aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/BVH/KdBVH.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/BVH/KdBVH.h')
-rw-r--r--unsupported/Eigen/src/BVH/KdBVH.h222
1 files changed, 222 insertions, 0 deletions
diff --git a/unsupported/Eigen/src/BVH/KdBVH.h b/unsupported/Eigen/src/BVH/KdBVH.h
new file mode 100644
index 000000000..1b8d75865
--- /dev/null
+++ b/unsupported/Eigen/src/BVH/KdBVH.h
@@ -0,0 +1,222 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009 Ilya Baran <ibaran@mit.edu>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef KDBVH_H_INCLUDED
+#define KDBVH_H_INCLUDED
+
+namespace Eigen {
+
+namespace internal {
+
+//internal pair class for the BVH--used instead of std::pair because of alignment
+template<typename Scalar, int Dim>
+struct vector_int_pair
+{
+EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar, Dim)
+ typedef Matrix<Scalar, Dim, 1> VectorType;
+
+ vector_int_pair(const VectorType &v, int i) : first(v), second(i) {}
+
+ VectorType first;
+ int second;
+};
+
+//these templates help the tree initializer get the bounding boxes either from a provided
+//iterator range or using bounding_box in a unified way
+template<typename ObjectList, typename VolumeList, typename BoxIter>
+struct get_boxes_helper {
+ void operator()(const ObjectList &objects, BoxIter boxBegin, BoxIter boxEnd, VolumeList &outBoxes)
+ {
+ outBoxes.insert(outBoxes.end(), boxBegin, boxEnd);
+ eigen_assert(outBoxes.size() == objects.size());
+ }
+};
+
+template<typename ObjectList, typename VolumeList>
+struct get_boxes_helper<ObjectList, VolumeList, int> {
+ void operator()(const ObjectList &objects, int, int, VolumeList &outBoxes)
+ {
+ outBoxes.reserve(objects.size());
+ for(int i = 0; i < (int)objects.size(); ++i)
+ outBoxes.push_back(bounding_box(objects[i]));
+ }
+};
+
+} // end namespace internal
+
+
+/** \class KdBVH
+ * \brief A simple bounding volume hierarchy based on AlignedBox
+ *
+ * \param _Scalar The underlying scalar type of the bounding boxes
+ * \param _Dim The dimension of the space in which the hierarchy lives
+ * \param _Object The object type that lives in the hierarchy. It must have value semantics. Either bounding_box(_Object) must
+ * be defined and return an AlignedBox<_Scalar, _Dim> or bounding boxes must be provided to the tree initializer.
+ *
+ * This class provides a simple (as opposed to optimized) implementation of a bounding volume hierarchy analogous to a Kd-tree.
+ * Given a sequence of objects, it computes their bounding boxes, constructs a Kd-tree of their centers
+ * and builds a BVH with the structure of that Kd-tree. When the elements of the tree are too expensive to be copied around,
+ * it is useful for _Object to be a pointer.
+ */
+template<typename _Scalar, int _Dim, typename _Object> class KdBVH
+{
+public:
+ enum { Dim = _Dim };
+ typedef _Object Object;
+ typedef std::vector<Object, aligned_allocator<Object> > ObjectList;
+ typedef _Scalar Scalar;
+ typedef AlignedBox<Scalar, Dim> Volume;
+ typedef std::vector<Volume, aligned_allocator<Volume> > VolumeList;
+ typedef int Index;
+ typedef const int *VolumeIterator; //the iterators are just pointers into the tree's vectors
+ typedef const Object *ObjectIterator;
+
+ KdBVH() {}
+
+ /** Given an iterator range over \a Object references, constructs the BVH. Requires that bounding_box(Object) return a Volume. */
+ template<typename Iter> KdBVH(Iter begin, Iter end) { init(begin, end, 0, 0); } //int is recognized by init as not being an iterator type
+
+ /** Given an iterator range over \a Object references and an iterator range over their bounding boxes, constructs the BVH */
+ template<typename OIter, typename BIter> KdBVH(OIter begin, OIter end, BIter boxBegin, BIter boxEnd) { init(begin, end, boxBegin, boxEnd); }
+
+ /** Given an iterator range over \a Object references, constructs the BVH, overwriting whatever is in there currently.
+ * Requires that bounding_box(Object) return a Volume. */
+ template<typename Iter> void init(Iter begin, Iter end) { init(begin, end, 0, 0); }
+
+ /** Given an iterator range over \a Object references and an iterator range over their bounding boxes,
+ * constructs the BVH, overwriting whatever is in there currently. */
+ template<typename OIter, typename BIter> void init(OIter begin, OIter end, BIter boxBegin, BIter boxEnd)
+ {
+ objects.clear();
+ boxes.clear();
+ children.clear();
+
+ objects.insert(objects.end(), begin, end);
+ int n = static_cast<int>(objects.size());
+
+ if(n < 2)
+ return; //if we have at most one object, we don't need any internal nodes
+
+ VolumeList objBoxes;
+ VIPairList objCenters;
+
+ //compute the bounding boxes depending on BIter type
+ internal::get_boxes_helper<ObjectList, VolumeList, BIter>()(objects, boxBegin, boxEnd, objBoxes);
+
+ objCenters.reserve(n);
+ boxes.reserve(n - 1);
+ children.reserve(2 * n - 2);
+
+ for(int i = 0; i < n; ++i)
+ objCenters.push_back(VIPair(objBoxes[i].center(), i));
+
+ build(objCenters, 0, n, objBoxes, 0); //the recursive part of the algorithm
+
+ ObjectList tmp(n);
+ tmp.swap(objects);
+ for(int i = 0; i < n; ++i)
+ objects[i] = tmp[objCenters[i].second];
+ }
+
+ /** \returns the index of the root of the hierarchy */
+ inline Index getRootIndex() const { return (int)boxes.size() - 1; }
+
+ /** Given an \a index of a node, on exit, \a outVBegin and \a outVEnd range over the indices of the volume children of the node
+ * and \a outOBegin and \a outOEnd range over the object children of the node */
+ EIGEN_STRONG_INLINE void getChildren(Index index, VolumeIterator &outVBegin, VolumeIterator &outVEnd,
+ ObjectIterator &outOBegin, ObjectIterator &outOEnd) const
+ { //inlining this function should open lots of optimization opportunities to the compiler
+ if(index < 0) {
+ outVBegin = outVEnd;
+ if(!objects.empty())
+ outOBegin = &(objects[0]);
+ outOEnd = outOBegin + objects.size(); //output all objects--necessary when the tree has only one object
+ return;
+ }
+
+ int numBoxes = static_cast<int>(boxes.size());
+
+ int idx = index * 2;
+ if(children[idx + 1] < numBoxes) { //second index is always bigger
+ outVBegin = &(children[idx]);
+ outVEnd = outVBegin + 2;
+ outOBegin = outOEnd;
+ }
+ else if(children[idx] >= numBoxes) { //if both children are objects
+ outVBegin = outVEnd;
+ outOBegin = &(objects[children[idx] - numBoxes]);
+ outOEnd = outOBegin + 2;
+ } else { //if the first child is a volume and the second is an object
+ outVBegin = &(children[idx]);
+ outVEnd = outVBegin + 1;
+ outOBegin = &(objects[children[idx + 1] - numBoxes]);
+ outOEnd = outOBegin + 1;
+ }
+ }
+
+ /** \returns the bounding box of the node at \a index */
+ inline const Volume &getVolume(Index index) const
+ {
+ return boxes[index];
+ }
+
+private:
+ typedef internal::vector_int_pair<Scalar, Dim> VIPair;
+ typedef std::vector<VIPair, aligned_allocator<VIPair> > VIPairList;
+ typedef Matrix<Scalar, Dim, 1> VectorType;
+ struct VectorComparator //compares vectors, or, more specificall, VIPairs along a particular dimension
+ {
+ VectorComparator(int inDim) : dim(inDim) {}
+ inline bool operator()(const VIPair &v1, const VIPair &v2) const { return v1.first[dim] < v2.first[dim]; }
+ int dim;
+ };
+
+ //Build the part of the tree between objects[from] and objects[to] (not including objects[to]).
+ //This routine partitions the objCenters in [from, to) along the dimension dim, recursively constructs
+ //the two halves, and adds their parent node. TODO: a cache-friendlier layout
+ void build(VIPairList &objCenters, int from, int to, const VolumeList &objBoxes, int dim)
+ {
+ eigen_assert(to - from > 1);
+ if(to - from == 2) {
+ boxes.push_back(objBoxes[objCenters[from].second].merged(objBoxes[objCenters[from + 1].second]));
+ children.push_back(from + (int)objects.size() - 1); //there are objects.size() - 1 tree nodes
+ children.push_back(from + (int)objects.size());
+ }
+ else if(to - from == 3) {
+ int mid = from + 2;
+ std::nth_element(objCenters.begin() + from, objCenters.begin() + mid,
+ objCenters.begin() + to, VectorComparator(dim)); //partition
+ build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
+ int idx1 = (int)boxes.size() - 1;
+ boxes.push_back(boxes[idx1].merged(objBoxes[objCenters[mid].second]));
+ children.push_back(idx1);
+ children.push_back(mid + (int)objects.size() - 1);
+ }
+ else {
+ int mid = from + (to - from) / 2;
+ nth_element(objCenters.begin() + from, objCenters.begin() + mid,
+ objCenters.begin() + to, VectorComparator(dim)); //partition
+ build(objCenters, from, mid, objBoxes, (dim + 1) % Dim);
+ int idx1 = (int)boxes.size() - 1;
+ build(objCenters, mid, to, objBoxes, (dim + 1) % Dim);
+ int idx2 = (int)boxes.size() - 1;
+ boxes.push_back(boxes[idx1].merged(boxes[idx2]));
+ children.push_back(idx1);
+ children.push_back(idx2);
+ }
+ }
+
+ std::vector<int> children; //children of x are children[2x] and children[2x+1], indices bigger than boxes.size() index into objects.
+ VolumeList boxes;
+ ObjectList objects;
+};
+
+} // end namespace Eigen
+
+#endif //KDBVH_H_INCLUDED