aboutsummaryrefslogtreecommitdiff
path: root/test/geo_alignedbox.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/geo_alignedbox.cpp')
-rw-r--r--test/geo_alignedbox.cpp386
1 files changed, 364 insertions, 22 deletions
diff --git a/test/geo_alignedbox.cpp b/test/geo_alignedbox.cpp
index d2339a651..7b1684f29 100644
--- a/test/geo_alignedbox.cpp
+++ b/test/geo_alignedbox.cpp
@@ -9,27 +9,33 @@
#include "main.h"
#include <Eigen/Geometry>
-#include <Eigen/LU>
-#include <Eigen/QR>
-#include<iostream>
using namespace std;
+// NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.
+// It seems that it is not needed anymore, but let's keep it here, just in case...
+
template<typename T> EIGEN_DONT_INLINE
-void kill_extra_precision(T& x) { eigen_assert((void*)(&x) != (void*)0); }
+void kill_extra_precision(T& /* x */) {
+ // This one worked but triggered a warning:
+ /* eigen_assert((void*)(&x) != (void*)0); */
+ // An alternative could be:
+ /* volatile T tmp = x; */
+ /* x = tmp; */
+}
-template<typename BoxType> void alignedbox(const BoxType& _box)
+template<typename BoxType> void alignedbox(const BoxType& box)
{
/* this test covers the following files:
AlignedBox.h
*/
- typedef typename BoxType::Index Index;
typedef typename BoxType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef NumTraits<Scalar> ScalarTraits;
+ typedef typename ScalarTraits::Real RealScalar;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
- const Index dim = _box.dim();
+ const Index dim = box.dim();
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
@@ -40,7 +46,7 @@ template<typename BoxType> void alignedbox(const BoxType& _box)
BoxType b0(dim);
BoxType b1(VectorType::Random(dim),VectorType::Random(dim));
BoxType b2;
-
+
kill_extra_precision(b1);
kill_extra_precision(p0);
kill_extra_precision(p1);
@@ -62,7 +68,7 @@ template<typename BoxType> void alignedbox(const BoxType& _box)
BoxType box2(VectorType::Random(dim));
box2.extend(VectorType::Random(dim));
- VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());
+ VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());
// alignment -- make sure there is no memory alignment assertion
BoxType *bp0 = new BoxType(dim);
@@ -80,17 +86,353 @@ template<typename BoxType> void alignedbox(const BoxType& _box)
}
+template<typename BoxType> void alignedboxTranslatable(const BoxType& box)
+{
+ typedef typename BoxType::Scalar Scalar;
+ typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
+ typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
+ typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
+
+ alignedbox(box);
+
+ const VectorType Ones = VectorType::Ones();
+ const VectorType UnitX = VectorType::UnitX();
+ const Index dim = box.dim();
+
+ // box((-1, -1, -1), (1, 1, 1))
+ BoxType a(-Ones, Ones);
+
+ VERIFY_IS_APPROX(a.sizes(), Ones * Scalar(2));
+
+ BoxType b = a;
+ VectorType translate = Ones;
+ translate[0] = Scalar(2);
+ b.translate(translate);
+ // translate by (2, 1, 1) -> box((1, 0, 0), (3, 2, 2))
+
+ VERIFY_IS_APPROX(b.sizes(), Ones * Scalar(2));
+ VERIFY_IS_APPROX((b.min)(), UnitX);
+ VERIFY_IS_APPROX((b.max)(), Ones * Scalar(2) + UnitX);
+
+ // Test transform
+
+ IsometryTransform tf = IsometryTransform::Identity();
+ tf.translation() = -translate;
+
+ BoxType c = b.transformed(tf);
+ // translate by (-2, -1, -1) -> box((-1, -1, -1), (1, 1, 1))
+ VERIFY_IS_APPROX(c.sizes(), a.sizes());
+ VERIFY_IS_APPROX((c.min)(), (a.min)());
+ VERIFY_IS_APPROX((c.max)(), (a.max)());
+
+ c.transform(tf);
+ // translate by (-2, -1, -1) -> box((-3, -2, -2), (-1, 0, 0))
+ VERIFY_IS_APPROX(c.sizes(), a.sizes());
+ VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) - UnitX);
+ VERIFY_IS_APPROX((c.max)(), -UnitX);
+
+ // Scaling
+
+ AffineTransform atf = AffineTransform::Identity();
+ atf.scale(Scalar(3));
+ c.transform(atf);
+ // scale by 3 -> box((-9, -6, -6), (-3, 0, 0))
+ VERIFY_IS_APPROX(c.sizes(), Scalar(3) * a.sizes());
+ VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-6) - UnitX * Scalar(3));
+ VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(-3));
+
+ atf = AffineTransform::Identity();
+ atf.scale(Scalar(-3));
+ c.transform(atf);
+ // scale by -3 -> box((27, 18, 18), (9, 0, 0))
+ VERIFY_IS_APPROX(c.sizes(), Scalar(9) * a.sizes());
+ VERIFY_IS_APPROX((c.min)(), UnitX * Scalar(9));
+ VERIFY_IS_APPROX((c.max)(), Ones * Scalar(18) + UnitX * Scalar(9));
+
+ // Check identity transform within numerical precision.
+ BoxType transformedC = c.transformed(IsometryTransform::Identity());
+ VERIFY_IS_APPROX(transformedC, c);
+
+ for (size_t i = 0; i < 10; ++i)
+ {
+ VectorType minCorner;
+ VectorType maxCorner;
+ for (Index d = 0; d < dim; ++d)
+ {
+ minCorner[d] = internal::random<Scalar>(-10,10);
+ maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
+ }
+
+ c = BoxType(minCorner, maxCorner);
+
+ translate = VectorType::Random();
+ c.translate(translate);
+
+ VERIFY_IS_APPROX((c.min)(), minCorner + translate);
+ VERIFY_IS_APPROX((c.max)(), maxCorner + translate);
+ }
+}
+
+template<typename Scalar, typename Rotation>
+Rotation rotate2D(Scalar angle) {
+ return Rotation2D<Scalar>(angle);
+}
+
+template<typename Scalar, typename Rotation>
+Rotation rotate2DIntegral(typename NumTraits<Scalar>::NonInteger angle) {
+ typedef typename NumTraits<Scalar>::NonInteger NonInteger;
+ return Rotation2D<NonInteger>(angle).toRotationMatrix().
+ template cast<Scalar>();
+}
+
+template<typename Scalar, typename Rotation>
+Rotation rotate3DZAxis(Scalar angle) {
+ return AngleAxis<Scalar>(angle, Matrix<Scalar, 3, 1>(0, 0, 1));
+}
+
+template<typename Scalar, typename Rotation>
+Rotation rotate3DZAxisIntegral(typename NumTraits<Scalar>::NonInteger angle) {
+ typedef typename NumTraits<Scalar>::NonInteger NonInteger;
+ return AngleAxis<NonInteger>(angle, Matrix<NonInteger, 3, 1>(0, 0, 1)).
+ toRotationMatrix().template cast<Scalar>();
+}
+
+template<typename Scalar, typename Rotation>
+Rotation rotate4DZWAxis(Scalar angle) {
+ Rotation result = Matrix<Scalar, 4, 4>::Identity();
+ result.block(0, 0, 3, 3) = rotate3DZAxis<Scalar, AngleAxisd>(angle).toRotationMatrix();
+ return result;
+}
+
+template <typename MatrixType>
+MatrixType randomRotationMatrix()
+{
+ // algorithm from
+ // https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/103/2016/isprs-annals-III-7-103-2016.pdf
+ const MatrixType rand = MatrixType::Random();
+ const MatrixType q = rand.householderQr().householderQ();
+ const JacobiSVD<MatrixType> svd = q.jacobiSvd(ComputeFullU | ComputeFullV);
+ const typename MatrixType::Scalar det = (svd.matrixU() * svd.matrixV().transpose()).determinant();
+ MatrixType diag = rand.Identity();
+ diag(MatrixType::RowsAtCompileTime - 1, MatrixType::ColsAtCompileTime - 1) = det;
+ const MatrixType rotation = svd.matrixU() * diag * svd.matrixV().transpose();
+ return rotation;
+}
+
+template <typename Scalar, int Dim>
+Matrix<Scalar, Dim, (1<<Dim)> boxGetCorners(const Matrix<Scalar, Dim, 1>& min_, const Matrix<Scalar, Dim, 1>& max_)
+{
+ Matrix<Scalar, Dim, (1<<Dim) > result;
+ for(Index i=0; i<(1<<Dim); ++i)
+ {
+ for(Index j=0; j<Dim; ++j)
+ result(j,i) = (i & (1<<j)) ? min_(j) : max_(j);
+ }
+ return result;
+}
+
+template<typename BoxType, typename Rotation> void alignedboxRotatable(
+ const BoxType& box,
+ Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
+{
+ alignedboxTranslatable(box);
+
+ typedef typename BoxType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::NonInteger NonInteger;
+ typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
+ typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Isometry> IsometryTransform;
+ typedef Transform<Scalar, BoxType::AmbientDimAtCompileTime, Affine> AffineTransform;
+
+ const VectorType Zero = VectorType::Zero();
+ const VectorType Ones = VectorType::Ones();
+ const VectorType UnitX = VectorType::UnitX();
+ const VectorType UnitY = VectorType::UnitY();
+ // this is vector (0, 0, -1, -1, -1, ...), i.e. with zeros at first and second dimensions
+ const VectorType UnitZ = Ones - UnitX - UnitY;
+
+ // in this kind of comments the 3D case values will be illustrated
+ // box((-1, -1, -1), (1, 1, 1))
+ BoxType a(-Ones, Ones);
+
+ // to allow templating this test for both 2D and 3D cases, we always set all
+ // but the first coordinate to the same value; so basically 3D case works as
+ // if you were looking at the scene from top
+
+ VectorType minPoint = -2 * Ones;
+ minPoint[0] = -3;
+ VectorType maxPoint = Zero;
+ maxPoint[0] = -1;
+ BoxType c(minPoint, maxPoint);
+ // box((-3, -2, -2), (-1, 0, 0))
+
+ IsometryTransform tf2 = IsometryTransform::Identity();
+ // for some weird reason the following statement has to be put separate from
+ // the following rotate call, otherwise precision problems arise...
+ Rotation rot = rotate(NonInteger(EIGEN_PI));
+ tf2.rotate(rot);
+
+ c.transform(tf2);
+ // rotate by 180 deg around origin -> box((1, 0, -2), (3, 2, 0))
+
+ VERIFY_IS_APPROX(c.sizes(), a.sizes());
+ VERIFY_IS_APPROX((c.min)(), UnitX - UnitZ * Scalar(2));
+ VERIFY_IS_APPROX((c.max)(), UnitX * Scalar(3) + UnitY * Scalar(2));
+
+ rot = rotate(NonInteger(EIGEN_PI / 2));
+ tf2.setIdentity();
+ tf2.rotate(rot);
+
+ c.transform(tf2);
+ // rotate by 90 deg around origin -> box((-2, 1, -2), (0, 3, 0))
+
+ VERIFY_IS_APPROX(c.sizes(), a.sizes());
+ VERIFY_IS_APPROX((c.min)(), Ones * Scalar(-2) + UnitY * Scalar(3));
+ VERIFY_IS_APPROX((c.max)(), UnitY * Scalar(3));
+
+ // box((-1, -1, -1), (1, 1, 1))
+ AffineTransform atf = AffineTransform::Identity();
+ atf.linearExt()(0, 1) = Scalar(1);
+ c = BoxType(-Ones, Ones);
+ c.transform(atf);
+ // 45 deg shear in x direction -> box((-2, -1, -1), (2, 1, 1))
+
+ VERIFY_IS_APPROX(c.sizes(), Ones * Scalar(2) + UnitX * Scalar(2));
+ VERIFY_IS_APPROX((c.min)(), -Ones - UnitX);
+ VERIFY_IS_APPROX((c.max)(), Ones + UnitX);
+}
+
+template<typename BoxType, typename Rotation> void alignedboxNonIntegralRotatable(
+ const BoxType& box,
+ Rotation (*rotate)(typename NumTraits<typename BoxType::Scalar>::NonInteger /*_angle*/))
+{
+ alignedboxRotatable(box, rotate);
+
+ typedef typename BoxType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::NonInteger NonInteger;
+ enum { Dim = BoxType::AmbientDimAtCompileTime };
+ typedef Matrix<Scalar, Dim, 1> VectorType;
+ typedef Matrix<Scalar, Dim, (1 << Dim)> CornersType;
+ typedef Transform<Scalar, Dim, Isometry> IsometryTransform;
+ typedef Transform<Scalar, Dim, Affine> AffineTransform;
+
+ const Index dim = box.dim();
+ const VectorType Zero = VectorType::Zero();
+ const VectorType Ones = VectorType::Ones();
+
+ VectorType minPoint = -2 * Ones;
+ minPoint[1] = 1;
+ VectorType maxPoint = Zero;
+ maxPoint[1] = 3;
+ BoxType c(minPoint, maxPoint);
+ // ((-2, 1, -2), (0, 3, 0))
+
+ VectorType cornerBL = (c.min)();
+ VectorType cornerTR = (c.max)();
+ VectorType cornerBR = (c.min)(); cornerBR[0] = cornerTR[0];
+ VectorType cornerTL = (c.max)(); cornerTL[0] = cornerBL[0];
+
+ NonInteger angle = NonInteger(EIGEN_PI/3);
+ Rotation rot = rotate(angle);
+ IsometryTransform tf2;
+ tf2.setIdentity();
+ tf2.rotate(rot);
+
+ c.transform(tf2);
+ // rotate by 60 deg -> box((-3.59, -1.23, -2), (-0.86, 1.5, 0))
+
+ cornerBL = tf2 * cornerBL;
+ cornerBR = tf2 * cornerBR;
+ cornerTL = tf2 * cornerTL;
+ cornerTR = tf2 * cornerTR;
+
+ VectorType minCorner = Ones * Scalar(-2);
+ VectorType maxCorner = Zero;
+ minCorner[0] = (min)((min)(cornerBL[0], cornerBR[0]), (min)(cornerTL[0], cornerTR[0]));
+ maxCorner[0] = (max)((max)(cornerBL[0], cornerBR[0]), (max)(cornerTL[0], cornerTR[0]));
+ minCorner[1] = (min)((min)(cornerBL[1], cornerBR[1]), (min)(cornerTL[1], cornerTR[1]));
+ maxCorner[1] = (max)((max)(cornerBL[1], cornerBR[1]), (max)(cornerTL[1], cornerTR[1]));
+
+ for (Index d = 2; d < dim; ++d)
+ VERIFY_IS_APPROX(c.sizes()[d], Scalar(2));
+
+ VERIFY_IS_APPROX((c.min)(), minCorner);
+ VERIFY_IS_APPROX((c.max)(), maxCorner);
+
+ VectorType minCornerValue = Ones * Scalar(-2);
+ VectorType maxCornerValue = Zero;
+ minCornerValue[0] = Scalar(Scalar(-sqrt(2*2 + 3*3)) * Scalar(cos(Scalar(atan(2.0/3.0)) - angle/2)));
+ minCornerValue[1] = Scalar(Scalar(-sqrt(1*1 + 2*2)) * Scalar(sin(Scalar(atan(2.0/1.0)) - angle/2)));
+ maxCornerValue[0] = Scalar(-sin(angle));
+ maxCornerValue[1] = Scalar(3 * cos(angle));
+ VERIFY_IS_APPROX((c.min)(), minCornerValue);
+ VERIFY_IS_APPROX((c.max)(), maxCornerValue);
+
+ // randomized test - translate and rotate the box and compare to a box made of transformed vertices
+ for (size_t i = 0; i < 10; ++i)
+ {
+ for (Index d = 0; d < dim; ++d)
+ {
+ minCorner[d] = internal::random<Scalar>(-10,10);
+ maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
+ }
+
+ c = BoxType(minCorner, maxCorner);
+
+ CornersType corners = boxGetCorners(minCorner, maxCorner);
+
+ typename AffineTransform::LinearMatrixType rotation =
+ randomRotationMatrix<typename AffineTransform::LinearMatrixType>();
+ tf2.setIdentity();
+ tf2.rotate(rotation);
+ tf2.translate(VectorType::Random());
+
+ c.transform(tf2);
+ corners = tf2 * corners;
+
+ minCorner = corners.rowwise().minCoeff();
+ maxCorner = corners.rowwise().maxCoeff();
+
+ VERIFY_IS_APPROX((c.min)(), minCorner);
+ VERIFY_IS_APPROX((c.max)(), maxCorner);
+ }
+
+ // randomized test - transform the box with a random affine matrix and compare to a box made of transformed vertices
+ for (size_t i = 0; i < 10; ++i)
+ {
+ for (Index d = 0; d < dim; ++d)
+ {
+ minCorner[d] = internal::random<Scalar>(-10,10);
+ maxCorner[d] = minCorner[d] + internal::random<Scalar>(0, 10);
+ }
+
+ c = BoxType(minCorner, maxCorner);
+
+ CornersType corners = boxGetCorners(minCorner, maxCorner);
+
+ AffineTransform atf = AffineTransform::Identity();
+ atf.linearExt() = AffineTransform::LinearPart::Random();
+ atf.translate(VectorType::Random());
+
+ c.transform(atf);
+ corners = atf * corners;
+
+ minCorner = corners.rowwise().minCoeff();
+ maxCorner = corners.rowwise().maxCoeff();
+
+ VERIFY_IS_APPROX((c.min)(), minCorner);
+ VERIFY_IS_APPROX((c.max)(), maxCorner);
+ }
+}
template<typename BoxType>
-void alignedboxCastTests(const BoxType& _box)
+void alignedboxCastTests(const BoxType& box)
{
- // casting
- typedef typename BoxType::Index Index;
+ // casting
typedef typename BoxType::Scalar Scalar;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
- const Index dim = _box.dim();
+ const Index dim = box.dim();
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
@@ -162,25 +504,25 @@ void specificTest2()
}
-void test_geo_alignedbox()
+EIGEN_DECLARE_TEST(geo_alignedbox)
{
for(int i = 0; i < g_repeat; i++)
{
- CALL_SUBTEST_1( alignedbox(AlignedBox2f()) );
+ CALL_SUBTEST_1( (alignedboxNonIntegralRotatable<AlignedBox2f, Rotation2Df>(AlignedBox2f(), &rotate2D)) );
CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );
- CALL_SUBTEST_3( alignedbox(AlignedBox3f()) );
+ CALL_SUBTEST_3( (alignedboxNonIntegralRotatable<AlignedBox3f, AngleAxisf>(AlignedBox3f(), &rotate3DZAxis)) );
CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );
- CALL_SUBTEST_5( alignedbox(AlignedBox4d()) );
+ CALL_SUBTEST_5( (alignedboxNonIntegralRotatable<AlignedBox4d, Matrix4d>(AlignedBox4d(), &rotate4DZWAxis)) );
CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );
- CALL_SUBTEST_7( alignedbox(AlignedBox1d()) );
+ CALL_SUBTEST_7( alignedboxTranslatable(AlignedBox1d()) );
CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );
- CALL_SUBTEST_9( alignedbox(AlignedBox1i()) );
- CALL_SUBTEST_10( alignedbox(AlignedBox2i()) );
- CALL_SUBTEST_11( alignedbox(AlignedBox3i()) );
+ CALL_SUBTEST_9( alignedboxTranslatable(AlignedBox1i()) );
+ CALL_SUBTEST_10( (alignedboxRotatable<AlignedBox2i, Matrix2i>(AlignedBox2i(), &rotate2DIntegral<int, Matrix2i>)) );
+ CALL_SUBTEST_11( (alignedboxRotatable<AlignedBox3i, Matrix3i>(AlignedBox3i(), &rotate3DZAxisIntegral<int, Matrix3i>)) );
CALL_SUBTEST_14( alignedbox(AlignedBox<double,Dynamic>(4)) );
}