aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/SparseQR/SparseQR.h
diff options
context:
space:
mode:
Diffstat (limited to 'Eigen/src/SparseQR/SparseQR.h')
-rw-r--r--Eigen/src/SparseQR/SparseQR.h51
1 files changed, 35 insertions, 16 deletions
diff --git a/Eigen/src/SparseQR/SparseQR.h b/Eigen/src/SparseQR/SparseQR.h
index 2d4498b03..d1fb96f5c 100644
--- a/Eigen/src/SparseQR/SparseQR.h
+++ b/Eigen/src/SparseQR/SparseQR.h
@@ -41,18 +41,19 @@ namespace internal {
/**
* \ingroup SparseQR_Module
* \class SparseQR
- * \brief Sparse left-looking rank-revealing QR factorization
+ * \brief Sparse left-looking QR factorization with numerical column pivoting
*
- * This class implements a left-looking rank-revealing QR decomposition
- * of sparse matrices. When a column has a norm less than a given tolerance
+ * This class implements a left-looking QR decomposition of sparse matrices
+ * with numerical column pivoting.
+ * When a column has a norm less than a given tolerance
* it is implicitly permuted to the end. The QR factorization thus obtained is
* given by A*P = Q*R where R is upper triangular or trapezoidal.
*
* P is the column permutation which is the product of the fill-reducing and the
- * rank-revealing permutations. Use colsPermutation() to get it.
+ * numerical permutations. Use colsPermutation() to get it.
*
* Q is the orthogonal matrix represented as products of Householder reflectors.
- * Use matrixQ() to get an expression and matrixQ().transpose() to get the transpose.
+ * Use matrixQ() to get an expression and matrixQ().adjoint() to get the adjoint.
* You can then apply it to a vector.
*
* R is the sparse triangular or trapezoidal matrix. The later occurs when A is rank-deficient.
@@ -64,7 +65,19 @@ namespace internal {
*
* \implsparsesolverconcept
*
+ * The numerical pivoting strategy and default threshold are the same as in SuiteSparse QR, and
+ * detailed in the following paper:
+ * <i>
+ * Tim Davis, "Algorithm 915, SuiteSparseQR: Multifrontal Multithreaded Rank-Revealing
+ * Sparse QR Factorization, ACM Trans. on Math. Soft. 38(1), 2011.
+ * </i>
+ * Even though it is qualified as "rank-revealing", this strategy might fail for some
+ * rank deficient problems. When this class is used to solve linear or least-square problems
+ * it is thus strongly recommended to check the accuracy of the computed solution. If it
+ * failed, it usually helps to increase the threshold with setPivotThreshold.
+ *
* \warning The input sparse matrix A must be in compressed mode (see SparseMatrix::makeCompressed()).
+ * \warning For complex matrices matrixQ().transpose() will actually return the adjoint matrix.
*
*/
template<typename _MatrixType, typename _OrderingType>
@@ -196,9 +209,9 @@ class SparseQR : public SparseSolverBase<SparseQR<_MatrixType,_OrderingType> >
Index rank = this->rank();
- // Compute Q^T * b;
+ // Compute Q^* * b;
typename Dest::PlainObject y, b;
- y = this->matrixQ().transpose() * B;
+ y = this->matrixQ().adjoint() * B;
b = y;
// Solve with the triangular matrix R
@@ -330,7 +343,7 @@ void SparseQR<MatrixType,OrderingType>::analyzePattern(const MatrixType& mat)
m_R.resize(m, n);
m_Q.resize(m, diagSize);
- // Allocate space for nonzero elements : rough estimation
+ // Allocate space for nonzero elements: rough estimation
m_R.reserve(2*mat.nonZeros()); //FIXME Get a more accurate estimation through symbolic factorization with the etree
m_Q.reserve(2*mat.nonZeros());
m_hcoeffs.resize(diagSize);
@@ -604,7 +617,7 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
// Get the references
SparseQR_QProduct(const SparseQRType& qr, const Derived& other, bool transpose) :
m_qr(qr),m_other(other),m_transpose(transpose) {}
- inline Index rows() const { return m_transpose ? m_qr.rows() : m_qr.cols(); }
+ inline Index rows() const { return m_qr.matrixQ().rows(); }
inline Index cols() const { return m_other.cols(); }
// Assign to a vector
@@ -632,16 +645,20 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
}
else
{
- eigen_assert(m_qr.m_Q.rows() == m_other.rows() && "Non conforming object sizes");
+ eigen_assert(m_qr.matrixQ().cols() == m_other.rows() && "Non conforming object sizes");
+
+ res.conservativeResize(rows(), cols());
+
// Compute res = Q * other column by column
for(Index j = 0; j < res.cols(); j++)
{
- for (Index k = diagSize-1; k >=0; k--)
+ Index start_k = internal::is_identity<Derived>::value ? numext::mini(j,diagSize-1) : diagSize-1;
+ for (Index k = start_k; k >=0; k--)
{
Scalar tau = Scalar(0);
tau = m_qr.m_Q.col(k).dot(res.col(j));
if(tau==Scalar(0)) continue;
- tau = tau * m_qr.m_hcoeffs(k);
+ tau = tau * numext::conj(m_qr.m_hcoeffs(k));
res.col(j) -= tau * m_qr.m_Q.col(k);
}
}
@@ -650,7 +667,7 @@ struct SparseQR_QProduct : ReturnByValue<SparseQR_QProduct<SparseQRType, Derived
const SparseQRType& m_qr;
const Derived& m_other;
- bool m_transpose;
+ bool m_transpose; // TODO this actually means adjoint
};
template<typename SparseQRType>
@@ -668,13 +685,14 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
{
return SparseQR_QProduct<SparseQRType,Derived>(m_qr,other.derived(),false);
}
+ // To use for operations with the adjoint of Q
SparseQRMatrixQTransposeReturnType<SparseQRType> adjoint() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
}
inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return (std::min)(m_qr.rows(),m_qr.cols()); }
- // To use for operations with the transpose of Q
+ inline Index cols() const { return m_qr.rows(); }
+ // To use for operations with the transpose of Q FIXME this is the same as adjoint at the moment
SparseQRMatrixQTransposeReturnType<SparseQRType> transpose() const
{
return SparseQRMatrixQTransposeReturnType<SparseQRType>(m_qr);
@@ -682,6 +700,7 @@ struct SparseQRMatrixQReturnType : public EigenBase<SparseQRMatrixQReturnType<Sp
const SparseQRType& m_qr;
};
+// TODO this actually represents the adjoint of Q
template<typename SparseQRType>
struct SparseQRMatrixQTransposeReturnType
{
@@ -712,7 +731,7 @@ struct Assignment<DstXprType, SparseQRMatrixQReturnType<SparseQRType>, internal:
typedef typename DstXprType::StorageIndex StorageIndex;
static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &/*func*/)
{
- typename DstXprType::PlainObject idMat(src.m_qr.rows(), src.m_qr.rows());
+ typename DstXprType::PlainObject idMat(src.rows(), src.cols());
idMat.setIdentity();
// Sort the sparse householder reflectors if needed
const_cast<SparseQRType *>(&src.m_qr)->_sort_matrix_Q();