aboutsummaryrefslogtreecommitdiff
path: root/blas/zhpr2.f
diff options
context:
space:
mode:
Diffstat (limited to 'blas/zhpr2.f')
-rw-r--r--blas/zhpr2.f255
1 files changed, 255 insertions, 0 deletions
diff --git a/blas/zhpr2.f b/blas/zhpr2.f
new file mode 100644
index 000000000..99977462e
--- /dev/null
+++ b/blas/zhpr2.f
@@ -0,0 +1,255 @@
+ SUBROUTINE ZHPR2(UPLO,N,ALPHA,X,INCX,Y,INCY,AP)
+* .. Scalar Arguments ..
+ DOUBLE COMPLEX ALPHA
+ INTEGER INCX,INCY,N
+ CHARACTER UPLO
+* ..
+* .. Array Arguments ..
+ DOUBLE COMPLEX AP(*),X(*),Y(*)
+* ..
+*
+* Purpose
+* =======
+*
+* ZHPR2 performs the hermitian rank 2 operation
+*
+* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
+*
+* where alpha is a scalar, x and y are n element vectors and A is an
+* n by n hermitian matrix, supplied in packed form.
+*
+* Arguments
+* ==========
+*
+* UPLO - CHARACTER*1.
+* On entry, UPLO specifies whether the upper or lower
+* triangular part of the matrix A is supplied in the packed
+* array AP as follows:
+*
+* UPLO = 'U' or 'u' The upper triangular part of A is
+* supplied in AP.
+*
+* UPLO = 'L' or 'l' The lower triangular part of A is
+* supplied in AP.
+*
+* Unchanged on exit.
+*
+* N - INTEGER.
+* On entry, N specifies the order of the matrix A.
+* N must be at least zero.
+* Unchanged on exit.
+*
+* ALPHA - COMPLEX*16 .
+* On entry, ALPHA specifies the scalar alpha.
+* Unchanged on exit.
+*
+* X - COMPLEX*16 array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCX ) ).
+* Before entry, the incremented array X must contain the n
+* element vector x.
+* Unchanged on exit.
+*
+* INCX - INTEGER.
+* On entry, INCX specifies the increment for the elements of
+* X. INCX must not be zero.
+* Unchanged on exit.
+*
+* Y - COMPLEX*16 array of dimension at least
+* ( 1 + ( n - 1 )*abs( INCY ) ).
+* Before entry, the incremented array Y must contain the n
+* element vector y.
+* Unchanged on exit.
+*
+* INCY - INTEGER.
+* On entry, INCY specifies the increment for the elements of
+* Y. INCY must not be zero.
+* Unchanged on exit.
+*
+* AP - COMPLEX*16 array of DIMENSION at least
+* ( ( n*( n + 1 ) )/2 ).
+* Before entry with UPLO = 'U' or 'u', the array AP must
+* contain the upper triangular part of the hermitian matrix
+* packed sequentially, column by column, so that AP( 1 )
+* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
+* and a( 2, 2 ) respectively, and so on. On exit, the array
+* AP is overwritten by the upper triangular part of the
+* updated matrix.
+* Before entry with UPLO = 'L' or 'l', the array AP must
+* contain the lower triangular part of the hermitian matrix
+* packed sequentially, column by column, so that AP( 1 )
+* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
+* and a( 3, 1 ) respectively, and so on. On exit, the array
+* AP is overwritten by the lower triangular part of the
+* updated matrix.
+* Note that the imaginary parts of the diagonal elements need
+* not be set, they are assumed to be zero, and on exit they
+* are set to zero.
+*
+* Further Details
+* ===============
+*
+* Level 2 Blas routine.
+*
+* -- Written on 22-October-1986.
+* Jack Dongarra, Argonne National Lab.
+* Jeremy Du Croz, Nag Central Office.
+* Sven Hammarling, Nag Central Office.
+* Richard Hanson, Sandia National Labs.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE COMPLEX ZERO
+ PARAMETER (ZERO= (0.0D+0,0.0D+0))
+* ..
+* .. Local Scalars ..
+ DOUBLE COMPLEX TEMP1,TEMP2
+ INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
+* ..
+* .. External Functions ..
+ LOGICAL LSAME
+ EXTERNAL LSAME
+* ..
+* .. External Subroutines ..
+ EXTERNAL XERBLA
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC DBLE,DCONJG
+* ..
+*
+* Test the input parameters.
+*
+ INFO = 0
+ IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
+ INFO = 1
+ ELSE IF (N.LT.0) THEN
+ INFO = 2
+ ELSE IF (INCX.EQ.0) THEN
+ INFO = 5
+ ELSE IF (INCY.EQ.0) THEN
+ INFO = 7
+ END IF
+ IF (INFO.NE.0) THEN
+ CALL XERBLA('ZHPR2 ',INFO)
+ RETURN
+ END IF
+*
+* Quick return if possible.
+*
+ IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
+*
+* Set up the start points in X and Y if the increments are not both
+* unity.
+*
+ IF ((INCX.NE.1) .OR. (INCY.NE.1)) THEN
+ IF (INCX.GT.0) THEN
+ KX = 1
+ ELSE
+ KX = 1 - (N-1)*INCX
+ END IF
+ IF (INCY.GT.0) THEN
+ KY = 1
+ ELSE
+ KY = 1 - (N-1)*INCY
+ END IF
+ JX = KX
+ JY = KY
+ END IF
+*
+* Start the operations. In this version the elements of the array AP
+* are accessed sequentially with one pass through AP.
+*
+ KK = 1
+ IF (LSAME(UPLO,'U')) THEN
+*
+* Form A when upper triangle is stored in AP.
+*
+ IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
+ DO 20 J = 1,N
+ IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
+ TEMP1 = ALPHA*DCONJG(Y(J))
+ TEMP2 = DCONJG(ALPHA*X(J))
+ K = KK
+ DO 10 I = 1,J - 1
+ AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
+ K = K + 1
+ 10 CONTINUE
+ AP(KK+J-1) = DBLE(AP(KK+J-1)) +
+ + DBLE(X(J)*TEMP1+Y(J)*TEMP2)
+ ELSE
+ AP(KK+J-1) = DBLE(AP(KK+J-1))
+ END IF
+ KK = KK + J
+ 20 CONTINUE
+ ELSE
+ DO 40 J = 1,N
+ IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
+ TEMP1 = ALPHA*DCONJG(Y(JY))
+ TEMP2 = DCONJG(ALPHA*X(JX))
+ IX = KX
+ IY = KY
+ DO 30 K = KK,KK + J - 2
+ AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
+ IX = IX + INCX
+ IY = IY + INCY
+ 30 CONTINUE
+ AP(KK+J-1) = DBLE(AP(KK+J-1)) +
+ + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
+ ELSE
+ AP(KK+J-1) = DBLE(AP(KK+J-1))
+ END IF
+ JX = JX + INCX
+ JY = JY + INCY
+ KK = KK + J
+ 40 CONTINUE
+ END IF
+ ELSE
+*
+* Form A when lower triangle is stored in AP.
+*
+ IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
+ DO 60 J = 1,N
+ IF ((X(J).NE.ZERO) .OR. (Y(J).NE.ZERO)) THEN
+ TEMP1 = ALPHA*DCONJG(Y(J))
+ TEMP2 = DCONJG(ALPHA*X(J))
+ AP(KK) = DBLE(AP(KK)) +
+ + DBLE(X(J)*TEMP1+Y(J)*TEMP2)
+ K = KK + 1
+ DO 50 I = J + 1,N
+ AP(K) = AP(K) + X(I)*TEMP1 + Y(I)*TEMP2
+ K = K + 1
+ 50 CONTINUE
+ ELSE
+ AP(KK) = DBLE(AP(KK))
+ END IF
+ KK = KK + N - J + 1
+ 60 CONTINUE
+ ELSE
+ DO 80 J = 1,N
+ IF ((X(JX).NE.ZERO) .OR. (Y(JY).NE.ZERO)) THEN
+ TEMP1 = ALPHA*DCONJG(Y(JY))
+ TEMP2 = DCONJG(ALPHA*X(JX))
+ AP(KK) = DBLE(AP(KK)) +
+ + DBLE(X(JX)*TEMP1+Y(JY)*TEMP2)
+ IX = JX
+ IY = JY
+ DO 70 K = KK + 1,KK + N - J
+ IX = IX + INCX
+ IY = IY + INCY
+ AP(K) = AP(K) + X(IX)*TEMP1 + Y(IY)*TEMP2
+ 70 CONTINUE
+ ELSE
+ AP(KK) = DBLE(AP(KK))
+ END IF
+ JX = JX + INCX
+ JY = JY + INCY
+ KK = KK + N - J + 1
+ 80 CONTINUE
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of ZHPR2 .
+*
+ END