aboutsummaryrefslogtreecommitdiff
path: root/blas/dtpmv.f
diff options
context:
space:
mode:
Diffstat (limited to 'blas/dtpmv.f')
-rw-r--r--blas/dtpmv.f293
1 files changed, 293 insertions, 0 deletions
diff --git a/blas/dtpmv.f b/blas/dtpmv.f
new file mode 100644
index 000000000..c5bc112dc
--- /dev/null
+++ b/blas/dtpmv.f
@@ -0,0 +1,293 @@
+ SUBROUTINE DTPMV(UPLO,TRANS,DIAG,N,AP,X,INCX)
+* .. Scalar Arguments ..
+ INTEGER INCX,N
+ CHARACTER DIAG,TRANS,UPLO
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION AP(*),X(*)
+* ..
+*
+* Purpose
+* =======
+*
+* DTPMV performs one of the matrix-vector operations
+*
+* x := A*x, or x := A'*x,
+*
+* where x is an n element vector and A is an n by n unit, or non-unit,
+* upper or lower triangular matrix, supplied in packed form.
+*
+* Arguments
+* ==========
+*
+* UPLO - CHARACTER*1.
+* On entry, UPLO specifies whether the matrix is an upper or
+* lower triangular matrix as follows:
+*
+* UPLO = 'U' or 'u' A is an upper triangular matrix.
+*
+* UPLO = 'L' or 'l' A is a lower triangular matrix.
+*
+* Unchanged on exit.
+*
+* TRANS - CHARACTER*1.
+* On entry, TRANS specifies the operation to be performed as
+* follows:
+*
+* TRANS = 'N' or 'n' x := A*x.
+*
+* TRANS = 'T' or 't' x := A'*x.
+*
+* TRANS = 'C' or 'c' x := A'*x.
+*
+* Unchanged on exit.
+*
+* DIAG - CHARACTER*1.
+* On entry, DIAG specifies whether or not A is unit
+* triangular as follows:
+*
+* DIAG = 'U' or 'u' A is assumed to be unit triangular.
+*
+* DIAG = 'N' or 'n' A is not assumed to be unit
+* triangular.
+*
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the order of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* AP - DOUBLE PRECISION array of DIMENSION at least
+* ( ( n*( n + 1 ) )/2 ).
+* Before entry with UPLO = 'U' or 'u', the array AP must
+* contain the upper triangular matrix packed sequentially,
+* column by column, so that AP( 1 ) contains a( 1, 1 ),
+* AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
+* respectively, and so on.
+* Before entry with UPLO = 'L' or 'l', the array AP must
+* contain the lower triangular matrix packed sequentially,
+* column by column, so that AP( 1 ) contains a( 1, 1 ),
+* AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
+* respectively, and so on.
+* Note that when DIAG = 'U' or 'u', the diagonal elements of
+* A are not referenced, but are assumed to be unity.
+* Unchanged on exit.
+*
+* X - DOUBLE PRECISION array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCX ) ).
+* Before entry, the incremented array X must contain the n
+* element vector x. On exit, X is overwritten with the
+* tranformed vector x.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* Further Details
+* ===============
+*
+* Level 2 Blas routine.
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO
+ PARAMETER (ZERO=0.0D+0)
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION TEMP
+ INTEGER I,INFO,IX,J,JX,K,KK,KX
+ LOGICAL NOUNIT
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
+ INFO = 1
+ ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ + .NOT.LSAME(TRANS,'C')) THEN
+ INFO = 2
+ ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
+ INFO = 3
+ ELSE IF (N.LT.0) THEN
+ INFO = 4
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 7
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('DTPMV ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF (N.EQ.0) RETURN
+*
+ NOUNIT = LSAME(DIAG,'N')
+*
+* Set up the start point in X if the increment is not unity. This
+* will be ( N - 1 )*INCX too small for descending loops.
+*
+ IF (INCX.LE.0) THEN
+ KX = 1 - (N-1)*INCX
+ ELSE IF (INCX.NE.1) THEN
+ KX = 1
+ END IF
+*
+* Start the operations. In this version the elements of AP are
+* accessed sequentially with one pass through AP.
+*
+ IF (LSAME(TRANS,'N')) THEN
+*
+* Form x:= A*x.
+*
+ IF (LSAME(UPLO,'U')) THEN
+ KK = 1
+ IF (INCX.EQ.1) THEN
+ DO 20 J = 1,N
+ IF (X(J).NE.ZERO) THEN
+ TEMP = X(J)
+ K = KK
+ DO 10 I = 1,J - 1
+ X(I) = X(I) + TEMP*AP(K)
+ K = K + 1
+ 10 CONTINUE
+ IF (NOUNIT) X(J) = X(J)*AP(KK+J-1)
+ END IF
+ KK = KK + J
+ 20 CONTINUE
+ ELSE
+ JX = KX
+ DO 40 J = 1,N
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = X(JX)
+ IX = KX
+ DO 30 K = KK,KK + J - 2
+ X(IX) = X(IX) + TEMP*AP(K)
+ IX = IX + INCX
+ 30 CONTINUE
+ IF (NOUNIT) X(JX) = X(JX)*AP(KK+J-1)
+ END IF
+ JX = JX + INCX
+ KK = KK + J
+ 40 CONTINUE
+ END IF
+ ELSE
+ KK = (N* (N+1))/2
+ IF (INCX.EQ.1) THEN
+ DO 60 J = N,1,-1
+ IF (X(J).NE.ZERO) THEN
+ TEMP = X(J)
+ K = KK
+ DO 50 I = N,J + 1,-1
+ X(I) = X(I) + TEMP*AP(K)
+ K = K - 1
+ 50 CONTINUE
+ IF (NOUNIT) X(J) = X(J)*AP(KK-N+J)
+ END IF
+ KK = KK - (N-J+1)
+ 60 CONTINUE
+ ELSE
+ KX = KX + (N-1)*INCX
+ JX = KX
+ DO 80 J = N,1,-1
+ IF (X(JX).NE.ZERO) THEN
+ TEMP = X(JX)
+ IX = KX
+ DO 70 K = KK,KK - (N- (J+1)),-1
+ X(IX) = X(IX) + TEMP*AP(K)
+ IX = IX - INCX
+ 70 CONTINUE
+ IF (NOUNIT) X(JX) = X(JX)*AP(KK-N+J)
+ END IF
+ JX = JX - INCX
+ KK = KK - (N-J+1)
+ 80 CONTINUE
+ END IF
+ END IF
+ ELSE
+*
+* Form x := A'*x.
+*
+ IF (LSAME(UPLO,'U')) THEN
+ KK = (N* (N+1))/2
+ IF (INCX.EQ.1) THEN
+ DO 100 J = N,1,-1
+ TEMP = X(J)
+ IF (NOUNIT) TEMP = TEMP*AP(KK)
+ K = KK - 1
+ DO 90 I = J - 1,1,-1
+ TEMP = TEMP + AP(K)*X(I)
+ K = K - 1
+ 90 CONTINUE
+ X(J) = TEMP
+ KK = KK - J
+ 100 CONTINUE
+ ELSE
+ JX = KX + (N-1)*INCX
+ DO 120 J = N,1,-1
+ TEMP = X(JX)
+ IX = JX
+ IF (NOUNIT) TEMP = TEMP*AP(KK)
+ DO 110 K = KK - 1,KK - J + 1,-1
+ IX = IX - INCX
+ TEMP = TEMP + AP(K)*X(IX)
+ 110 CONTINUE
+ X(JX) = TEMP
+ JX = JX - INCX
+ KK = KK - J
+ 120 CONTINUE
+ END IF
+ ELSE
+ KK = 1
+ IF (INCX.EQ.1) THEN
+ DO 140 J = 1,N
+ TEMP = X(J)
+ IF (NOUNIT) TEMP = TEMP*AP(KK)
+ K = KK + 1
+ DO 130 I = J + 1,N
+ TEMP = TEMP + AP(K)*X(I)
+ K = K + 1
+ 130 CONTINUE
+ X(J) = TEMP
+ KK = KK + (N-J+1)
+ 140 CONTINUE
+ ELSE
+ JX = KX
+ DO 160 J = 1,N
+ TEMP = X(JX)
+ IX = JX
+ IF (NOUNIT) TEMP = TEMP*AP(KK)
+ DO 150 K = KK + 1,KK + N - J
+ IX = IX + INCX
+ TEMP = TEMP + AP(K)*X(IX)
+ 150 CONTINUE
+ X(JX) = TEMP
+ JX = JX + INCX
+ KK = KK + (N-J+1)
+ 160 CONTINUE
+ END IF
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of DTPMV .
+*
+ END