aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Eigenvalues/EigenSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/Eigenvalues/EigenSolver.h')
-rw-r--r--Eigen/src/Eigenvalues/EigenSolver.h579
1 files changed, 579 insertions, 0 deletions
diff --git a/Eigen/src/Eigenvalues/EigenSolver.h b/Eigen/src/Eigenvalues/EigenSolver.h
new file mode 100644
index 000000000..c16ff2b74
--- /dev/null
+++ b/Eigen/src/Eigenvalues/EigenSolver.h
@@ -0,0 +1,579 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EIGENSOLVER_H
+#define EIGEN_EIGENSOLVER_H
+
+#include "./RealSchur.h"
+
+namespace Eigen {
+
+/** \eigenvalues_module \ingroup Eigenvalues_Module
+ *
+ *
+ * \class EigenSolver
+ *
+ * \brief Computes eigenvalues and eigenvectors of general matrices
+ *
+ * \tparam _MatrixType the type of the matrix of which we are computing the
+ * eigendecomposition; this is expected to be an instantiation of the Matrix
+ * class template. Currently, only real matrices are supported.
+ *
+ * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
+ * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v \f$. If
+ * \f$ D \f$ is a diagonal matrix with the eigenvalues on the diagonal, and
+ * \f$ V \f$ is a matrix with the eigenvectors as its columns, then \f$ A V =
+ * V D \f$. The matrix \f$ V \f$ is almost always invertible, in which case we
+ * have \f$ A = V D V^{-1} \f$. This is called the eigendecomposition.
+ *
+ * The eigenvalues and eigenvectors of a matrix may be complex, even when the
+ * matrix is real. However, we can choose real matrices \f$ V \f$ and \f$ D
+ * \f$ satisfying \f$ A V = V D \f$, just like the eigendecomposition, if the
+ * matrix \f$ D \f$ is not required to be diagonal, but if it is allowed to
+ * have blocks of the form
+ * \f[ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f]
+ * (where \f$ u \f$ and \f$ v \f$ are real numbers) on the diagonal. These
+ * blocks correspond to complex eigenvalue pairs \f$ u \pm iv \f$. We call
+ * this variant of the eigendecomposition the pseudo-eigendecomposition.
+ *
+ * Call the function compute() to compute the eigenvalues and eigenvectors of
+ * a given matrix. Alternatively, you can use the
+ * EigenSolver(const MatrixType&, bool) constructor which computes the
+ * eigenvalues and eigenvectors at construction time. Once the eigenvalue and
+ * eigenvectors are computed, they can be retrieved with the eigenvalues() and
+ * eigenvectors() functions. The pseudoEigenvalueMatrix() and
+ * pseudoEigenvectors() methods allow the construction of the
+ * pseudo-eigendecomposition.
+ *
+ * The documentation for EigenSolver(const MatrixType&, bool) contains an
+ * example of the typical use of this class.
+ *
+ * \note The implementation is adapted from
+ * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
+ * Their code is based on EISPACK.
+ *
+ * \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
+ */
+template<typename _MatrixType> class EigenSolver
+{
+ public:
+
+ /** \brief Synonym for the template parameter \p _MatrixType. */
+ typedef _MatrixType MatrixType;
+
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ ColsAtCompileTime = MatrixType::ColsAtCompileTime,
+ Options = MatrixType::Options,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
+ };
+
+ /** \brief Scalar type for matrices of type #MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef typename MatrixType::Index Index;
+
+ /** \brief Complex scalar type for #MatrixType.
+ *
+ * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
+ * \c float or \c double) and just \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef std::complex<RealScalar> ComplexScalar;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #ComplexScalar.
+ * The length of the vector is the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
+
+ /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
+ *
+ * This is a square matrix with entries of type #ComplexScalar.
+ * The size is the same as the size of #MatrixType.
+ */
+ typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorsType;
+
+ /** \brief Default constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via EigenSolver::compute(const MatrixType&, bool).
+ *
+ * \sa compute() for an example.
+ */
+ EigenSolver() : m_eivec(), m_eivalues(), m_isInitialized(false), m_realSchur(), m_matT(), m_tmp() {}
+
+ /** \brief Default constructor with memory preallocation
+ *
+ * Like the default constructor but with preallocation of the internal data
+ * according to the specified problem \a size.
+ * \sa EigenSolver()
+ */
+ EigenSolver(Index size)
+ : m_eivec(size, size),
+ m_eivalues(size),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_realSchur(size),
+ m_matT(size, size),
+ m_tmp(size)
+ {}
+
+ /** \brief Constructor; computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ *
+ * This constructor calls compute() to compute the eigenvalues
+ * and eigenvectors.
+ *
+ * Example: \include EigenSolver_EigenSolver_MatrixType.cpp
+ * Output: \verbinclude EigenSolver_EigenSolver_MatrixType.out
+ *
+ * \sa compute()
+ */
+ EigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
+ : m_eivec(matrix.rows(), matrix.cols()),
+ m_eivalues(matrix.cols()),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_realSchur(matrix.cols()),
+ m_matT(matrix.rows(), matrix.cols()),
+ m_tmp(matrix.cols())
+ {
+ compute(matrix, computeEigenvectors);
+ }
+
+ /** \brief Returns the eigenvectors of given matrix.
+ *
+ * \returns %Matrix whose columns are the (possibly complex) eigenvectors.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before, and
+ * \p computeEigenvectors was set to true (the default).
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. The
+ * matrix returned by this function is the matrix \f$ V \f$ in the
+ * eigendecomposition \f$ A = V D V^{-1} \f$, if it exists.
+ *
+ * Example: \include EigenSolver_eigenvectors.cpp
+ * Output: \verbinclude EigenSolver_eigenvectors.out
+ *
+ * \sa eigenvalues(), pseudoEigenvectors()
+ */
+ EigenvectorsType eigenvectors() const;
+
+ /** \brief Returns the pseudo-eigenvectors of given matrix.
+ *
+ * \returns Const reference to matrix whose columns are the pseudo-eigenvectors.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before, and
+ * \p computeEigenvectors was set to true (the default).
+ *
+ * The real matrix \f$ V \f$ returned by this function and the
+ * block-diagonal matrix \f$ D \f$ returned by pseudoEigenvalueMatrix()
+ * satisfy \f$ AV = VD \f$.
+ *
+ * Example: \include EigenSolver_pseudoEigenvectors.cpp
+ * Output: \verbinclude EigenSolver_pseudoEigenvectors.out
+ *
+ * \sa pseudoEigenvalueMatrix(), eigenvectors()
+ */
+ const MatrixType& pseudoEigenvectors() const
+ {
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec;
+ }
+
+ /** \brief Returns the block-diagonal matrix in the pseudo-eigendecomposition.
+ *
+ * \returns A block-diagonal matrix.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before.
+ *
+ * The matrix \f$ D \f$ returned by this function is real and
+ * block-diagonal. The blocks on the diagonal are either 1-by-1 or 2-by-2
+ * blocks of the form
+ * \f$ \begin{bmatrix} u & v \\ -v & u \end{bmatrix} \f$.
+ * These blocks are not sorted in any particular order.
+ * The matrix \f$ D \f$ and the matrix \f$ V \f$ returned by
+ * pseudoEigenvectors() satisfy \f$ AV = VD \f$.
+ *
+ * \sa pseudoEigenvectors() for an example, eigenvalues()
+ */
+ MatrixType pseudoEigenvalueMatrix() const;
+
+ /** \brief Returns the eigenvalues of given matrix.
+ *
+ * \returns A const reference to the column vector containing the eigenvalues.
+ *
+ * \pre Either the constructor
+ * EigenSolver(const MatrixType&,bool) or the member function
+ * compute(const MatrixType&, bool) has been called before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are not sorted in any particular order.
+ *
+ * Example: \include EigenSolver_eigenvalues.cpp
+ * Output: \verbinclude EigenSolver_eigenvalues.out
+ *
+ * \sa eigenvectors(), pseudoEigenvalueMatrix(),
+ * MatrixBase::eigenvalues()
+ */
+ const EigenvalueType& eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes eigendecomposition of given matrix.
+ *
+ * \param[in] matrix Square matrix whose eigendecomposition is to be computed.
+ * \param[in] computeEigenvectors If true, both the eigenvectors and the
+ * eigenvalues are computed; if false, only the eigenvalues are
+ * computed.
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of the real matrix \p matrix.
+ * The eigenvalues() function can be used to retrieve them. If
+ * \p computeEigenvectors is true, then the eigenvectors are also computed
+ * and can be retrieved by calling eigenvectors().
+ *
+ * The matrix is first reduced to real Schur form using the RealSchur
+ * class. The Schur decomposition is then used to compute the eigenvalues
+ * and eigenvectors.
+ *
+ * The cost of the computation is dominated by the cost of the
+ * Schur decomposition, which is very approximately \f$ 25n^3 \f$
+ * (where \f$ n \f$ is the size of the matrix) if \p computeEigenvectors
+ * is true, and \f$ 10n^3 \f$ if \p computeEigenvectors is false.
+ *
+ * This method reuses of the allocated data in the EigenSolver object.
+ *
+ * Example: \include EigenSolver_compute.cpp
+ * Output: \verbinclude EigenSolver_compute.out
+ */
+ EigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
+
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ return m_realSchur.info();
+ }
+
+ private:
+ void doComputeEigenvectors();
+
+ protected:
+ MatrixType m_eivec;
+ EigenvalueType m_eivalues;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+ RealSchur<MatrixType> m_realSchur;
+ MatrixType m_matT;
+
+ typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
+ ColumnVectorType m_tmp;
+};
+
+template<typename MatrixType>
+MatrixType EigenSolver<MatrixType>::pseudoEigenvalueMatrix() const
+{
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ Index n = m_eivalues.rows();
+ MatrixType matD = MatrixType::Zero(n,n);
+ for (Index i=0; i<n; ++i)
+ {
+ if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i))))
+ matD.coeffRef(i,i) = internal::real(m_eivalues.coeff(i));
+ else
+ {
+ matD.template block<2,2>(i,i) << internal::real(m_eivalues.coeff(i)), internal::imag(m_eivalues.coeff(i)),
+ -internal::imag(m_eivalues.coeff(i)), internal::real(m_eivalues.coeff(i));
+ ++i;
+ }
+ }
+ return matD;
+}
+
+template<typename MatrixType>
+typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eigenvectors() const
+{
+ eigen_assert(m_isInitialized && "EigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ Index n = m_eivec.cols();
+ EigenvectorsType matV(n,n);
+ for (Index j=0; j<n; ++j)
+ {
+ if (internal::isMuchSmallerThan(internal::imag(m_eivalues.coeff(j)), internal::real(m_eivalues.coeff(j))) || j+1==n)
+ {
+ // we have a real eigen value
+ matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
+ matV.col(j).normalize();
+ }
+ else
+ {
+ // we have a pair of complex eigen values
+ for (Index i=0; i<n; ++i)
+ {
+ matV.coeffRef(i,j) = ComplexScalar(m_eivec.coeff(i,j), m_eivec.coeff(i,j+1));
+ matV.coeffRef(i,j+1) = ComplexScalar(m_eivec.coeff(i,j), -m_eivec.coeff(i,j+1));
+ }
+ matV.col(j).normalize();
+ matV.col(j+1).normalize();
+ ++j;
+ }
+ }
+ return matV;
+}
+
+template<typename MatrixType>
+EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
+{
+ assert(matrix.cols() == matrix.rows());
+
+ // Reduce to real Schur form.
+ m_realSchur.compute(matrix, computeEigenvectors);
+ if (m_realSchur.info() == Success)
+ {
+ m_matT = m_realSchur.matrixT();
+ if (computeEigenvectors)
+ m_eivec = m_realSchur.matrixU();
+
+ // Compute eigenvalues from matT
+ m_eivalues.resize(matrix.cols());
+ Index i = 0;
+ while (i < matrix.cols())
+ {
+ if (i == matrix.cols() - 1 || m_matT.coeff(i+1, i) == Scalar(0))
+ {
+ m_eivalues.coeffRef(i) = m_matT.coeff(i, i);
+ ++i;
+ }
+ else
+ {
+ Scalar p = Scalar(0.5) * (m_matT.coeff(i, i) - m_matT.coeff(i+1, i+1));
+ Scalar z = internal::sqrt(internal::abs(p * p + m_matT.coeff(i+1, i) * m_matT.coeff(i, i+1)));
+ m_eivalues.coeffRef(i) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, z);
+ m_eivalues.coeffRef(i+1) = ComplexScalar(m_matT.coeff(i+1, i+1) + p, -z);
+ i += 2;
+ }
+ }
+
+ // Compute eigenvectors.
+ if (computeEigenvectors)
+ doComputeEigenvectors();
+ }
+
+ m_isInitialized = true;
+ m_eigenvectorsOk = computeEigenvectors;
+
+ return *this;
+}
+
+// Complex scalar division.
+template<typename Scalar>
+std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
+{
+ Scalar r,d;
+ if (internal::abs(yr) > internal::abs(yi))
+ {
+ r = yi/yr;
+ d = yr + r*yi;
+ return std::complex<Scalar>((xr + r*xi)/d, (xi - r*xr)/d);
+ }
+ else
+ {
+ r = yr/yi;
+ d = yi + r*yr;
+ return std::complex<Scalar>((r*xr + xi)/d, (r*xi - xr)/d);
+ }
+}
+
+
+template<typename MatrixType>
+void EigenSolver<MatrixType>::doComputeEigenvectors()
+{
+ const Index size = m_eivec.cols();
+ const Scalar eps = NumTraits<Scalar>::epsilon();
+
+ // inefficient! this is already computed in RealSchur
+ Scalar norm(0);
+ for (Index j = 0; j < size; ++j)
+ {
+ norm += m_matT.row(j).segment((std::max)(j-1,Index(0)), size-(std::max)(j-1,Index(0))).cwiseAbs().sum();
+ }
+
+ // Backsubstitute to find vectors of upper triangular form
+ if (norm == 0.0)
+ {
+ return;
+ }
+
+ for (Index n = size-1; n >= 0; n--)
+ {
+ Scalar p = m_eivalues.coeff(n).real();
+ Scalar q = m_eivalues.coeff(n).imag();
+
+ // Scalar vector
+ if (q == Scalar(0))
+ {
+ Scalar lastr(0), lastw(0);
+ Index l = n;
+
+ m_matT.coeffRef(n,n) = 1.0;
+ for (Index i = n-1; i >= 0; i--)
+ {
+ Scalar w = m_matT.coeff(i,i) - p;
+ Scalar r = m_matT.row(i).segment(l,n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
+
+ if (m_eivalues.coeff(i).imag() < 0.0)
+ {
+ lastw = w;
+ lastr = r;
+ }
+ else
+ {
+ l = i;
+ if (m_eivalues.coeff(i).imag() == 0.0)
+ {
+ if (w != 0.0)
+ m_matT.coeffRef(i,n) = -r / w;
+ else
+ m_matT.coeffRef(i,n) = -r / (eps * norm);
+ }
+ else // Solve real equations
+ {
+ Scalar x = m_matT.coeff(i,i+1);
+ Scalar y = m_matT.coeff(i+1,i);
+ Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
+ Scalar t = (x * lastr - lastw * r) / denom;
+ m_matT.coeffRef(i,n) = t;
+ if (internal::abs(x) > internal::abs(lastw))
+ m_matT.coeffRef(i+1,n) = (-r - w * t) / x;
+ else
+ m_matT.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
+ }
+
+ // Overflow control
+ Scalar t = internal::abs(m_matT.coeff(i,n));
+ if ((eps * t) * t > Scalar(1))
+ m_matT.col(n).tail(size-i) /= t;
+ }
+ }
+ }
+ else if (q < Scalar(0) && n > 0) // Complex vector
+ {
+ Scalar lastra(0), lastsa(0), lastw(0);
+ Index l = n-1;
+
+ // Last vector component imaginary so matrix is triangular
+ if (internal::abs(m_matT.coeff(n,n-1)) > internal::abs(m_matT.coeff(n-1,n)))
+ {
+ m_matT.coeffRef(n-1,n-1) = q / m_matT.coeff(n,n-1);
+ m_matT.coeffRef(n-1,n) = -(m_matT.coeff(n,n) - p) / m_matT.coeff(n,n-1);
+ }
+ else
+ {
+ std::complex<Scalar> cc = cdiv<Scalar>(0.0,-m_matT.coeff(n-1,n),m_matT.coeff(n-1,n-1)-p,q);
+ m_matT.coeffRef(n-1,n-1) = internal::real(cc);
+ m_matT.coeffRef(n-1,n) = internal::imag(cc);
+ }
+ m_matT.coeffRef(n,n-1) = 0.0;
+ m_matT.coeffRef(n,n) = 1.0;
+ for (Index i = n-2; i >= 0; i--)
+ {
+ Scalar ra = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n-1).segment(l, n-l+1));
+ Scalar sa = m_matT.row(i).segment(l, n-l+1).dot(m_matT.col(n).segment(l, n-l+1));
+ Scalar w = m_matT.coeff(i,i) - p;
+
+ if (m_eivalues.coeff(i).imag() < 0.0)
+ {
+ lastw = w;
+ lastra = ra;
+ lastsa = sa;
+ }
+ else
+ {
+ l = i;
+ if (m_eivalues.coeff(i).imag() == RealScalar(0))
+ {
+ std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
+ m_matT.coeffRef(i,n-1) = internal::real(cc);
+ m_matT.coeffRef(i,n) = internal::imag(cc);
+ }
+ else
+ {
+ // Solve complex equations
+ Scalar x = m_matT.coeff(i,i+1);
+ Scalar y = m_matT.coeff(i+1,i);
+ Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
+ Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
+ if ((vr == 0.0) && (vi == 0.0))
+ vr = eps * norm * (internal::abs(w) + internal::abs(q) + internal::abs(x) + internal::abs(y) + internal::abs(lastw));
+
+ std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
+ m_matT.coeffRef(i,n-1) = internal::real(cc);
+ m_matT.coeffRef(i,n) = internal::imag(cc);
+ if (internal::abs(x) > (internal::abs(lastw) + internal::abs(q)))
+ {
+ m_matT.coeffRef(i+1,n-1) = (-ra - w * m_matT.coeff(i,n-1) + q * m_matT.coeff(i,n)) / x;
+ m_matT.coeffRef(i+1,n) = (-sa - w * m_matT.coeff(i,n) - q * m_matT.coeff(i,n-1)) / x;
+ }
+ else
+ {
+ cc = cdiv(-lastra-y*m_matT.coeff(i,n-1),-lastsa-y*m_matT.coeff(i,n),lastw,q);
+ m_matT.coeffRef(i+1,n-1) = internal::real(cc);
+ m_matT.coeffRef(i+1,n) = internal::imag(cc);
+ }
+ }
+
+ // Overflow control
+ using std::max;
+ Scalar t = (max)(internal::abs(m_matT.coeff(i,n-1)),internal::abs(m_matT.coeff(i,n)));
+ if ((eps * t) * t > Scalar(1))
+ m_matT.block(i, n-1, size-i, 2) /= t;
+
+ }
+ }
+
+ // We handled a pair of complex conjugate eigenvalues, so need to skip them both
+ n--;
+ }
+ else
+ {
+ eigen_assert(0 && "Internal bug in EigenSolver"); // this should not happen
+ }
+ }
+
+ // Back transformation to get eigenvectors of original matrix
+ for (Index j = size-1; j >= 0; j--)
+ {
+ m_tmp.noalias() = m_eivec.leftCols(j+1) * m_matT.col(j).segment(0, j+1);
+ m_eivec.col(j) = m_tmp;
+ }
+}
+
+} // end namespace Eigen
+
+#endif // EIGEN_EIGENSOLVER_H