aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h198
1 files changed, 122 insertions, 76 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h b/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
index 1655a813e..37c1d1c3d 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorRandom.h
@@ -2,6 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2016 Benoit Steiner <benoit.steiner.goog@gmail.com>
+// Copyright (C) 2018 Mehdi Goli <eigen@codeplay.com> Codeplay Software Ltd.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
@@ -16,50 +17,23 @@ namespace internal {
namespace {
EIGEN_DEVICE_FUNC uint64_t get_random_seed() {
-#ifdef __CUDA_ARCH__
+#if defined(EIGEN_GPU_COMPILE_PHASE)
// We don't support 3d kernels since we currently only use 1 and
// 2d kernels.
- assert(threadIdx.z == 0);
- return clock64() +
- blockIdx.x * blockDim.x + threadIdx.x +
- gridDim.x * blockDim.x * (blockIdx.y * blockDim.y + threadIdx.y);
-
-#elif defined _WIN32
- // Use the current time as a baseline.
- SYSTEMTIME st;
- GetSystemTime(&st);
- int time = st.wSecond + 1000 * st.wMilliseconds;
- // Mix in a random number to make sure that we get different seeds if
- // we try to generate seeds faster than the clock resolution.
- // We need 2 random values since the generator only generate 16 bits at
- // a time (https://msdn.microsoft.com/en-us/library/398ax69y.aspx)
- int rnd1 = ::rand();
- int rnd2 = ::rand();
- uint64_t rnd = (rnd1 | rnd2 << 16) ^ time;
- return rnd;
-
-#elif defined __APPLE__
- // Same approach as for win32, except that the random number generator
- // is better (// https://developer.apple.com/legacy/library/documentation/Darwin/Reference/ManPages/man3/random.3.html#//apple_ref/doc/man/3/random).
- uint64_t rnd = ::random() ^ mach_absolute_time();
- return rnd;
-
+ gpu_assert(threadIdx.z == 0);
+ return blockIdx.x * blockDim.x + threadIdx.x
+ + gridDim.x * blockDim.x * (blockIdx.y * blockDim.y + threadIdx.y);
#else
- // Augment the current time with pseudo random number generation
- // to ensure that we get different seeds if we try to generate seeds
- // faster than the clock resolution.
- timespec ts;
- clock_gettime(CLOCK_REALTIME, &ts);
- uint64_t rnd = ::random() ^ ts.tv_nsec;
- return rnd;
+ // Rely on Eigen's random implementation.
+ return random<uint64_t>();
#endif
}
-static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE unsigned PCG_XSH_RS_generator(uint64_t* state) {
+static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE unsigned PCG_XSH_RS_generator(uint64_t* state, uint64_t stream) {
// TODO: Unify with the implementation in the non blocking thread pool.
uint64_t current = *state;
// Update the internal state
- *state = current * 6364136223846793005ULL + 0xda3e39cb94b95bdbULL;
+ *state = current * 6364136223846793005ULL + (stream << 1 | 1);
// Generate the random output (using the PCG-XSH-RS scheme)
return static_cast<unsigned>((current ^ (current >> 22)) >> (22 + (current >> 61)));
}
@@ -73,34 +47,42 @@ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE uint64_t PCG_XSH_RS_state(uint64_t
template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-T RandomToTypeUniform(uint64_t* state) {
- unsigned rnd = PCG_XSH_RS_generator(state);
+T RandomToTypeUniform(uint64_t* state, uint64_t stream) {
+ unsigned rnd = PCG_XSH_RS_generator(state, stream);
return static_cast<T>(rnd);
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-Eigen::half RandomToTypeUniform<Eigen::half>(uint64_t* state) {
- Eigen::half result;
- // Generate 10 random bits for the mantissa
- unsigned rnd = PCG_XSH_RS_generator(state);
- result.x = static_cast<uint16_t>(rnd & 0x3ffu);
- // Set the exponent
- result.x |= (static_cast<uint16_t>(15) << 10);
+Eigen::half RandomToTypeUniform<Eigen::half>(uint64_t* state, uint64_t stream) {
+ // Generate 10 random bits for the mantissa, merge with exponent.
+ unsigned rnd = PCG_XSH_RS_generator(state, stream);
+ const uint16_t half_bits = static_cast<uint16_t>(rnd & 0x3ffu) | (static_cast<uint16_t>(15) << 10);
+ Eigen::half result = Eigen::numext::bit_cast<Eigen::half>(half_bits);
// Return the final result
return result - Eigen::half(1.0f);
}
+template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+Eigen::bfloat16 RandomToTypeUniform<Eigen::bfloat16>(uint64_t* state, uint64_t stream) {
+
+ // Generate 7 random bits for the mantissa, merge with exponent.
+ unsigned rnd = PCG_XSH_RS_generator(state, stream);
+ const uint16_t half_bits = static_cast<uint16_t>(rnd & 0x7fu) | (static_cast<uint16_t>(127) << 7);
+ Eigen::bfloat16 result = Eigen::numext::bit_cast<Eigen::bfloat16>(half_bits);
+ // Return the final result
+ return result - Eigen::bfloat16(1.0f);
+}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-float RandomToTypeUniform<float>(uint64_t* state) {
+float RandomToTypeUniform<float>(uint64_t* state, uint64_t stream) {
typedef union {
uint32_t raw;
float fp;
} internal;
internal result;
// Generate 23 random bits for the mantissa mantissa
- const unsigned rnd = PCG_XSH_RS_generator(state);
+ const unsigned rnd = PCG_XSH_RS_generator(state, stream);
result.raw = rnd & 0x7fffffu;
// Set the exponent
result.raw |= (static_cast<uint32_t>(127) << 23);
@@ -109,7 +91,7 @@ float RandomToTypeUniform<float>(uint64_t* state) {
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-double RandomToTypeUniform<double>(uint64_t* state) {
+double RandomToTypeUniform<double>(uint64_t* state, uint64_t stream) {
typedef union {
uint64_t raw;
double dp;
@@ -118,9 +100,9 @@ double RandomToTypeUniform<double>(uint64_t* state) {
result.raw = 0;
// Generate 52 random bits for the mantissa
// First generate the upper 20 bits
- unsigned rnd1 = PCG_XSH_RS_generator(state) & 0xfffffu;
+ unsigned rnd1 = PCG_XSH_RS_generator(state, stream) & 0xfffffu;
// The generate the lower 32 bits
- unsigned rnd2 = PCG_XSH_RS_generator(state);
+ unsigned rnd2 = PCG_XSH_RS_generator(state, stream);
result.raw = (static_cast<uint64_t>(rnd1) << 32) | rnd2;
// Set the exponent
result.raw |= (static_cast<uint64_t>(1023) << 52);
@@ -129,14 +111,14 @@ double RandomToTypeUniform<double>(uint64_t* state) {
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<float> RandomToTypeUniform<std::complex<float> >(uint64_t* state) {
- return std::complex<float>(RandomToTypeUniform<float>(state),
- RandomToTypeUniform<float>(state));
+std::complex<float> RandomToTypeUniform<std::complex<float> >(uint64_t* state, uint64_t stream) {
+ return std::complex<float>(RandomToTypeUniform<float>(state, stream),
+ RandomToTypeUniform<float>(state, stream));
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<double> RandomToTypeUniform<std::complex<double> >(uint64_t* state) {
- return std::complex<double>(RandomToTypeUniform<double>(state),
- RandomToTypeUniform<double>(state));
+std::complex<double> RandomToTypeUniform<std::complex<double> >(uint64_t* state, uint64_t stream) {
+ return std::complex<double>(RandomToTypeUniform<double>(state, stream),
+ RandomToTypeUniform<double>(state, stream));
}
template <typename T> class UniformRandomGenerator {
@@ -147,17 +129,42 @@ template <typename T> class UniformRandomGenerator {
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator(
uint64_t seed = 0) {
m_state = PCG_XSH_RS_state(seed);
+ #ifdef EIGEN_USE_SYCL
+ // In SYCL it is not possible to build PCG_XSH_RS_state in one step.
+ // Therefor, we need two step to initializate the m_state.
+ // IN SYCL, the constructor of the functor is s called on the CPU
+ // and we get the clock seed here from the CPU. However, This seed is
+ //the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc is not a global function.
+ // and only available on the Operator() function (which is called on the GPU).
+ // Thus for CUDA (((CLOCK + global_thread_id)* 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL) is passed to each thread
+ // but for SYCL ((CLOCK * 6364136223846793005ULL) + 0xda3e39cb94b95bdbULL) is passed to each thread and each thread adds
+ // the (global_thread_id* 6364136223846793005ULL) for itself only once, in order to complete the construction
+ // similar to CUDA Therefore, the thread Id injection is not available at this stage.
+ //However when the operator() is called the thread ID will be avilable. So inside the opeator,
+ // we add the thrreadID, BlockId,... (which is equivalent of i)
+ //to the seed and construct the unique m_state per thead similar to cuda.
+ m_exec_once =false;
+ #endif
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE UniformRandomGenerator(
const UniformRandomGenerator& other) {
m_state = other.m_state;
+ #ifdef EIGEN_USE_SYCL
+ m_exec_once =other.m_exec_once;
+ #endif
}
template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
T operator()(Index i) const {
- uint64_t local_state = m_state + i;
- T result = RandomToTypeUniform<T>(&local_state);
- m_state = local_state;
+ #ifdef EIGEN_USE_SYCL
+ if(!m_exec_once) {
+ // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread
+ // The (i * 6364136223846793005ULL) is the remaining part of the PCG_XSH_RS_state on the GPU side
+ m_state += (i * 6364136223846793005ULL);
+ m_exec_once =true;
+ }
+ #endif
+ T result = RandomToTypeUniform<T>(&m_state, i);
return result;
}
@@ -165,16 +172,25 @@ template <typename T> class UniformRandomGenerator {
Packet packetOp(Index i) const {
const int packetSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX T values[packetSize];
- uint64_t local_state = m_state + i;
+ #ifdef EIGEN_USE_SYCL
+ if(!m_exec_once) {
+ // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread
+ m_state += (i * 6364136223846793005ULL);
+ m_exec_once =true;
+ }
+ #endif
+ EIGEN_UNROLL_LOOP
for (int j = 0; j < packetSize; ++j) {
- values[j] = RandomToTypeUniform<T>(&local_state);
+ values[j] = RandomToTypeUniform<T>(&m_state, i);
}
- m_state = local_state;
return internal::pload<Packet>(values);
}
private:
mutable uint64_t m_state;
+ #ifdef EIGEN_USE_SYCL
+ mutable bool m_exec_once;
+ #endif
};
template <typename Scalar>
@@ -190,14 +206,14 @@ struct functor_traits<UniformRandomGenerator<Scalar> > {
template <typename T> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-T RandomToTypeNormal(uint64_t* state) {
+T RandomToTypeNormal(uint64_t* state, uint64_t stream) {
// Use the ratio of uniform method to generate numbers following a normal
// distribution. See for example Numerical Recipes chapter 7.3.9 for the
// details.
T u, v, q;
do {
- u = RandomToTypeUniform<T>(state);
- v = T(1.7156) * (RandomToTypeUniform<T>(state) - T(0.5));
+ u = RandomToTypeUniform<T>(state, stream);
+ v = T(1.7156) * (RandomToTypeUniform<T>(state, stream) - T(0.5));
const T x = u - T(0.449871);
const T y = numext::abs(v) + T(0.386595);
q = x*x + y * (T(0.196)*y - T(0.25472)*x);
@@ -208,14 +224,14 @@ T RandomToTypeNormal(uint64_t* state) {
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<float> RandomToTypeNormal<std::complex<float> >(uint64_t* state) {
- return std::complex<float>(RandomToTypeNormal<float>(state),
- RandomToTypeNormal<float>(state));
+std::complex<float> RandomToTypeNormal<std::complex<float> >(uint64_t* state, uint64_t stream) {
+ return std::complex<float>(RandomToTypeNormal<float>(state, stream),
+ RandomToTypeNormal<float>(state, stream));
}
template <> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
-std::complex<double> RandomToTypeNormal<std::complex<double> >(uint64_t* state) {
- return std::complex<double>(RandomToTypeNormal<double>(state),
- RandomToTypeNormal<double>(state));
+std::complex<double> RandomToTypeNormal<std::complex<double> >(uint64_t* state, uint64_t stream) {
+ return std::complex<double>(RandomToTypeNormal<double>(state, stream),
+ RandomToTypeNormal<double>(state, stream));
}
@@ -226,17 +242,38 @@ template <typename T> class NormalRandomGenerator {
// Uses the given "seed" if non-zero, otherwise uses a random seed.
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(uint64_t seed = 0) {
m_state = PCG_XSH_RS_state(seed);
+ #ifdef EIGEN_USE_SYCL
+ // In SYCL it is not possible to build PCG_XSH_RS_state in one step.
+ // Therefor, we need two steps to initializate the m_state.
+ // IN SYCL, the constructor of the functor is s called on the CPU
+ // and we get the clock seed here from the CPU. However, This seed is
+ //the same for all the thread. As unlike CUDA, the thread.ID, BlockID, etc is not a global function.
+ // and only available on the Operator() function (which is called on the GPU).
+ // Therefore, the thread Id injection is not available at this stage. However when the operator()
+ //is called the thread ID will be avilable. So inside the opeator,
+ // we add the thrreadID, BlockId,... (which is equivalent of i)
+ //to the seed and construct the unique m_state per thead similar to cuda.
+ m_exec_once =false;
+ #endif
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE NormalRandomGenerator(
const NormalRandomGenerator& other) {
m_state = other.m_state;
+#ifdef EIGEN_USE_SYCL
+ m_exec_once=other.m_exec_once;
+#endif
}
template<typename Index> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
T operator()(Index i) const {
- uint64_t local_state = m_state + i;
- T result = RandomToTypeNormal<T>(&local_state);
- m_state = local_state;
+ #ifdef EIGEN_USE_SYCL
+ if(!m_exec_once) {
+ // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread
+ m_state += (i * 6364136223846793005ULL);
+ m_exec_once =true;
+ }
+ #endif
+ T result = RandomToTypeNormal<T>(&m_state, i);
return result;
}
@@ -244,16 +281,25 @@ template <typename T> class NormalRandomGenerator {
Packet packetOp(Index i) const {
const int packetSize = internal::unpacket_traits<Packet>::size;
EIGEN_ALIGN_MAX T values[packetSize];
- uint64_t local_state = m_state + i;
+ #ifdef EIGEN_USE_SYCL
+ if(!m_exec_once) {
+ // This is the second stage of adding thread Id to the CPU clock seed and build unique seed per thread
+ m_state += (i * 6364136223846793005ULL);
+ m_exec_once =true;
+ }
+ #endif
+ EIGEN_UNROLL_LOOP
for (int j = 0; j < packetSize; ++j) {
- values[j] = RandomToTypeNormal<T>(&local_state);
+ values[j] = RandomToTypeNormal<T>(&m_state, i);
}
- m_state = local_state;
return internal::pload<Packet>(values);
}
private:
mutable uint64_t m_state;
+ #ifdef EIGEN_USE_SYCL
+ mutable bool m_exec_once;
+ #endif
};