aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h86
1 files changed, 52 insertions, 34 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h b/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
index 08eb5595a..4a1a0687c 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorFFT.h
@@ -10,10 +10,6 @@
#ifndef EIGEN_CXX11_TENSOR_TENSOR_FFT_H
#define EIGEN_CXX11_TENSOR_TENSOR_FFT_H
-// This code requires the ability to initialize arrays of constant
-// values directly inside a class.
-#if __cplusplus >= 201103L || EIGEN_COMP_MSVC >= 1900
-
namespace Eigen {
/** \class TensorFFT
@@ -71,6 +67,7 @@ struct traits<TensorFFTOp<FFT, XprType, FFTResultType, FFTDir> > : public traits
typedef typename remove_reference<Nested>::type _Nested;
static const int NumDimensions = XprTraits::NumDimensions;
static const int Layout = XprTraits::Layout;
+ typedef typename traits<XprType>::PointerType PointerType;
};
template <typename FFT, typename XprType, int FFTResultType, int FFTDirection>
@@ -130,17 +127,24 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
typedef OutputScalar CoeffReturnType;
typedef typename PacketType<OutputScalar, Device>::type PacketReturnType;
static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size;
+ typedef StorageMemory<CoeffReturnType, Device> Storage;
+ typedef typename Storage::Type EvaluatorPointerType;
enum {
IsAligned = false,
PacketAccess = true,
BlockAccess = false,
+ PreferBlockAccess = false,
Layout = TensorEvaluator<ArgType, Device>::Layout,
CoordAccess = false,
RawAccess = false
};
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_fft(op.fft()), m_impl(op.expression(), device), m_data(NULL), m_device(device) {
+ //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
+ typedef internal::TensorBlockNotImplemented TensorBlock;
+ //===--------------------------------------------------------------------===//
+
+ EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_fft(op.fft()), m_impl(op.expression(), device), m_data(NULL), m_device(device) {
const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions();
for (int i = 0; i < NumDims; ++i) {
eigen_assert(input_dims[i] > 0);
@@ -165,19 +169,19 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
return m_dimensions;
}
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(OutputScalar* data) {
+ EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
m_impl.evalSubExprsIfNeeded(NULL);
if (data) {
evalToBuf(data);
return false;
} else {
- m_data = (CoeffReturnType*)m_device.allocate(sizeof(CoeffReturnType) * m_size);
+ m_data = (EvaluatorPointerType)m_device.get((CoeffReturnType*)(m_device.allocate_temp(sizeof(CoeffReturnType) * m_size)));
evalToBuf(m_data);
return true;
}
}
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ EIGEN_STRONG_INLINE void cleanup() {
if (m_data) {
m_device.deallocate(m_data);
m_data = NULL;
@@ -200,11 +204,16 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized, PacketSize);
}
- EIGEN_DEVICE_FUNC Scalar* data() const { return m_data; }
-
+ EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }
+#ifdef EIGEN_USE_SYCL
+ // binding placeholder accessors to a command group handler for SYCL
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
+ m_data.bind(cgh);
+ }
+#endif
private:
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalToBuf(OutputScalar* data) {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void evalToBuf(EvaluatorPointerType data) {
const bool write_to_out = internal::is_same<OutputScalar, ComplexScalar>::value;
ComplexScalar* buf = write_to_out ? (ComplexScalar*)data : (ComplexScalar*)m_device.allocate(sizeof(ComplexScalar) * m_size);
@@ -230,20 +239,32 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
// t_n = exp(sqrt(-1) * pi * n^2 / line_len)
// for n = 0, 1,..., line_len-1.
// For n > 2 we use the recurrence t_n = t_{n-1}^2 / t_{n-2} * t_1^2
- pos_j_base_powered[0] = ComplexScalar(1, 0);
- if (line_len > 1) {
- const RealScalar pi_over_len(EIGEN_PI / line_len);
- const ComplexScalar pos_j_base = ComplexScalar(
- std::cos(pi_over_len), std::sin(pi_over_len));
- pos_j_base_powered[1] = pos_j_base;
- if (line_len > 2) {
- const ComplexScalar pos_j_base_sq = pos_j_base * pos_j_base;
- for (int j = 2; j < line_len + 1; ++j) {
- pos_j_base_powered[j] = pos_j_base_powered[j - 1] *
- pos_j_base_powered[j - 1] /
- pos_j_base_powered[j - 2] * pos_j_base_sq;
- }
- }
+
+ // The recurrence is correct in exact arithmetic, but causes
+ // numerical issues for large transforms, especially in
+ // single-precision floating point.
+ //
+ // pos_j_base_powered[0] = ComplexScalar(1, 0);
+ // if (line_len > 1) {
+ // const ComplexScalar pos_j_base = ComplexScalar(
+ // numext::cos(M_PI / line_len), numext::sin(M_PI / line_len));
+ // pos_j_base_powered[1] = pos_j_base;
+ // if (line_len > 2) {
+ // const ComplexScalar pos_j_base_sq = pos_j_base * pos_j_base;
+ // for (int i = 2; i < line_len + 1; ++i) {
+ // pos_j_base_powered[i] = pos_j_base_powered[i - 1] *
+ // pos_j_base_powered[i - 1] /
+ // pos_j_base_powered[i - 2] *
+ // pos_j_base_sq;
+ // }
+ // }
+ // }
+ // TODO(rmlarsen): Find a way to use Eigen's vectorized sin
+ // and cosine functions here.
+ for (int j = 0; j < line_len + 1; ++j) {
+ double arg = ((EIGEN_PI * j) * j) / line_len;
+ std::complex<double> tmp(numext::cos(arg), numext::sin(arg));
+ pos_j_base_powered[j] = static_cast<ComplexScalar>(tmp);
}
}
@@ -253,7 +274,7 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
// get data into line_buf
const Index stride = m_strides[dim];
if (stride == 1) {
- memcpy(line_buf, &buf[base_offset], line_len*sizeof(ComplexScalar));
+ m_device.memcpy(line_buf, &buf[base_offset], line_len*sizeof(ComplexScalar));
} else {
Index offset = base_offset;
for (int j = 0; j < line_len; ++j, offset += stride) {
@@ -261,7 +282,7 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
}
}
- // processs the line
+ // process the line
if (is_power_of_two) {
processDataLineCooleyTukey(line_buf, line_len, log_len);
}
@@ -271,7 +292,7 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
// write back
if (FFTDir == FFT_FORWARD && stride == 1) {
- memcpy(&buf[base_offset], line_buf, line_len*sizeof(ComplexScalar));
+ m_device.memcpy(&buf[base_offset], line_buf, line_len*sizeof(ComplexScalar));
} else {
Index offset = base_offset;
const ComplexScalar div_factor = ComplexScalar(1.0 / line_len, 0);
@@ -562,12 +583,12 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
protected:
Index m_size;
- const FFT& m_fft;
+ const FFT EIGEN_DEVICE_REF m_fft;
Dimensions m_dimensions;
array<Index, NumDims> m_strides;
TensorEvaluator<ArgType, Device> m_impl;
- CoeffReturnType* m_data;
- const Device& m_device;
+ EvaluatorPointerType m_data;
+ const Device EIGEN_DEVICE_REF m_device;
// This will support a maximum FFT size of 2^32 for each dimension
// m_sin_PI_div_n_LUT[i] = (-2) * std::sin(M_PI / std::pow(2,i)) ^ 2;
@@ -645,7 +666,4 @@ struct TensorEvaluator<const TensorFFTOp<FFT, ArgType, FFTResultType, FFTDir>, D
} // end namespace Eigen
-#endif // EIGEN_HAS_CONSTEXPR
-
-
#endif // EIGEN_CXX11_TENSOR_TENSOR_FFT_H