ HasAbs2 = 0,
+ HasMin = 0,
+ HasMax = 0,
+ HasSetLinear = 0
+ };
+};
+
+template<> struct unpacket_traits<Packet1cd> { typedef std::complex<double> type; enum {size=1}; };
+
+template<> EIGEN_STRONG_INLINE Packet1cd padd<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_add_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd psub<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_sub_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pnegate(const Packet1cd& a) { return Packet1cd(pnegate(a.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pconj(const Packet1cd& a)
+{
+ const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
+ return Packet1cd(_mm_xor_pd(a.v,mask));
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd pmul<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ // TODO optimize it for SSE3 and 4
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return Packet1cd(_mm_addsub_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
+ _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
+ vec2d_swizzle1(b.v, 1, 0))));
+ #else
+ const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x0,0x0,0x80000000,0x0));
+ return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
+ _mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
+ vec2d_swizzle1(b.v, 1, 0)), mask)));
+ #endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd pand <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_and_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd por <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_or_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pxor <Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_xor_pd(a.v,b.v)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pandnot<Packet1cd>(const Packet1cd& a, const Packet1cd& b) { return Packet1cd(_mm_andnot_pd(a.v,b.v)); }
+
+// FIXME force unaligned load, this is a temporary fix
+template<> EIGEN_STRONG_INLINE Packet1cd pload <Packet1cd>(const std::complex<double>* from)
+{ EIGEN_DEBUG_ALIGNED_LOAD return Packet1cd(pload<Packet2d>((const double*)from)); }
+template<> EIGEN_STRONG_INLINE Packet1cd ploadu<Packet1cd>(const std::complex<double>* from)
+{ EIGEN_DEBUG_UNALIGNED_LOAD return Packet1cd(ploadu<Packet2d>((const double*)from)); }
+template<> EIGEN_STRONG_INLINE Packet1cd pset1<Packet1cd>(const std::complex<double>& from)
+{ /* here we really have to use unaligned loads :( */ return ploadu<Packet1cd>(&from); }
+
+template<> EIGEN_STRONG_INLINE Packet1cd ploaddup<Packet1cd>(const std::complex<double>* from) { return pset1<Packet1cd>(*from); }
+
+// FIXME force unaligned store, this is a temporary fix
+template<> EIGEN_STRONG_INLINE void pstore <std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_ALIGNED_STORE pstore((double*)to, from.v); }
+template<> EIGEN_STRONG_INLINE void pstoreu<std::complex<double> >(std::complex<double> * to, const Packet1cd& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu((double*)to, from.v); }
+
+template<> EIGEN_STRONG_INLINE void prefetch<std::complex<double> >(const std::complex<double> * addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> pfirst<Packet1cd>(const Packet1cd& a)
+{
+ EIGEN_ALIGN16 double res[2];
+ _mm_store_pd(res, a.v);
+ return std::complex<double>(res[0],res[1]);
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd preverse(const Packet1cd& a) { return a; }
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux<Packet1cd>(const Packet1cd& a)
+{
+ return pfirst(a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet1cd preduxp<Packet1cd>(const Packet1cd* vecs)
+{
+ return vecs[0];
+}
+
+template<> EIGEN_STRONG_INLINE std::complex<double> predux_mul<Packet1cd>(const Packet1cd& a)
+{
+ return pfirst(a);
+}
+
+template<int Offset>
+struct palign_impl<Offset,Packet1cd>
+{
+ static EIGEN_STRONG_INLINE void run(Packet1cd& /*first*/, const Packet1cd& /*second*/)
+ {
+ // FIXME is it sure we never have to align a Packet1cd?
+ // Even though a std::complex<double> has 16 bytes, it is not necessarily aligned on a 16 bytes boundary...
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, false,true>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return internal::pmul(a, pconj(b));
+ #else
+ const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
+ return Packet1cd(_mm_add_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
+ _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
+ vec2d_swizzle1(b.v, 1, 0))));
+ #endif
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, true,false>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return internal::pmul(pconj(a), b);
+ #else
+ const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
+ return Packet1cd(_mm_add_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v),
+ _mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
+ vec2d_swizzle1(b.v, 1, 0)), mask)));
+ #endif
+ }
+};
+
+template<> struct conj_helper<Packet1cd, Packet1cd, true,true>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(pmul(x,y),c); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& a, const Packet1cd& b) const
+ {
+ #ifdef EIGEN_VECTORIZE_SSE3
+ return pconj(internal::pmul(a, b));
+ #else
+ const __m128d mask = _mm_castsi128_pd(_mm_set_epi32(0x80000000,0x0,0x0,0x0));
+ return Packet1cd(_mm_sub_pd(_mm_xor_pd(_mm_mul_pd(vec2d_swizzle1(a.v, 0, 0), b.v), mask),
+ _mm_mul_pd(vec2d_swizzle1(a.v, 1, 1),
+ vec2d_swizzle1(b.v, 1, 0))));
+ #endif
+ }
+};
+
+template<> struct conj_helper<Packet2d, Packet1cd, false,false>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet2d& x, const Packet1cd& y, const Packet1cd& c) const
+ { return padd(c, pmul(x,y)); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet2d& x, const Packet1cd& y) const
+ { return Packet1cd(Eigen::internal::pmul(x, y.v)); }
+};
+
+template<> struct conj_helper<Packet1cd, Packet2d, false,false>
+{
+ EIGEN_STRONG_INLINE Packet1cd pmadd(const Packet1cd& x, const Packet2d& y, const Packet1cd& c) const
+ { return padd(c, pmul(x,y)); }
+
+ EIGEN_STRONG_INLINE Packet1cd pmul(const Packet1cd& x, const Packet2d& y) const
+ { return Packet1cd(Eigen::internal::pmul(x.v, y)); }
+};
+
+template<> EIGEN_STRONG_INLINE Packet1cd pdiv<Packet1cd>(const Packet1cd& a, const Packet1cd& b)
+{
+ // TODO optimize it for SSE3 and 4
+ Packet1cd res = conj_helper<Packet1cd,Packet1cd,false,true>().pmul(a,b);
+ __m128d s = _mm_mul_pd(b.v,b.v);
+ return Packet1cd(_mm_div_pd(res.v, _mm_add_pd(s,_mm_shuffle_pd(s, s, 0x1))));
+}
+
+EIGEN_STRONG_INLINE Packet1cd pcplxflip/*<Packet1cd>*/(const Packet1cd& x)
+{
+ return Packet1cd(preverse(x.v));
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_COMPLEX_SSE_H
diff --git a/Eigen/src/Core/arch/SSE/MathFunctions.h b/Eigen/src/Core/arch/SSE/MathFunctions.h
new file mode 100644
index 000000000..3f41a4e26
--- /dev/null
+++ b/Eigen/src/Core/arch/SSE/MathFunctions.h
@@ -0,0 +1,384 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2007 Julien Pommier
+// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+/* The sin, cos, exp, and log functions of this file come from
+ * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
+ */
+
+#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
+#define EIGEN_MATH_FUNCTIONS_SSE_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f plog<Packet4f>(const Packet4f& _x)
+{
+ Packet4f x = _x;
+ _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
+ _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
+ _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
+
+ _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);
+
+ /* the smallest non denormalized float number */
+ _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos, 0x00800000);
+
+ /* natural logarithm computed for 4 simultaneous float
+ return NaN for x <= 0
+ */
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);
+
+
+ Packet4i emm0;
+
+ Packet4f invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
+
+ x = pmax(x, p4f_min_norm_pos); /* cut off denormalized stuff */
+ emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
+
+ /* keep only the fractional part */
+ x = _mm_and_ps(x, p4f_inv_mant_mask);
+ x = _mm_or_ps(x, p4f_half);
+
+ emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
+ Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);
+
+ /* part2:
+ if( x < SQRTHF ) {
+ e -= 1;
+ x = x + x - 1.0;
+ } else { x = x - 1.0; }
+ */
+ Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
+ Packet4f tmp = _mm_and_ps(x, mask);
+ x = psub(x, p4f_1);
+ e = psub(e, _mm_and_ps(p4f_1, mask));
+ x = padd(x, tmp);
+
+ Packet4f x2 = pmul(x,x);
+ Packet4f x3 = pmul(x2,x);
+
+ Packet4f y, y1, y2;
+ y = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
+ y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
+ y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
+ y = pmadd(y , x, p4f_cephes_log_p2);
+ y1 = pmadd(y1, x, p4f_cephes_log_p5);
+ y2 = pmadd(y2, x, p4f_cephes_log_p8);
+ y = pmadd(y, x3, y1);
+ y = pmadd(y, x3, y2);
+ y = pmul(y, x3);
+
+ y1 = pmul(e, p4f_cephes_log_q1);
+ tmp = pmul(x2, p4f_half);
+ y = padd(y, y1);
+ x = psub(x, tmp);
+ y2 = pmul(e, p4f_cephes_log_q2);
+ x = padd(x, y);
+ x = padd(x, y2);
+ return _mm_or_ps(x, invalid_mask); // negative arg will be NAN
+}
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f pexp<Packet4f>(const Packet4f& _x)
+{
+ Packet4f x = _x;
+ _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
+ _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
+ _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);
+
+
+ _EIGEN_DECLARE_CONST_Packet4f(exp_hi, 88.3762626647950f);
+ _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);
+
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);
+
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);
+
+ Packet4f tmp = _mm_setzero_ps(), fx;
+ Packet4i emm0;
+
+ // clamp x
+ x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);
+
+ /* express exp(x) as exp(g + n*log(2)) */
+ fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);
+
+ /* how to perform a floorf with SSE: just below */
+ emm0 = _mm_cvttps_epi32(fx);
+ tmp = _mm_cvtepi32_ps(emm0);
+ /* if greater, substract 1 */
+ Packet4f mask = _mm_cmpgt_ps(tmp, fx);
+ mask = _mm_and_ps(mask, p4f_1);
+ fx = psub(tmp, mask);
+
+ tmp = pmul(fx, p4f_cephes_exp_C1);
+ Packet4f z = pmul(fx, p4f_cephes_exp_C2);
+ x = psub(x, tmp);
+ x = psub(x, z);
+
+ z = pmul(x,x);
+
+ Packet4f y = p4f_cephes_exp_p0;
+ y = pmadd(y, x, p4f_cephes_exp_p1);
+ y = pmadd(y, x, p4f_cephes_exp_p2);
+ y = pmadd(y, x, p4f_cephes_exp_p3);
+ y = pmadd(y, x, p4f_cephes_exp_p4);
+ y = pmadd(y, x, p4f_cephes_exp_p5);
+ y = pmadd(y, z, x);
+ y = padd(y, p4f_1);
+
+ // build 2^n
+ emm0 = _mm_cvttps_epi32(fx);
+ emm0 = _mm_add_epi32(emm0, p4i_0x7f);
+ emm0 = _mm_slli_epi32(emm0, 23);
+ return pmul(y, _mm_castsi128_ps(emm0));
+}
+
+/* evaluation of 4 sines at onces, using SSE2 intrinsics.
+
+ The code is the exact rewriting of the cephes sinf function.
+ Precision is excellent as long as x < 8192 (I did not bother to
+ take into account the special handling they have for greater values
+ -- it does not return garbage for arguments over 8192, though, but
+ the extra precision is missing).
+
+ Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
+ surprising but correct result.
+*/
+
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f psin<Packet4f>(const Packet4f& _x)
+{
+ Packet4f x = _x;
+ _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
+ _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
+
+ _EIGEN_DECLARE_CONST_Packet4i(1, 1);
+ _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
+ _EIGEN_DECLARE_CONST_Packet4i(2, 2);
+ _EIGEN_DECLARE_CONST_Packet4i(4, 4);
+
+ _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);
+
+ _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
+ _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
+ _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
+ _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
+ _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
+ _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
+ _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
+ _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
+
+ Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;
+
+ Packet4i emm0, emm2;
+ sign_bit = x;
+ /* take the absolute value */
+ x = pabs(x);
+
+ /* take the modulo */
+
+ /* extract the sign bit (upper one) */
+ sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);
+
+ /* scale by 4/Pi */
+ y = pmul(x, p4f_cephes_FOPI);
+
+ /* store the integer part of y in mm0 */
+ emm2 = _mm_cvttps_epi32(y);
+ /* j=(j+1) & (~1) (see the cephes sources) */
+ emm2 = _mm_add_epi32(emm2, p4i_1);
+ emm2 = _mm_and_si128(emm2, p4i_not1);
+ y = _mm_cvtepi32_ps(emm2);
+ /* get the swap sign flag */
+ emm0 = _mm_and_si128(emm2, p4i_4);
+ emm0 = _mm_slli_epi32(emm0, 29);
+ /* get the polynom selection mask
+ there is one polynom for 0 <= x <= Pi/4
+ and another one for Pi/4<x<=Pi/2
+
+ Both branches will be computed.
+ */
+ emm2 = _mm_and_si128(emm2, p4i_2);
+ emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
+
+ Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
+ Packet4f poly_mask = _mm_castsi128_ps(emm2);
+ sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
+
+ /* The magic pass: "Extended precision modular arithmetic"
+ x = ((x - y * DP1) - y * DP2) - y * DP3; */
+ xmm1 = pmul(y, p4f_minus_cephes_DP1);
+ xmm2 = pmul(y, p4f_minus_cephes_DP2);
+ xmm3 = pmul(y, p4f_minus_cephes_DP3);
+ x = padd(x, xmm1);
+ x = padd(x, xmm2);
+ x = padd(x, xmm3);
+
+ /* Evaluate the first polynom (0 <= x <= Pi/4) */
+ y = p4f_coscof_p0;
+ Packet4f z = _mm_mul_ps(x,x);
+
+ y = pmadd(y, z, p4f_coscof_p1);
+ y = pmadd(y, z, p4f_coscof_p2);
+ y = pmul(y, z);
+ y = pmul(y, z);
+ Packet4f tmp = pmul(z, p4f_half);
+ y = psub(y, tmp);
+ y = padd(y, p4f_1);
+
+ /* Evaluate the second polynom (Pi/4 <= x <= 0) */
+
+ Packet4f y2 = p4f_sincof_p0;
+ y2 = pmadd(y2, z, p4f_sincof_p1);
+ y2 = pmadd(y2, z, p4f_sincof_p2);
+ y2 = pmul(y2, z);
+ y2 = pmul(y2, x);
+ y2 = padd(y2, x);
+
+ /* select the correct result from the two polynoms */
+ y2 = _mm_and_ps(poly_mask, y2);
+ y = _mm_andnot_ps(poly_mask, y);
+ y = _mm_or_ps(y,y2);
+ /* update the sign */
+ return _mm_xor_ps(y, sign_bit);
+}
+
+/* almost the same as psin */
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f pcos<Packet4f>(const Packet4f& _x)
+{
+ Packet4f x = _x;
+ _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
+ _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
+
+ _EIGEN_DECLARE_CONST_Packet4i(1, 1);
+ _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
+ _EIGEN_DECLARE_CONST_Packet4i(2, 2);
+ _EIGEN_DECLARE_CONST_Packet4i(4, 4);
+
+ _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
+ _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
+ _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
+ _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
+ _EIGEN_DECLARE_CONST_Packet4f(sincof_p1, 8.3321608736E-3f);
+ _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
+ _EIGEN_DECLARE_CONST_Packet4f(coscof_p0, 2.443315711809948E-005f);
+ _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
+ _EIGEN_DECLARE_CONST_Packet4f(coscof_p2, 4.166664568298827E-002f);
+ _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI
+
+ Packet4f xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
+ Packet4i emm0, emm2;
+
+ x = pabs(x);
+
+ /* scale by 4/Pi */
+ y = pmul(x, p4f_cephes_FOPI);
+
+ /* get the integer part of y */
+ emm2 = _mm_cvttps_epi32(y);
+ /* j=(j+1) & (~1) (see the cephes sources) */
+ emm2 = _mm_add_epi32(emm2, p4i_1);
+ emm2 = _mm_and_si128(emm2, p4i_not1);
+ y = _mm_cvtepi32_ps(emm2);
+
+ emm2 = _mm_sub_epi32(emm2, p4i_2);
+
+ /* get the swap sign flag */
+ emm0 = _mm_andnot_si128(emm2, p4i_4);
+ emm0 = _mm_slli_epi32(emm0, 29);
+ /* get the polynom selection mask */
+ emm2 = _mm_and_si128(emm2, p4i_2);
+ emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
+
+ Packet4f sign_bit = _mm_castsi128_ps(emm0);
+ Packet4f poly_mask = _mm_castsi128_ps(emm2);
+
+ /* The magic pass: "Extended precision modular arithmetic"
+ x = ((x - y * DP1) - y * DP2) - y * DP3; */
+ xmm1 = pmul(y, p4f_minus_cephes_DP1);
+ xmm2 = pmul(y, p4f_minus_cephes_DP2);
+ xmm3 = pmul(y, p4f_minus_cephes_DP3);
+ x = padd(x, xmm1);
+ x = padd(x, xmm2);
+ x = padd(x, xmm3);
+
+ /* Evaluate the first polynom (0 <= x <= Pi/4) */
+ y = p4f_coscof_p0;
+ Packet4f z = pmul(x,x);
+
+ y = pmadd(y,z,p4f_coscof_p1);
+ y = pmadd(y,z,p4f_coscof_p2);
+ y = pmul(y, z);
+ y = pmul(y, z);
+ Packet4f tmp = _mm_mul_ps(z, p4f_half);
+ y = psub(y, tmp);
+ y = padd(y, p4f_1);
+
+ /* Evaluate the second polynom (Pi/4 <= x <= 0) */
+ Packet4f y2 = p4f_sincof_p0;
+ y2 = pmadd(y2, z, p4f_sincof_p1);
+ y2 = pmadd(y2, z, p4f_sincof_p2);
+ y2 = pmul(y2, z);
+ y2 = pmadd(y2, x, x);
+
+ /* select the correct result from the two polynoms */
+ y2 = _mm_and_ps(poly_mask, y2);
+ y = _mm_andnot_ps(poly_mask, y);
+ y = _mm_or_ps(y,y2);
+
+ /* update the sign */
+ return _mm_xor_ps(y, sign_bit);
+}
+
+// This is based on Quake3's fast inverse square root.
+// For detail see here: http://www.beyond3d.com/content/articles/8/
+template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
+Packet4f psqrt<Packet4f>(const Packet4f& _x)
+{
+ Packet4f half = pmul(_x, pset1<Packet4f>(.5f));
+
+ /* select only the inverse sqrt of non-zero inputs */
+ Packet4f non_zero_mask = _mm_cmpgt_ps(_x, pset1<Packet4f>(std::numeric_limits<float>::epsilon()));
+ Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));
+
+ x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
+ return pmul(_x,x);
+}
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_MATH_FUNCTIONS_SSE_H
diff --git a/Eigen/src/Core/arch/SSE/PacketMath.h b/Eigen/src/Core/arch/SSE/PacketMath.h
new file mode 100644
index 000000000..10d918219
--- /dev/null
+++ b/Eigen/src/Core/arch/SSE/PacketMath.h
@@ -0,0 +1,632 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_PACKET_MATH_SSE_H
+#define EIGEN_PACKET_MATH_SSE_H
+
+namespace Eigen {
+
+namespace internal {
+
+#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
+#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
+#endif
+
+#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
+#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS (2*sizeof(void*))
+#endif
+
+typedef __m128 Packet4f;
+typedef __m128i Packet4i;
+typedef __m128d Packet2d;
+
+template<> struct is_arithmetic<__m128> { enum { value = true }; };
+template<> struct is_arithmetic<__m128i> { enum { value = true }; };
+template<> struct is_arithmetic<__m128d> { enum { value = true }; };
+
+#define vec4f_swizzle1(v,p,q,r,s) \
+ (_mm_castsi128_ps(_mm_shuffle_epi32( _mm_castps_si128(v), ((s)<<6|(r)<<4|(q)<<2|(p)))))
+
+#define vec4i_swizzle1(v,p,q,r,s) \
+ (_mm_shuffle_epi32( v, ((s)<<6|(r)<<4|(q)<<2|(p))))
+
+#define vec2d_swizzle1(v,p,q) \
+ (_mm_castsi128_pd(_mm_shuffle_epi32( _mm_castpd_si128(v), ((q*2+1)<<6|(q*2)<<4|(p*2+1)<<2|(p*2)))))
+
+#define vec4f_swizzle2(a,b,p,q,r,s) \
+ (_mm_shuffle_ps( (a), (b), ((s)<<6|(r)<<4|(q)<<2|(p))))
+
+#define vec4i_swizzle2(a,b,p,q,r,s) \
+ (_mm_castps_si128( (_mm_shuffle_ps( _mm_castsi128_ps(a), _mm_castsi128_ps(b), ((s)<<6|(r)<<4|(q)<<2|(p))))))
+
+#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
+ const Packet4f p4f_##NAME = pset1<Packet4f>(X)
+
+#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
+ const Packet4f p4f_##NAME = _mm_castsi128_ps(pset1<Packet4i>(X))
+
+#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
+ const Packet4i p4i_##NAME = pset1<Packet4i>(X)
+
+
+template<> struct packet_traits<float> : default_packet_traits
+{
+ typedef Packet4f type;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size=4,
+
+ HasDiv = 1,
+ HasSin = EIGEN_FAST_MATH,
+ HasCos = EIGEN_FAST_MATH,
+ HasLog = 1,
+ HasExp = 1,
+ HasSqrt = 1
+ };
+};
+template<> struct packet_traits<double> : default_packet_traits
+{
+ typedef Packet2d type;
+ enum {
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size=2,
+
+ HasDiv = 1
+ };
+};
+template<> struct packet_traits<int> : default_packet_traits
+{
+ typedef Packet4i type;
+ enum {
+ // FIXME check the Has*
+ Vectorizable = 1,
+ AlignedOnScalar = 1,
+ size=4
+ };
+};
+
+template<> struct unpacket_traits<Packet4f> { typedef float type; enum {size=4}; };
+template<> struct unpacket_traits<Packet2d> { typedef double type; enum {size=2}; };
+template<> struct unpacket_traits<Packet4i> { typedef int type; enum {size=4}; };
+
+#if defined(_MSC_VER) && (_MSC_VER==1500)
+// Workaround MSVC 9 internal compiler error.
+// TODO: It has been detected with win64 builds (amd64), so let's check whether it also happens in 32bits+SSE mode
+// TODO: let's check whether there does not exist a better fix, like adding a pset0() function. (it crashed on pset1(0)).
+template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set_ps(from,from,from,from); }
+template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set_pd(from,from); }
+template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set_epi32(from,from,from,from); }
+#else
+template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float& from) { return _mm_set1_ps(from); }
+template<> EIGEN_STRONG_INLINE Packet2d pset1<Packet2d>(const double& from) { return _mm_set1_pd(from); }
+template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int& from) { return _mm_set1_epi32(from); }
+#endif
+
+template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a) { return _mm_add_ps(pset1<Packet4f>(a), _mm_set_ps(3,2,1,0)); }
+template<> EIGEN_STRONG_INLINE Packet2d plset<double>(const double& a) { return _mm_add_pd(pset1<Packet2d>(a),_mm_set_pd(1,0)); }
+template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a) { return _mm_add_epi32(pset1<Packet4i>(a),_mm_set_epi32(3,2,1,0)); }
+
+template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_add_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d padd<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_add_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_add_epi32(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_sub_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d psub<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_sub_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_sub_epi32(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a)
+{
+ const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x80000000,0x80000000,0x80000000,0x80000000));
+ return _mm_xor_ps(a,mask);
+}
+template<> EIGEN_STRONG_INLINE Packet2d pnegate(const Packet2d& a)
+{
+ const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0x0,0x80000000,0x0,0x80000000));
+ return _mm_xor_pd(a,mask);
+}
+template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a)
+{
+ return psub(_mm_setr_epi32(0,0,0,0), a);
+}
+
+template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_mul_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d pmul<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_mul_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b)
+{
+#ifdef EIGEN_VECTORIZE_SSE4_1
+ return _mm_mullo_epi32(a,b);
+#else
+ // this version is slightly faster than 4 scalar products
+ return vec4i_swizzle1(
+ vec4i_swizzle2(
+ _mm_mul_epu32(a,b),
+ _mm_mul_epu32(vec4i_swizzle1(a,1,0,3,2),
+ vec4i_swizzle1(b,1,0,3,2)),
+ 0,2,0,2),
+ 0,2,1,3);
+#endif
+}
+
+template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_div_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d pdiv<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_div_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
+{ eigen_assert(false && "packet integer division are not supported by SSE");
+ return pset1<Packet4i>(0);
+}
+
+// for some weird raisons, it has to be overloaded for packet of integers
+template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return padd(pmul(a,b), c); }
+
+template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_min_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d pmin<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_min_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b)
+{
+ // after some bench, this version *is* faster than a scalar implementation
+ Packet4i mask = _mm_cmplt_epi32(a,b);
+ return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_max_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d pmax<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_max_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b)
+{
+ // after some bench, this version *is* faster than a scalar implementation
+ Packet4i mask = _mm_cmpgt_epi32(a,b);
+ return _mm_or_si128(_mm_and_si128(mask,a),_mm_andnot_si128(mask,b));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_and_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d pand<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_and_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_and_si128(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_or_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d por<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_or_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_or_si128(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_xor_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d pxor<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_xor_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_xor_si128(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b) { return _mm_andnot_ps(a,b); }
+template<> EIGEN_STRONG_INLINE Packet2d pandnot<Packet2d>(const Packet2d& a, const Packet2d& b) { return _mm_andnot_pd(a,b); }
+template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return _mm_andnot_si128(a,b); }
+
+template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_ps(from); }
+template<> EIGEN_STRONG_INLINE Packet2d pload<Packet2d>(const double* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_pd(from); }
+template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int* from) { EIGEN_DEBUG_ALIGNED_LOAD return _mm_load_si128(reinterpret_cast<const Packet4i*>(from)); }
+
+#if defined(_MSC_VER)
+ template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) {
+ EIGEN_DEBUG_UNALIGNED_LOAD
+ #if (_MSC_VER==1600)
+ // NOTE Some version of MSVC10 generates bad code when using _mm_loadu_ps
+ // (i.e., it does not generate an unaligned load!!
+ // TODO On most architectures this version should also be faster than a single _mm_loadu_ps
+ // so we could also enable it for MSVC08 but first we have to make this later does not generate crap when doing so...
+ __m128 res = _mm_loadl_pi(_mm_set1_ps(0.0f), (const __m64*)(from));
+ res = _mm_loadh_pi(res, (const __m64*)(from+2));
+ return res;
+ #else
+ return _mm_loadu_ps(from);
+ #endif
+ }
+ template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_pd(from); }
+ template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from) { EIGEN_DEBUG_UNALIGNED_LOAD return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from)); }
+#else
+// Fast unaligned loads. Note that here we cannot directly use intrinsics: this would
+// require pointer casting to incompatible pointer types and leads to invalid code
+// because of the strict aliasing rule. The "dummy" stuff are required to enforce
+// a correct instruction dependency.
+// TODO: do the same for MSVC (ICC is compatible)
+// NOTE: with the code below, MSVC's compiler crashes!
+
+#if defined(__GNUC__) && defined(__i386__)
+ // bug 195: gcc/i386 emits weird x87 fldl/fstpl instructions for _mm_load_sd
+ #define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
+#elif defined(__clang__)
+ // bug 201: Segfaults in __mm_loadh_pd with clang 2.8
+ #define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 1
+#else
+ #define EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS 0
+#endif
+
+template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from)
+{
+ EIGEN_DEBUG_UNALIGNED_LOAD
+#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
+ return _mm_loadu_ps(from);
+#else
+ __m128d res;
+ res = _mm_load_sd((const double*)(from)) ;
+ res = _mm_loadh_pd(res, (const double*)(from+2)) ;
+ return _mm_castpd_ps(res);
+#endif
+}
+template<> EIGEN_STRONG_INLINE Packet2d ploadu<Packet2d>(const double* from)
+{
+ EIGEN_DEBUG_UNALIGNED_LOAD
+#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
+ return _mm_loadu_pd(from);
+#else
+ __m128d res;
+ res = _mm_load_sd(from) ;
+ res = _mm_loadh_pd(res,from+1);
+ return res;
+#endif
+}
+template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)
+{
+ EIGEN_DEBUG_UNALIGNED_LOAD
+#if EIGEN_AVOID_CUSTOM_UNALIGNED_LOADS
+ return _mm_loadu_si128(reinterpret_cast<const Packet4i*>(from));
+#else
+ __m128d res;
+ res = _mm_load_sd((const double*)(from)) ;
+ res = _mm_loadh_pd(res, (const double*)(from+2)) ;
+ return _mm_castpd_si128(res);
+#endif
+}
+#endif
+
+template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float* from)
+{
+ return vec4f_swizzle1(_mm_castpd_ps(_mm_load_sd(reinterpret_cast<const double*>(from))), 0, 0, 1, 1);
+}
+template<> EIGEN_STRONG_INLINE Packet2d ploaddup<Packet2d>(const double* from)
+{ return pset1<Packet2d>(from[0]); }
+template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int* from)
+{
+ Packet4i tmp;
+ tmp = _mm_loadl_epi64(reinterpret_cast<const Packet4i*>(from));
+ return vec4i_swizzle1(tmp, 0, 0, 1, 1);
+}
+
+template<> EIGEN_STRONG_INLINE void pstore<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_ps(to, from); }
+template<> EIGEN_STRONG_INLINE void pstore<double>(double* to, const Packet2d& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_pd(to, from); }
+template<> EIGEN_STRONG_INLINE void pstore<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE _mm_store_si128(reinterpret_cast<Packet4i*>(to), from); }
+
+template<> EIGEN_STRONG_INLINE void pstoreu<double>(double* to, const Packet2d& from) {
+ EIGEN_DEBUG_UNALIGNED_STORE
+ _mm_storel_pd((to), from);
+ _mm_storeh_pd((to+1), from);
+}
+template<> EIGEN_STRONG_INLINE void pstoreu<float>(float* to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castps_pd(from)); }
+template<> EIGEN_STRONG_INLINE void pstoreu<int>(int* to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE pstoreu(reinterpret_cast<double*>(to), _mm_castsi128_pd(from)); }
+
+// some compilers might be tempted to perform multiple moves instead of using a vector path.
+template<> EIGEN_STRONG_INLINE void pstore1<Packet4f>(float* to, const float& a)
+{
+ Packet4f pa = _mm_set_ss(a);
+ pstore(to, vec4f_swizzle1(pa,0,0,0,0));
+}
+// some compilers might be tempted to perform multiple moves instead of using a vector path.
+template<> EIGEN_STRONG_INLINE void pstore1<Packet2d>(double* to, const double& a)
+{
+ Packet2d pa = _mm_set_sd(a);
+ pstore(to, vec2d_swizzle1(pa,0,0));
+}
+
+template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
+template<> EIGEN_STRONG_INLINE void prefetch<double>(const double* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
+template<> EIGEN_STRONG_INLINE void prefetch<int>(const int* addr) { _mm_prefetch((const char*)(addr), _MM_HINT_T0); }
+
+#if defined(_MSC_VER) && defined(_WIN64) && !defined(__INTEL_COMPILER)
+// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
+// Direct of the struct members fixed bug #62.
+template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return a.m128_f32[0]; }
+template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return a.m128d_f64[0]; }
+template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
+#elif defined(_MSC_VER) && !defined(__INTEL_COMPILER)
+// The temporary variable fixes an internal compilation error in vs <= 2008 and a wrong-result bug in vs 2010
+template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { float x = _mm_cvtss_f32(a); return x; }
+template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { double x = _mm_cvtsd_f64(a); return x; }
+template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { int x = _mm_cvtsi128_si32(a); return x; }
+#else
+template<> EIGEN_STRONG_INLINE float pfirst<Packet4f>(const Packet4f& a) { return _mm_cvtss_f32(a); }
+template<> EIGEN_STRONG_INLINE double pfirst<Packet2d>(const Packet2d& a) { return _mm_cvtsd_f64(a); }
+template<> EIGEN_STRONG_INLINE int pfirst<Packet4i>(const Packet4i& a) { return _mm_cvtsi128_si32(a); }
+#endif
+
+template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a)
+{ return _mm_shuffle_ps(a,a,0x1B); }
+template<> EIGEN_STRONG_INLINE Packet2d preverse(const Packet2d& a)
+{ return _mm_shuffle_pd(a,a,0x1); }
+template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a)
+{ return _mm_shuffle_epi32(a,0x1B); }
+
+
+template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a)
+{
+ const Packet4f mask = _mm_castsi128_ps(_mm_setr_epi32(0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF));
+ return _mm_and_ps(a,mask);
+}
+template<> EIGEN_STRONG_INLINE Packet2d pabs(const Packet2d& a)
+{
+ const Packet2d mask = _mm_castsi128_pd(_mm_setr_epi32(0xFFFFFFFF,0x7FFFFFFF,0xFFFFFFFF,0x7FFFFFFF));
+ return _mm_and_pd(a,mask);
+}
+template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a)
+{
+ #ifdef EIGEN_VECTORIZE_SSSE3
+ return _mm_abs_epi32(a);
+ #else
+ Packet4i aux = _mm_srai_epi32(a,31);
+ return _mm_sub_epi32(_mm_xor_si128(a,aux),aux);
+ #endif
+}
+
+EIGEN_STRONG_INLINE void punpackp(Packet4f* vecs)
+{
+ vecs[1] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x55));
+ vecs[2] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xAA));
+ vecs[3] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0xFF));
+ vecs[0] = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(vecs[0]), 0x00));
+}
+
+#ifdef EIGEN_VECTORIZE_SSE3
+// TODO implement SSE2 versions as well as integer versions
+template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
+{
+ return _mm_hadd_ps(_mm_hadd_ps(vecs[0], vecs[1]),_mm_hadd_ps(vecs[2], vecs[3]));
+}
+template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
+{
+ return _mm_hadd_pd(vecs[0], vecs[1]);
+}
+// SSSE3 version:
+// EIGEN_STRONG_INLINE Packet4i preduxp(const Packet4i* vecs)
+// {
+// return _mm_hadd_epi32(_mm_hadd_epi32(vecs[0], vecs[1]),_mm_hadd_epi32(vecs[2], vecs[3]));
+// }
+
+template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
+{
+ Packet4f tmp0 = _mm_hadd_ps(a,a);
+ return pfirst(_mm_hadd_ps(tmp0, tmp0));
+}
+
+template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a) { return pfirst(_mm_hadd_pd(a, a)); }
+
+// SSSE3 version:
+// EIGEN_STRONG_INLINE float predux(const Packet4i& a)
+// {
+// Packet4i tmp0 = _mm_hadd_epi32(a,a);
+// return pfirst(_mm_hadd_epi32(tmp0, tmp0));
+// }
+#else
+// SSE2 versions
+template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
+{
+ Packet4f tmp = _mm_add_ps(a, _mm_movehl_ps(a,a));
+ return pfirst(_mm_add_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
+}
+template<> EIGEN_STRONG_INLINE double predux<Packet2d>(const Packet2d& a)
+{
+ return pfirst(_mm_add_sd(a, _mm_unpackhi_pd(a,a)));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
+{
+ Packet4f tmp0, tmp1, tmp2;
+ tmp0 = _mm_unpacklo_ps(vecs[0], vecs[1]);
+ tmp1 = _mm_unpackhi_ps(vecs[0], vecs[1]);
+ tmp2 = _mm_unpackhi_ps(vecs[2], vecs[3]);
+ tmp0 = _mm_add_ps(tmp0, tmp1);
+ tmp1 = _mm_unpacklo_ps(vecs[2], vecs[3]);
+ tmp1 = _mm_add_ps(tmp1, tmp2);
+ tmp2 = _mm_movehl_ps(tmp1, tmp0);
+ tmp0 = _mm_movelh_ps(tmp0, tmp1);
+ return _mm_add_ps(tmp0, tmp2);
+}
+
+template<> EIGEN_STRONG_INLINE Packet2d preduxp<Packet2d>(const Packet2d* vecs)
+{
+ return _mm_add_pd(_mm_unpacklo_pd(vecs[0], vecs[1]), _mm_unpackhi_pd(vecs[0], vecs[1]));
+}
+#endif // SSE3
+
+template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
+{
+ Packet4i tmp = _mm_add_epi32(a, _mm_unpackhi_epi64(a,a));
+ return pfirst(tmp) + pfirst(_mm_shuffle_epi32(tmp, 1));
+}
+
+template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
+{
+ Packet4i tmp0, tmp1, tmp2;
+ tmp0 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
+ tmp1 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
+ tmp2 = _mm_unpackhi_epi32(vecs[2], vecs[3]);
+ tmp0 = _mm_add_epi32(tmp0, tmp1);
+ tmp1 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
+ tmp1 = _mm_add_epi32(tmp1, tmp2);
+ tmp2 = _mm_unpacklo_epi64(tmp0, tmp1);
+ tmp0 = _mm_unpackhi_epi64(tmp0, tmp1);
+ return _mm_add_epi32(tmp0, tmp2);
+}
+
+// Other reduction functions:
+
+// mul
+template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
+{
+ Packet4f tmp = _mm_mul_ps(a, _mm_movehl_ps(a,a));
+ return pfirst(_mm_mul_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
+}
+template<> EIGEN_STRONG_INLINE double predux_mul<Packet2d>(const Packet2d& a)
+{
+ return pfirst(_mm_mul_sd(a, _mm_unpackhi_pd(a,a)));
+}
+template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
+{
+ // after some experiments, it is seems this is the fastest way to implement it
+ // for GCC (eg., reusing pmul is very slow !)
+ // TODO try to call _mm_mul_epu32 directly
+ EIGEN_ALIGN16 int aux[4];
+ pstore(aux, a);
+ return (aux[0] * aux[1]) * (aux[2] * aux[3]);;
+}
+
+// min
+template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
+{
+ Packet4f tmp = _mm_min_ps(a, _mm_movehl_ps(a,a));
+ return pfirst(_mm_min_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
+}
+template<> EIGEN_STRONG_INLINE double predux_min<Packet2d>(const Packet2d& a)
+{
+ return pfirst(_mm_min_sd(a, _mm_unpackhi_pd(a,a)));
+}
+template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
+{
+ // after some experiments, it is seems this is the fastest way to implement it
+ // for GCC (eg., it does not like using std::min after the pstore !!)
+ EIGEN_ALIGN16 int aux[4];
+ pstore(aux, a);
+ register int aux0 = aux[0]<aux[1] ? aux[0] : aux[1];
+ register int aux2 = aux[2]<aux[3] ? aux[2] : aux[3];
+ return aux0<aux2 ? aux0 : aux2;
+}
+
+// max
+template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
+{
+ Packet4f tmp = _mm_max_ps(a, _mm_movehl_ps(a,a));
+ return pfirst(_mm_max_ss(tmp, _mm_shuffle_ps(tmp,tmp, 1)));
+}
+template<> EIGEN_STRONG_INLINE double predux_max<Packet2d>(const Packet2d& a)
+{
+ return pfirst(_mm_max_sd(a, _mm_unpackhi_pd(a,a)));
+}
+template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
+{
+ // after some experiments, it is seems this is the fastest way to implement it
+ // for GCC (eg., it does not like using std::min after the pstore !!)
+ EIGEN_ALIGN16 int aux[4];
+ pstore(aux, a);
+ register int aux0 = aux[0]>aux[1] ? aux[0] : aux[1];
+ register int aux2 = aux[2]>aux[3] ? aux[2] : aux[3];
+ return aux0>aux2 ? aux0 : aux2;
+}
+
+#if (defined __GNUC__)
+// template <> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c)
+// {
+// Packet4f res = b;
+// asm("mulps %[a], %[b] \n\taddps %[c], %[b]" : [b] "+x" (res) : [a] "x" (a), [c] "x" (c));
+// return res;
+// }
+// EIGEN_STRONG_INLINE Packet4i _mm_alignr_epi8(const Packet4i& a, const Packet4i& b, const int i)
+// {
+// Packet4i res = a;
+// asm("palignr %[i], %[a], %[b] " : [b] "+x" (res) : [a] "x" (a), [i] "i" (i));
+// return res;
+// }
+#endif
+
+#ifdef EIGEN_VECTORIZE_SSSE3
+// SSSE3 versions
+template<int Offset>
+struct palign_impl<Offset,Packet4f>
+{
+ static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
+ {
+ if (Offset!=0)
+ first = _mm_castsi128_ps(_mm_alignr_epi8(_mm_castps_si128(second), _mm_castps_si128(first), Offset*4));
+ }
+};
+
+template<int Offset>
+struct palign_impl<Offset,Packet4i>
+{
+ static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
+ {
+ if (Offset!=0)
+ first = _mm_alignr_epi8(second,first, Offset*4);
+ }
+};
+
+template<int Offset>
+struct palign_impl<Offset,Packet2d>
+{
+ static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
+ {
+ if (Offset==1)
+ first = _mm_castsi128_pd(_mm_alignr_epi8(_mm_castpd_si128(second), _mm_castpd_si128(first), 8));
+ }
+};
+#else
+// SSE2 versions
+template<int Offset>
+struct palign_impl<Offset,Packet4f>
+{
+ static EIGEN_STRONG_INLINE void run(Packet4f& first, const Packet4f& second)
+ {
+ if (Offset==1)
+ {
+ first = _mm_move_ss(first,second);
+ first = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(first),0x39));
+ }
+ else if (Offset==2)
+ {
+ first = _mm_movehl_ps(first,first);
+ first = _mm_movelh_ps(first,second);
+ }
+ else if (Offset==3)
+ {
+ first = _mm_move_ss(first,second);
+ first = _mm_shuffle_ps(first,second,0x93);
+ }
+ }
+};
+
+template<int Offset>
+struct palign_impl<Offset,Packet4i>
+{
+ static EIGEN_STRONG_INLINE void run(Packet4i& first, const Packet4i& second)
+ {
+ if (Offset==1)
+ {
+ first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
+ first = _mm_shuffle_epi32(first,0x39);
+ }
+ else if (Offset==2)
+ {
+ first = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(first)));
+ first = _mm_castps_si128(_mm_movelh_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
+ }
+ else if (Offset==3)
+ {
+ first = _mm_castps_si128(_mm_move_ss(_mm_castsi128_ps(first),_mm_castsi128_ps(second)));
+ first = _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(first),_mm_castsi128_ps(second),0x93));
+ }
+ }
+};
+
+template<int Offset>
+struct palign_impl<Offset,Packet2d>
+{
+ static EIGEN_STRONG_INLINE void run(Packet2d& first, const Packet2d& second)
+ {
+ if (Offset==1)
+ {
+ first = _mm_castps_pd(_mm_movehl_ps(_mm_castpd_ps(first),_mm_castpd_ps(first)));
+ first = _mm_castps_pd(_mm_movelh_ps(_mm_castpd_ps(first),_mm_castpd_ps(second)));
+ }
+ }
+};
+#endif
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_PACKET_MATH_SSE_H