aboutsummaryrefslogtreecommitdiff
path: root/test/sparse_basic.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'test/sparse_basic.cpp')
-rw-r--r--test/sparse_basic.cpp350
1 files changed, 232 insertions, 118 deletions
diff --git a/test/sparse_basic.cpp b/test/sparse_basic.cpp
index 8897a9dca..498ecfe29 100644
--- a/test/sparse_basic.cpp
+++ b/test/sparse_basic.cpp
@@ -3,6 +3,7 @@
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
+// Copyright (C) 2013 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -13,7 +14,8 @@
template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref)
{
typedef typename SparseMatrixType::Index Index;
-
+ typedef Matrix<Index,2,1> Vector2;
+
const Index rows = ref.rows();
const Index cols = ref.cols();
typedef typename SparseMatrixType::Scalar Scalar;
@@ -24,71 +26,77 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
typedef Matrix<Scalar,Dynamic,1> DenseVector;
Scalar eps = 1e-6;
- SparseMatrixType m(rows, cols);
- DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
- DenseVector vec1 = DenseVector::Random(rows);
Scalar s1 = internal::random<Scalar>();
-
- std::vector<Vector2i> zeroCoords;
- std::vector<Vector2i> nonzeroCoords;
- initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
-
- if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
- return;
-
- // test coeff and coeffRef
- for (int i=0; i<(int)zeroCoords.size(); ++i)
{
- VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
- if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
- VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
- }
- VERIFY_IS_APPROX(m, refMat);
+ SparseMatrixType m(rows, cols);
+ DenseMatrix refMat = DenseMatrix::Zero(rows, cols);
+ DenseVector vec1 = DenseVector::Random(rows);
- m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
- refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+ std::vector<Vector2> zeroCoords;
+ std::vector<Vector2> nonzeroCoords;
+ initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords);
- VERIFY_IS_APPROX(m, refMat);
- /*
- // test InnerIterators and Block expressions
- for (int t=0; t<10; ++t)
- {
- int j = internal::random<int>(0,cols-1);
- int i = internal::random<int>(0,rows-1);
- int w = internal::random<int>(1,cols-j-1);
- int h = internal::random<int>(1,rows-i-1);
+ if (zeroCoords.size()==0 || nonzeroCoords.size()==0)
+ return;
-// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
- for(int c=0; c<w; c++)
+ // test coeff and coeffRef
+ for (int i=0; i<(int)zeroCoords.size(); ++i)
{
- VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
- for(int r=0; r<h; r++)
+ VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps );
+ if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value)
+ VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 );
+ }
+ VERIFY_IS_APPROX(m, refMat);
+
+ m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+ refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5);
+
+ VERIFY_IS_APPROX(m, refMat);
+ /*
+ // test InnerIterators and Block expressions
+ for (int t=0; t<10; ++t)
{
-// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
+ int j = internal::random<int>(0,cols-1);
+ int i = internal::random<int>(0,rows-1);
+ int w = internal::random<int>(1,cols-j-1);
+ int h = internal::random<int>(1,rows-i-1);
+
+ // VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w));
+ for(int c=0; c<w; c++)
+ {
+ VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c));
+ for(int r=0; r<h; r++)
+ {
+ // VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r));
+ }
+ }
+ // for(int r=0; r<h; r++)
+ // {
+ // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
+ // for(int c=0; c<w; c++)
+ // {
+ // VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
+ // }
+ // }
}
- }
-// for(int r=0; r<h; r++)
-// {
-// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r));
-// for(int c=0; c<w; c++)
-// {
-// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c));
-// }
-// }
- }
- for(int c=0; c<cols; c++)
- {
- VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
- VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
- }
+ for(int c=0; c<cols; c++)
+ {
+ VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c));
+ VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c));
+ }
- for(int r=0; r<rows; r++)
- {
- VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
- VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
- }
- */
+ for(int r=0; r<rows; r++)
+ {
+ VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r));
+ VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r));
+ }
+ */
+
+ // test assertion
+ VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 );
+ VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 );
+ }
// test insert (inner random)
{
@@ -97,11 +105,11 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
SparseMatrixType m2(rows,cols);
if(internal::random<int>()%2)
m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
- for (int j=0; j<cols; ++j)
+ for (Index j=0; j<cols; ++j)
{
- for (int k=0; k<rows/2; ++k)
+ for (Index k=0; k<rows/2; ++k)
{
- int i = internal::random<int>(0,rows-1);
+ Index i = internal::random<Index>(0,rows-1);
if (m1.coeff(i,j)==Scalar(0))
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
}
@@ -119,8 +127,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
m2.reserve(VectorXi::Constant(m2.outerSize(), 2));
for (int k=0; k<rows*cols; ++k)
{
- int i = internal::random<int>(0,rows-1);
- int j = internal::random<int>(0,cols-1);
+ Index i = internal::random<Index>(0,rows-1);
+ Index j = internal::random<Index>(0,cols-1);
if ((m1.coeff(i,j)==Scalar(0)) && (internal::random<int>()%2))
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
else
@@ -143,8 +151,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
m2.reserve(r);
for (int k=0; k<rows*cols; ++k)
{
- int i = internal::random<int>(0,rows-1);
- int j = internal::random<int>(0,cols-1);
+ Index i = internal::random<Index>(0,rows-1);
+ Index j = internal::random<Index>(0,cols-1);
if (m1.coeff(i,j)==Scalar(0))
m2.insert(i,j) = m1(i,j) = internal::random<Scalar>();
if(mode==3)
@@ -155,6 +163,80 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
VERIFY_IS_APPROX(m2,m1);
}
+ // test innerVector()
+ {
+ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType m2(rows, rows);
+ initSparse<Scalar>(density, refMat2, m2);
+ Index j0 = internal::random<Index>(0,rows-1);
+ Index j1 = internal::random<Index>(0,rows-1);
+ if(SparseMatrixType::IsRowMajor)
+ VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
+ else
+ VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
+
+ if(SparseMatrixType::IsRowMajor)
+ VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1));
+ else
+ VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
+
+ SparseMatrixType m3(rows,rows);
+ m3.reserve(VectorXi::Constant(rows,rows/2));
+ for(Index j=0; j<rows; ++j)
+ for(Index k=0; k<j; ++k)
+ m3.insertByOuterInner(j,k) = k+1;
+ for(Index j=0; j<rows; ++j)
+ {
+ VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
+ if(j>0)
+ VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
+ }
+ m3.makeCompressed();
+ for(Index j=0; j<rows; ++j)
+ {
+ VERIFY(j==numext::real(m3.innerVector(j).nonZeros()));
+ if(j>0)
+ VERIFY(j==numext::real(m3.innerVector(j).lastCoeff()));
+ }
+
+ //m2.innerVector(j0) = 2*m2.innerVector(j1);
+ //refMat2.col(j0) = 2*refMat2.col(j1);
+ //VERIFY_IS_APPROX(m2, refMat2);
+ }
+
+ // test innerVectors()
+ {
+ DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
+ SparseMatrixType m2(rows, rows);
+ initSparse<Scalar>(density, refMat2, m2);
+ if(internal::random<float>(0,1)>0.5) m2.makeCompressed();
+
+ Index j0 = internal::random<Index>(0,rows-2);
+ Index j1 = internal::random<Index>(0,rows-2);
+ Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
+ if(SparseMatrixType::IsRowMajor)
+ VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
+ else
+ VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
+ if(SparseMatrixType::IsRowMajor)
+ VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
+ refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0));
+ else
+ VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
+ refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
+
+ VERIFY_IS_APPROX(m2, refMat2);
+
+ m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
+ if(SparseMatrixType::IsRowMajor)
+ refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval();
+ else
+ refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval();
+
+ VERIFY_IS_APPROX(m2, refMat2);
+
+ }
+
// test basic computations
{
DenseMatrix refM1 = DenseMatrix::Zero(rows, rows);
@@ -193,6 +275,12 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
// sparse cwise* dense
VERIFY_IS_APPROX(m3.cwiseProduct(refM4), refM3.cwiseProduct(refM4));
// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4);
+
+ // test aliasing
+ VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1));
+ VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval()));
+ VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval()));
+ VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1));
}
// test transpose
@@ -206,67 +294,38 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint());
}
- // test innerVector()
- {
- DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
- SparseMatrixType m2(rows, rows);
- initSparse<Scalar>(density, refMat2, m2);
- int j0 = internal::random<int>(0,rows-1);
- int j1 = internal::random<int>(0,rows-1);
- if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0));
- else
- VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0));
-
- if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1));
- else
- VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1));
-
- SparseMatrixType m3(rows,rows);
- m3.reserve(VectorXi::Constant(rows,rows/2));
- for(int j=0; j<rows; ++j)
- for(int k=0; k<j; ++k)
- m3.insertByOuterInner(j,k) = k+1;
- for(int j=0; j<rows; ++j)
- {
- VERIFY(j==internal::real(m3.innerVector(j).nonZeros()));
- if(j>0)
- VERIFY(j==internal::real(m3.innerVector(j).lastCoeff()));
- }
- m3.makeCompressed();
- for(int j=0; j<rows; ++j)
- {
- VERIFY(j==internal::real(m3.innerVector(j).nonZeros()));
- if(j>0)
- VERIFY(j==internal::real(m3.innerVector(j).lastCoeff()));
- }
-
- //m2.innerVector(j0) = 2*m2.innerVector(j1);
- //refMat2.col(j0) = 2*refMat2.col(j1);
- //VERIFY_IS_APPROX(m2, refMat2);
- }
-
- // test innerVectors()
+
+
+ // test generic blocks
{
DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows);
SparseMatrixType m2(rows, rows);
initSparse<Scalar>(density, refMat2, m2);
- int j0 = internal::random<int>(0,rows-2);
- int j1 = internal::random<int>(0,rows-2);
- int n0 = internal::random<int>(1,rows-(std::max)(j0,j1));
+ Index j0 = internal::random<Index>(0,rows-2);
+ Index j1 = internal::random<Index>(0,rows-2);
+ Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1));
if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols));
+ VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols));
else
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0));
+ VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0));
+
if(SparseMatrixType::IsRowMajor)
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
+ VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols),
refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols));
else
- VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0),
+ VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0),
refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0));
- //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0);
- //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0);
+
+ Index i = internal::random<Index>(0,m2.outerSize()-1);
+ if(SparseMatrixType::IsRowMajor) {
+ m2.innerVector(i) = m2.innerVector(i) * s1;
+ refMat2.row(i) = refMat2.row(i) * s1;
+ VERIFY_IS_APPROX(m2,refMat2);
+ } else {
+ m2.innerVector(i) = m2.innerVector(i) * s1;
+ refMat2.col(i) = refMat2.col(i) * s1;
+ VERIFY_IS_APPROX(m2,refMat2);
+ }
}
// test prune
@@ -276,10 +335,10 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
refM2.setZero();
int countFalseNonZero = 0;
int countTrueNonZero = 0;
- for (int j=0; j<m2.outerSize(); ++j)
+ for (Index j=0; j<m2.outerSize(); ++j)
{
m2.startVec(j);
- for (int i=0; i<m2.innerSize(); ++i)
+ for (Index i=0; i<m2.innerSize(); ++i)
{
float x = internal::random<float>(0,1);
if (x<0.1)
@@ -320,8 +379,8 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
refMat.setZero();
for(int i=0;i<ntriplets;++i)
{
- int r = internal::random<int>(0,rows-1);
- int c = internal::random<int>(0,cols-1);
+ Index r = internal::random<Index>(0,rows-1);
+ Index c = internal::random<Index>(0,cols-1);
Scalar v = internal::random<Scalar>();
triplets.push_back(TripletType(r,c,v));
refMat(r,c) += v;
@@ -351,6 +410,14 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
refMat3 = refMat2.template triangularView<UnitLower>();
m3 = m2.template triangularView<UnitLower>();
VERIFY_IS_APPROX(m3, refMat3);
+
+ refMat3 = refMat2.template triangularView<StrictlyUpper>();
+ m3 = m2.template triangularView<StrictlyUpper>();
+ VERIFY_IS_APPROX(m3, refMat3);
+
+ refMat3 = refMat2.template triangularView<StrictlyLower>();
+ m3 = m2.template triangularView<StrictlyLower>();
+ VERIFY_IS_APPROX(m3, refMat3);
}
// test selfadjointView
@@ -379,17 +446,64 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re
initSparse<Scalar>(density, refMat2, m2);
VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval());
}
+
+ // test conservative resize
+ {
+ std::vector< std::pair<Index,Index> > inc;
+ inc.push_back(std::pair<Index,Index>(-3,-2));
+ inc.push_back(std::pair<Index,Index>(0,0));
+ inc.push_back(std::pair<Index,Index>(3,2));
+ inc.push_back(std::pair<Index,Index>(3,0));
+ inc.push_back(std::pair<Index,Index>(0,3));
+
+ for(size_t i = 0; i< inc.size(); i++) {
+ Index incRows = inc[i].first;
+ Index incCols = inc[i].second;
+ SparseMatrixType m1(rows, cols);
+ DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols);
+ initSparse<Scalar>(density, refMat1, m1);
+
+ m1.conservativeResize(rows+incRows, cols+incCols);
+ refMat1.conservativeResize(rows+incRows, cols+incCols);
+ if (incRows > 0) refMat1.bottomRows(incRows).setZero();
+ if (incCols > 0) refMat1.rightCols(incCols).setZero();
+
+ VERIFY_IS_APPROX(m1, refMat1);
+
+ // Insert new values
+ if (incRows > 0)
+ m1.insert(m1.rows()-1, 0) = refMat1(refMat1.rows()-1, 0) = 1;
+ if (incCols > 0)
+ m1.insert(0, m1.cols()-1) = refMat1(0, refMat1.cols()-1) = 1;
+
+ VERIFY_IS_APPROX(m1, refMat1);
+
+
+ }
+ }
+
+ // test Identity matrix
+ {
+ DenseMatrix refMat1 = DenseMatrix::Identity(rows, rows);
+ SparseMatrixType m1(rows, rows);
+ m1.setIdentity();
+ VERIFY_IS_APPROX(m1, refMat1);
+ }
}
void test_sparse_basic()
{
for(int i = 0; i < g_repeat; i++) {
int s = Eigen::internal::random<int>(1,50);
+ EIGEN_UNUSED_VARIABLE(s);
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) ));
CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) ));
CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) ));
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) ));
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) ));
CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) ));
+
+ CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) ));
+ CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) ));
}
}