aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/util/IntegralConstant.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Core/util/IntegralConstant.h')
-rw-r--r--Eigen/src/Core/util/IntegralConstant.h272
1 files changed, 272 insertions, 0 deletions
diff --git a/Eigen/src/Core/util/IntegralConstant.h b/Eigen/src/Core/util/IntegralConstant.h
new file mode 100644
index 000000000..945d426ea
--- /dev/null
+++ b/Eigen/src/Core/util/IntegralConstant.h
@@ -0,0 +1,272 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2017 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#ifndef EIGEN_INTEGRAL_CONSTANT_H
+#define EIGEN_INTEGRAL_CONSTANT_H
+
+namespace Eigen {
+
+namespace internal {
+
+template<int N> class FixedInt;
+template<int N> class VariableAndFixedInt;
+
+/** \internal
+ * \class FixedInt
+ *
+ * This class embeds a compile-time integer \c N.
+ *
+ * It is similar to c++11 std::integral_constant<int,N> but with some additional features
+ * such as:
+ * - implicit conversion to int
+ * - arithmetic and some bitwise operators: -, +, *, /, %, &, |
+ * - c++98/14 compatibility with fix<N> and fix<N>() syntax to define integral constants.
+ *
+ * It is strongly discouraged to directly deal with this class FixedInt. Instances are expcected to
+ * be created by the user using Eigen::fix<N> or Eigen::fix<N>(). In C++98-11, the former syntax does
+ * not create a FixedInt<N> instance but rather a point to function that needs to be \em cleaned-up
+ * using the generic helper:
+ * \code
+ * internal::cleanup_index_type<T>::type
+ * internal::cleanup_index_type<T,DynamicKey>::type
+ * \endcode
+ * where T can a FixedInt<N>, a pointer to function FixedInt<N> (*)(), or numerous other integer-like representations.
+ * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values.
+ *
+ * For convenience, you can extract the compile-time value \c N in a generic way using the following helper:
+ * \code
+ * internal::get_fixed_value<T,DefaultVal>::value
+ * \endcode
+ * that will give you \c N if T equals FixedInt<N> or FixedInt<N> (*)(), and \c DefaultVal if T does not embed any compile-time value (e.g., T==int).
+ *
+ * \sa fix<N>, class VariableAndFixedInt
+ */
+template<int N> class FixedInt
+{
+public:
+ static const int value = N;
+ EIGEN_CONSTEXPR operator int() const { return value; }
+ FixedInt() {}
+ FixedInt( VariableAndFixedInt<N> other) {
+ #ifndef EIGEN_INTERNAL_DEBUGGING
+ EIGEN_UNUSED_VARIABLE(other);
+ #endif
+ eigen_internal_assert(int(other)==N);
+ }
+
+ FixedInt<-N> operator-() const { return FixedInt<-N>(); }
+ template<int M>
+ FixedInt<N+M> operator+( FixedInt<M>) const { return FixedInt<N+M>(); }
+ template<int M>
+ FixedInt<N-M> operator-( FixedInt<M>) const { return FixedInt<N-M>(); }
+ template<int M>
+ FixedInt<N*M> operator*( FixedInt<M>) const { return FixedInt<N*M>(); }
+ template<int M>
+ FixedInt<N/M> operator/( FixedInt<M>) const { return FixedInt<N/M>(); }
+ template<int M>
+ FixedInt<N%M> operator%( FixedInt<M>) const { return FixedInt<N%M>(); }
+ template<int M>
+ FixedInt<N|M> operator|( FixedInt<M>) const { return FixedInt<N|M>(); }
+ template<int M>
+ FixedInt<N&M> operator&( FixedInt<M>) const { return FixedInt<N&M>(); }
+
+#if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES
+ // Needed in C++14 to allow fix<N>():
+ FixedInt operator() () const { return *this; }
+
+ VariableAndFixedInt<N> operator() (int val) const { return VariableAndFixedInt<N>(val); }
+#else
+ FixedInt ( FixedInt<N> (*)() ) {}
+#endif
+
+#if EIGEN_HAS_CXX11
+ FixedInt(std::integral_constant<int,N>) {}
+#endif
+};
+
+/** \internal
+ * \class VariableAndFixedInt
+ *
+ * This class embeds both a compile-time integer \c N and a runtime integer.
+ * Both values are supposed to be equal unless the compile-time value \c N has a special
+ * value meaning that the runtime-value should be used. Depending on the context, this special
+ * value can be either Eigen::Dynamic (for positive quantities) or Eigen::DynamicIndex (for
+ * quantities that can be negative).
+ *
+ * It is the return-type of the function Eigen::fix<N>(int), and most of the time this is the only
+ * way it is used. It is strongly discouraged to directly deal with instances of VariableAndFixedInt.
+ * Indeed, in order to write generic code, it is the responsibility of the callee to properly convert
+ * it to either a true compile-time quantity (i.e. a FixedInt<N>), or to a runtime quantity (e.g., an Index)
+ * using the following generic helper:
+ * \code
+ * internal::cleanup_index_type<T>::type
+ * internal::cleanup_index_type<T,DynamicKey>::type
+ * \endcode
+ * where T can be a template instantiation of VariableAndFixedInt or numerous other integer-like representations.
+ * \c DynamicKey is either Dynamic (default) or DynamicIndex and used to identify true compile-time values.
+ *
+ * For convenience, you can also extract the compile-time value \c N using the following helper:
+ * \code
+ * internal::get_fixed_value<T,DefaultVal>::value
+ * \endcode
+ * that will give you \c N if T equals VariableAndFixedInt<N>, and \c DefaultVal if T does not embed any compile-time value (e.g., T==int).
+ *
+ * \sa fix<N>(int), class FixedInt
+ */
+template<int N> class VariableAndFixedInt
+{
+public:
+ static const int value = N;
+ operator int() const { return m_value; }
+ VariableAndFixedInt(int val) { m_value = val; }
+protected:
+ int m_value;
+};
+
+template<typename T, int Default=Dynamic> struct get_fixed_value {
+ static const int value = Default;
+};
+
+template<int N,int Default> struct get_fixed_value<FixedInt<N>,Default> {
+ static const int value = N;
+};
+
+#if !EIGEN_HAS_CXX14
+template<int N,int Default> struct get_fixed_value<FixedInt<N> (*)(),Default> {
+ static const int value = N;
+};
+#endif
+
+template<int N,int Default> struct get_fixed_value<VariableAndFixedInt<N>,Default> {
+ static const int value = N ;
+};
+
+template<typename T, int N, int Default>
+struct get_fixed_value<variable_if_dynamic<T,N>,Default> {
+ static const int value = N;
+};
+
+template<typename T> EIGEN_DEVICE_FUNC Index get_runtime_value(const T &x) { return x; }
+#if !EIGEN_HAS_CXX14
+template<int N> EIGEN_DEVICE_FUNC Index get_runtime_value(FixedInt<N> (*)()) { return N; }
+#endif
+
+// Cleanup integer/FixedInt/VariableAndFixedInt/etc types:
+
+// By default, no cleanup:
+template<typename T, int DynamicKey=Dynamic, typename EnableIf=void> struct cleanup_index_type { typedef T type; };
+
+// Convert any integral type (e.g., short, int, unsigned int, etc.) to Eigen::Index
+template<typename T, int DynamicKey> struct cleanup_index_type<T,DynamicKey,typename internal::enable_if<internal::is_integral<T>::value>::type> { typedef Index type; };
+
+#if !EIGEN_HAS_CXX14
+// In c++98/c++11, fix<N> is a pointer to function that we better cleanup to a true FixedInt<N>:
+template<int N, int DynamicKey> struct cleanup_index_type<FixedInt<N> (*)(), DynamicKey> { typedef FixedInt<N> type; };
+#endif
+
+// If VariableAndFixedInt does not match DynamicKey, then we turn it to a pure compile-time value:
+template<int N, int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<N>, DynamicKey> { typedef FixedInt<N> type; };
+// If VariableAndFixedInt matches DynamicKey, then we turn it to a pure runtime-value (aka Index):
+template<int DynamicKey> struct cleanup_index_type<VariableAndFixedInt<DynamicKey>, DynamicKey> { typedef Index type; };
+
+#if EIGEN_HAS_CXX11
+template<int N, int DynamicKey> struct cleanup_index_type<std::integral_constant<int,N>, DynamicKey> { typedef FixedInt<N> type; };
+#endif
+
+} // end namespace internal
+
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+
+#if EIGEN_HAS_CXX14_VARIABLE_TEMPLATES
+template<int N>
+static const internal::FixedInt<N> fix{};
+#else
+template<int N>
+inline internal::FixedInt<N> fix() { return internal::FixedInt<N>(); }
+
+// The generic typename T is mandatory. Otherwise, a code like fix<N> could refer to either the function above or this next overload.
+// This way a code like fix<N> can only refer to the previous function.
+template<int N,typename T>
+inline internal::VariableAndFixedInt<N> fix(T val) { return internal::VariableAndFixedInt<N>(internal::convert_index<int>(val)); }
+#endif
+
+#else // EIGEN_PARSED_BY_DOXYGEN
+
+/** \var fix<N>()
+ * \ingroup Core_Module
+ *
+ * This \em identifier permits to construct an object embedding a compile-time integer \c N.
+ *
+ * \tparam N the compile-time integer value
+ *
+ * It is typically used in conjunction with the Eigen::seq and Eigen::seqN functions to pass compile-time values to them:
+ * \code
+ * seqN(10,fix<4>,fix<-3>) // <=> [10 7 4 1]
+ * \endcode
+ *
+ * See also the function fix(int) to pass both a compile-time and runtime value.
+ *
+ * In c++14, it is implemented as:
+ * \code
+ * template<int N> static const internal::FixedInt<N> fix{};
+ * \endcode
+ * where internal::FixedInt<N> is an internal template class similar to
+ * <a href="http://en.cppreference.com/w/cpp/types/integral_constant">\c std::integral_constant </a><tt> <int,N> </tt>
+ * Here, \c fix<N> is thus an object of type \c internal::FixedInt<N>.
+ *
+ * In c++98/11, it is implemented as a function:
+ * \code
+ * template<int N> inline internal::FixedInt<N> fix();
+ * \endcode
+ * Here internal::FixedInt<N> is thus a pointer to function.
+ *
+ * If for some reason you want a true object in c++98 then you can write: \code fix<N>() \endcode which is also valid in c++14.
+ *
+ * \sa fix<N>(int), seq, seqN
+ */
+template<int N>
+static const auto fix();
+
+/** \fn fix<N>(int)
+ * \ingroup Core_Module
+ *
+ * This function returns an object embedding both a compile-time integer \c N, and a fallback runtime value \a val.
+ *
+ * \tparam N the compile-time integer value
+ * \param val the fallback runtime integer value
+ *
+ * This function is a more general version of the \ref fix identifier/function that can be used in template code
+ * where the compile-time value could turn out to actually mean "undefined at compile-time". For positive integers
+ * such as a size or a dimension, this case is identified by Eigen::Dynamic, whereas runtime signed integers
+ * (e.g., an increment/stride) are identified as Eigen::DynamicIndex. In such a case, the runtime value \a val
+ * will be used as a fallback.
+ *
+ * A typical use case would be:
+ * \code
+ * template<typename Derived> void foo(const MatrixBase<Derived> &mat) {
+ * const int N = Derived::RowsAtCompileTime==Dynamic ? Dynamic : Derived::RowsAtCompileTime/2;
+ * const int n = mat.rows()/2;
+ * ... mat( seqN(0,fix<N>(n) ) ...;
+ * }
+ * \endcode
+ * In this example, the function Eigen::seqN knows that the second argument is expected to be a size.
+ * If the passed compile-time value N equals Eigen::Dynamic, then the proxy object returned by fix will be dissmissed, and converted to an Eigen::Index of value \c n.
+ * Otherwise, the runtime-value \c n will be dissmissed, and the returned ArithmeticSequence will be of the exact same type as <tt> seqN(0,fix<N>) </tt>.
+ *
+ * \sa fix, seqN, class ArithmeticSequence
+ */
+template<int N>
+static const auto fix(int val);
+
+#endif // EIGEN_PARSED_BY_DOXYGEN
+
+} // end namespace Eigen
+
+#endif // EIGEN_INTEGRAL_CONSTANT_H