aboutsummaryrefslogtreecommitdiff
path: root/test/gpu_basic.cu
diff options
context:
space:
mode:
Diffstat (limited to 'test/gpu_basic.cu')
-rw-r--r--test/gpu_basic.cu461
1 files changed, 461 insertions, 0 deletions
diff --git a/test/gpu_basic.cu b/test/gpu_basic.cu
new file mode 100644
index 000000000..4298da3bb
--- /dev/null
+++ b/test/gpu_basic.cu
@@ -0,0 +1,461 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// workaround issue between gcc >= 4.7 and cuda 5.5
+#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
+ #undef _GLIBCXX_ATOMIC_BUILTINS
+ #undef _GLIBCXX_USE_INT128
+#endif
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
+
+#include "main.h"
+#include "gpu_common.h"
+
+// Check that dense modules can be properly parsed by nvcc
+#include <Eigen/Dense>
+
+// struct Foo{
+// EIGEN_DEVICE_FUNC
+// void operator()(int i, const float* mats, float* vecs) const {
+// using namespace Eigen;
+// // Matrix3f M(data);
+// // Vector3f x(data+9);
+// // Map<Vector3f>(data+9) = M.inverse() * x;
+// Matrix3f M(mats+i/16);
+// Vector3f x(vecs+i*3);
+// // using std::min;
+// // using std::sqrt;
+// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
+// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
+// }
+// };
+
+template<typename T>
+struct coeff_wise {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ T x1(in+i);
+ T x2(in+i+1);
+ T x3(in+i+2);
+ Map<T> res(out+i*T::MaxSizeAtCompileTime);
+
+ res.array() += (in[0] * x1 + x2).array() * x3.array();
+ }
+};
+
+template<typename T>
+struct complex_sqrt {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef typename T::Scalar ComplexType;
+ typedef typename T::Scalar::value_type ValueType;
+ const int num_special_inputs = 18;
+
+ if (i == 0) {
+ const ValueType nan = std::numeric_limits<ValueType>::quiet_NaN();
+ typedef Eigen::Vector<ComplexType, num_special_inputs> SpecialInputs;
+ SpecialInputs special_in;
+ special_in.setZero();
+ int idx = 0;
+ special_in[idx++] = ComplexType(0, 0);
+ special_in[idx++] = ComplexType(-0, 0);
+ special_in[idx++] = ComplexType(0, -0);
+ special_in[idx++] = ComplexType(-0, -0);
+ // GCC's fallback sqrt implementation fails for inf inputs.
+ // It is called when _GLIBCXX_USE_C99_COMPLEX is false or if
+ // clang includes the GCC header (which temporarily disables
+ // _GLIBCXX_USE_C99_COMPLEX)
+ #if !defined(_GLIBCXX_COMPLEX) || \
+ (_GLIBCXX_USE_C99_COMPLEX && !defined(__CLANG_CUDA_WRAPPERS_COMPLEX))
+ const ValueType inf = std::numeric_limits<ValueType>::infinity();
+ special_in[idx++] = ComplexType(1.0, inf);
+ special_in[idx++] = ComplexType(nan, inf);
+ special_in[idx++] = ComplexType(1.0, -inf);
+ special_in[idx++] = ComplexType(nan, -inf);
+ special_in[idx++] = ComplexType(-inf, 1.0);
+ special_in[idx++] = ComplexType(inf, 1.0);
+ special_in[idx++] = ComplexType(-inf, -1.0);
+ special_in[idx++] = ComplexType(inf, -1.0);
+ special_in[idx++] = ComplexType(-inf, nan);
+ special_in[idx++] = ComplexType(inf, nan);
+ #endif
+ special_in[idx++] = ComplexType(1.0, nan);
+ special_in[idx++] = ComplexType(nan, 1.0);
+ special_in[idx++] = ComplexType(nan, -1.0);
+ special_in[idx++] = ComplexType(nan, nan);
+
+ Map<SpecialInputs> special_out(out);
+ special_out = special_in.cwiseSqrt();
+ }
+
+ T x1(in + i);
+ Map<T> res(out + num_special_inputs + i*T::MaxSizeAtCompileTime);
+ res = x1.cwiseSqrt();
+ }
+};
+
+template<typename T>
+struct complex_operators {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef typename T::Scalar ComplexType;
+ typedef typename T::Scalar::value_type ValueType;
+ const int num_scalar_operators = 24;
+ const int num_vector_operators = 23; // no unary + operator.
+ int out_idx = i * (num_scalar_operators + num_vector_operators * T::MaxSizeAtCompileTime);
+
+ // Scalar operators.
+ const ComplexType a = in[i];
+ const ComplexType b = in[i + 1];
+
+ out[out_idx++] = +a;
+ out[out_idx++] = -a;
+
+ out[out_idx++] = a + b;
+ out[out_idx++] = a + numext::real(b);
+ out[out_idx++] = numext::real(a) + b;
+ out[out_idx++] = a - b;
+ out[out_idx++] = a - numext::real(b);
+ out[out_idx++] = numext::real(a) - b;
+ out[out_idx++] = a * b;
+ out[out_idx++] = a * numext::real(b);
+ out[out_idx++] = numext::real(a) * b;
+ out[out_idx++] = a / b;
+ out[out_idx++] = a / numext::real(b);
+ out[out_idx++] = numext::real(a) / b;
+
+ out[out_idx] = a; out[out_idx++] += b;
+ out[out_idx] = a; out[out_idx++] -= b;
+ out[out_idx] = a; out[out_idx++] *= b;
+ out[out_idx] = a; out[out_idx++] /= b;
+
+ const ComplexType true_value = ComplexType(ValueType(1), ValueType(0));
+ const ComplexType false_value = ComplexType(ValueType(0), ValueType(0));
+ out[out_idx++] = (a == b ? true_value : false_value);
+ out[out_idx++] = (a == numext::real(b) ? true_value : false_value);
+ out[out_idx++] = (numext::real(a) == b ? true_value : false_value);
+ out[out_idx++] = (a != b ? true_value : false_value);
+ out[out_idx++] = (a != numext::real(b) ? true_value : false_value);
+ out[out_idx++] = (numext::real(a) != b ? true_value : false_value);
+
+ // Vector versions.
+ T x1(in + i);
+ T x2(in + i + 1);
+ const int res_size = T::MaxSizeAtCompileTime * num_scalar_operators;
+ const int size = T::MaxSizeAtCompileTime;
+ int block_idx = 0;
+
+ Map<VectorX<ComplexType>> res(out + out_idx, res_size);
+ res.segment(block_idx, size) = -x1;
+ block_idx += size;
+
+ res.segment(block_idx, size) = x1 + x2;
+ block_idx += size;
+ res.segment(block_idx, size) = x1 + x2.real();
+ block_idx += size;
+ res.segment(block_idx, size) = x1.real() + x2;
+ block_idx += size;
+ res.segment(block_idx, size) = x1 - x2;
+ block_idx += size;
+ res.segment(block_idx, size) = x1 - x2.real();
+ block_idx += size;
+ res.segment(block_idx, size) = x1.real() - x2;
+ block_idx += size;
+ res.segment(block_idx, size) = x1.array() * x2.array();
+ block_idx += size;
+ res.segment(block_idx, size) = x1.array() * x2.real().array();
+ block_idx += size;
+ res.segment(block_idx, size) = x1.real().array() * x2.array();
+ block_idx += size;
+ res.segment(block_idx, size) = x1.array() / x2.array();
+ block_idx += size;
+ res.segment(block_idx, size) = x1.array() / x2.real().array();
+ block_idx += size;
+ res.segment(block_idx, size) = x1.real().array() / x2.array();
+ block_idx += size;
+
+ res.segment(block_idx, size) = x1; res.segment(block_idx, size) += x2;
+ block_idx += size;
+ res.segment(block_idx, size) = x1; res.segment(block_idx, size) -= x2;
+ block_idx += size;
+ res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() *= x2.array();
+ block_idx += size;
+ res.segment(block_idx, size) = x1; res.segment(block_idx, size).array() /= x2.array();
+ block_idx += size;
+
+ const T true_vector = T::Constant(true_value);
+ const T false_vector = T::Constant(false_value);
+ res.segment(block_idx, size) = (x1 == x2 ? true_vector : false_vector);
+ block_idx += size;
+ // Mixing types in equality comparison does not work.
+ // res.segment(block_idx, size) = (x1 == x2.real() ? true_vector : false_vector);
+ // block_idx += size;
+ // res.segment(block_idx, size) = (x1.real() == x2 ? true_vector : false_vector);
+ // block_idx += size;
+ res.segment(block_idx, size) = (x1 != x2 ? true_vector : false_vector);
+ block_idx += size;
+ // res.segment(block_idx, size) = (x1 != x2.real() ? true_vector : false_vector);
+ // block_idx += size;
+ // res.segment(block_idx, size) = (x1.real() != x2 ? true_vector : false_vector);
+ // block_idx += size;
+ }
+};
+
+template<typename T>
+struct replicate {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ T x1(in+i);
+ int step = x1.size() * 4;
+ int stride = 3 * step;
+
+ typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
+ MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
+ MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
+ MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
+ }
+};
+
+template<typename T>
+struct alloc_new_delete {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ int offset = 2*i*T::MaxSizeAtCompileTime;
+ T* x = new T(in + offset);
+ Eigen::Map<T> u(out + offset);
+ u = *x;
+ delete x;
+
+ offset += T::MaxSizeAtCompileTime;
+ T* y = new T[1];
+ y[0] = T(in + offset);
+ Eigen::Map<T> v(out + offset);
+ v = y[0];
+ delete[] y;
+ }
+};
+
+template<typename T>
+struct redux {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ int N = 10;
+ T x1(in+i);
+ out[i*N+0] = x1.minCoeff();
+ out[i*N+1] = x1.maxCoeff();
+ out[i*N+2] = x1.sum();
+ out[i*N+3] = x1.prod();
+ out[i*N+4] = x1.matrix().squaredNorm();
+ out[i*N+5] = x1.matrix().norm();
+ out[i*N+6] = x1.colwise().sum().maxCoeff();
+ out[i*N+7] = x1.rowwise().maxCoeff().sum();
+ out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
+ }
+};
+
+template<typename T1, typename T2>
+struct prod_test {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
+ T1 x1(in+i);
+ T2 x2(in+i+1);
+ Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
+ res += in[i] * x1 * x2;
+ }
+};
+
+template<typename T1, typename T2>
+struct diagonal {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
+ {
+ using namespace Eigen;
+ T1 x1(in+i);
+ Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
+ res += x1.diagonal();
+ }
+};
+
+template<typename T>
+struct eigenvalues_direct {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
+ T M(in+i);
+ Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
+ T A = M*M.adjoint();
+ SelfAdjointEigenSolver<T> eig;
+ eig.computeDirect(A);
+ res = eig.eigenvalues();
+ }
+};
+
+template<typename T>
+struct eigenvalues {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
+ T M(in+i);
+ Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
+ T A = M*M.adjoint();
+ SelfAdjointEigenSolver<T> eig;
+ eig.compute(A);
+ res = eig.eigenvalues();
+ }
+};
+
+template<typename T>
+struct matrix_inverse {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ T M(in+i);
+ Map<T> res(out+i*T::MaxSizeAtCompileTime);
+ res = M.inverse();
+ }
+};
+
+template<typename T>
+struct numeric_limits_test {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ EIGEN_UNUSED_VARIABLE(in)
+ int out_idx = i * 5;
+ out[out_idx++] = numext::numeric_limits<float>::epsilon();
+ out[out_idx++] = (numext::numeric_limits<float>::max)();
+ out[out_idx++] = (numext::numeric_limits<float>::min)();
+ out[out_idx++] = numext::numeric_limits<float>::infinity();
+ out[out_idx++] = numext::numeric_limits<float>::quiet_NaN();
+ }
+};
+
+template<typename Type1, typename Type2>
+bool verifyIsApproxWithInfsNans(const Type1& a, const Type2& b, typename Type1::Scalar* = 0) // Enabled for Eigen's type only
+{
+ if (a.rows() != b.rows()) {
+ return false;
+ }
+ if (a.cols() != b.cols()) {
+ return false;
+ }
+ for (Index r = 0; r < a.rows(); ++r) {
+ for (Index c = 0; c < a.cols(); ++c) {
+ if (a(r, c) != b(r, c)
+ && !((numext::isnan)(a(r, c)) && (numext::isnan)(b(r, c)))
+ && !test_isApprox(a(r, c), b(r, c))) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+template<typename Kernel, typename Input, typename Output>
+void test_with_infs_nans(const Kernel& ker, int n, const Input& in, Output& out)
+{
+ Output out_ref, out_gpu;
+ #if !defined(EIGEN_GPU_COMPILE_PHASE)
+ out_ref = out_gpu = out;
+ #else
+ EIGEN_UNUSED_VARIABLE(in);
+ EIGEN_UNUSED_VARIABLE(out);
+ #endif
+ run_on_cpu (ker, n, in, out_ref);
+ run_on_gpu(ker, n, in, out_gpu);
+ #if !defined(EIGEN_GPU_COMPILE_PHASE)
+ verifyIsApproxWithInfsNans(out_ref, out_gpu);
+ #endif
+}
+
+EIGEN_DECLARE_TEST(gpu_basic)
+{
+ ei_test_init_gpu();
+
+ int nthreads = 100;
+ Eigen::VectorXf in, out;
+ Eigen::VectorXcf cfin, cfout;
+
+ #if !defined(EIGEN_GPU_COMPILE_PHASE)
+ int data_size = nthreads * 512;
+ in.setRandom(data_size);
+ out.setConstant(data_size, -1);
+ cfin.setRandom(data_size);
+ cfout.setConstant(data_size, -1);
+ #endif
+
+ CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Vector3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(coeff_wise<Array44f>(), nthreads, in, out) );
+
+#if !defined(EIGEN_USE_HIP)
+ // FIXME
+ // These subtests result in a compile failure on the HIP platform
+ //
+ // eigen-upstream/Eigen/src/Core/Replicate.h:61:65: error:
+ // base class 'internal::dense_xpr_base<Replicate<Array<float, 4, 1, 0, 4, 1>, -1, -1> >::type'
+ // (aka 'ArrayBase<Eigen::Replicate<Eigen::Array<float, 4, 1, 0, 4, 1>, -1, -1> >') has protected default constructor
+ CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array4f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(replicate<Array33f>(), nthreads, in, out) );
+
+ // HIP does not support new/delete on device.
+ CALL_SUBTEST( run_and_compare_to_gpu(alloc_new_delete<Vector3f>(), nthreads, in, out) );
+#endif
+
+ CALL_SUBTEST( run_and_compare_to_gpu(redux<Array4f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(redux<Matrix3f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix2f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(matrix_inverse<Matrix4f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues_direct<Matrix2f>(), nthreads, in, out) );
+
+ // Test std::complex.
+ CALL_SUBTEST( run_and_compare_to_gpu(complex_operators<Vector3cf>(), nthreads, cfin, cfout) );
+ CALL_SUBTEST( test_with_infs_nans(complex_sqrt<Vector3cf>(), nthreads, cfin, cfout) );
+
+ // numeric_limits
+ CALL_SUBTEST( test_with_infs_nans(numeric_limits_test<Vector3f>(), 1, in, out) );
+
+#if defined(__NVCC__)
+ // FIXME
+ // These subtests compiles only with nvcc and fail with HIPCC and clang-cuda
+ CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix4f>(), nthreads, in, out) );
+ typedef Matrix<float,6,6> Matrix6f;
+ CALL_SUBTEST( run_and_compare_to_gpu(eigenvalues<Matrix6f>(), nthreads, in, out) );
+#endif
+}