aboutsummaryrefslogtreecommitdiff
path: root/test/eigen2/eigen2_submatrices.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/eigen2/eigen2_submatrices.cpp')
-rw-r--r--test/eigen2/eigen2_submatrices.cpp148
1 files changed, 148 insertions, 0 deletions
diff --git a/test/eigen2/eigen2_submatrices.cpp b/test/eigen2/eigen2_submatrices.cpp
new file mode 100644
index 000000000..c5d3f243d
--- /dev/null
+++ b/test/eigen2/eigen2_submatrices.cpp
@@ -0,0 +1,148 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+// check minor separately in order to avoid the possible creation of a zero-sized
+// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
+// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
+// but this is probably not bad to raise such an error at compile time...
+template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
+{
+ typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
+ CheckMinor(MatrixType& m1, int r1, int c1)
+ {
+ int rows = m1.rows();
+ int cols = m1.cols();
+
+ Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
+ VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
+ mi = m1.minor(r1,c1);
+ VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
+ //check operator(), both constant and non-constant, on minor()
+ m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
+ }
+};
+
+template<typename Scalar> struct CheckMinor<Scalar,1,1>
+{
+ typedef Matrix<Scalar, 1, 1> MatrixType;
+ CheckMinor(MatrixType&, int, int) {}
+};
+
+template<typename MatrixType> void submatrices(const MatrixType& m)
+{
+ /* this test covers the following files:
+ Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
+ */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
+ typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
+ int rows = m.rows();
+ int cols = m.cols();
+
+ MatrixType m1 = MatrixType::Random(rows, cols),
+ m2 = MatrixType::Random(rows, cols),
+ m3(rows, cols),
+ mzero = MatrixType::Zero(rows, cols),
+ ones = MatrixType::Ones(rows, cols),
+ identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
+ ::Identity(rows, rows),
+ square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
+ ::Random(rows, rows);
+ VectorType v1 = VectorType::Random(rows),
+ v2 = VectorType::Random(rows),
+ v3 = VectorType::Random(rows),
+ vzero = VectorType::Zero(rows);
+
+ Scalar s1 = ei_random<Scalar>();
+
+ int r1 = ei_random<int>(0,rows-1);
+ int r2 = ei_random<int>(r1,rows-1);
+ int c1 = ei_random<int>(0,cols-1);
+ int c2 = ei_random<int>(c1,cols-1);
+
+ //check row() and col()
+ VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
+ VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
+ //check operator(), both constant and non-constant, on row() and col()
+ m1.row(r1) += s1 * m1.row(r2);
+ m1.col(c1) += s1 * m1.col(c2);
+
+ //check block()
+ Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
+ RowVectorType br1(m1.block(r1,0,1,cols));
+ VectorType bc1(m1.block(0,c1,rows,1));
+ VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
+ VERIFY_IS_APPROX(m1.row(r1), br1);
+ VERIFY_IS_APPROX(m1.col(c1), bc1);
+ //check operator(), both constant and non-constant, on block()
+ m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
+ m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
+
+ //check minor()
+ CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
+
+ //check diagonal()
+ VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
+ m2.diagonal() = 2 * m1.diagonal();
+ m2.diagonal()[0] *= 3;
+ VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
+
+ enum {
+ BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2),
+ BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5)
+ };
+ if (rows>=5 && cols>=8)
+ {
+ // test fixed block() as lvalue
+ m1.template block<BlockRows,BlockCols>(1,1) *= s1;
+ // test operator() on fixed block() both as constant and non-constant
+ m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
+ // check that fixed block() and block() agree
+ Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
+ VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
+ }
+
+ if (rows>2)
+ {
+ // test sub vectors
+ VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
+ VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
+ VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
+ VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
+ int i = rows-2;
+ VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
+ VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
+ VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
+ VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
+ i = ei_random(0,rows-2);
+ VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
+ }
+
+ // stress some basic stuffs with block matrices
+ VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
+ VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));
+
+ VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows));
+ VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols));
+}
+
+void test_eigen2_submatrices()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
+ CALL_SUBTEST_2( submatrices(Matrix4d()) );
+ CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
+ CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
+ CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
+ CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
+ }
+}