aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/EulerAngles/EulerAngles.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/EulerAngles/EulerAngles.h')
-rw-r--r--unsupported/Eigen/src/EulerAngles/EulerAngles.h257
1 files changed, 113 insertions, 144 deletions
diff --git a/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
index 13a0da1ab..e43cdb7fb 100644
--- a/unsupported/Eigen/src/EulerAngles/EulerAngles.h
+++ b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
@@ -12,11 +12,6 @@
namespace Eigen
{
- /*template<typename Other,
- int OtherRows=Other::RowsAtCompileTime,
- int OtherCols=Other::ColsAtCompileTime>
- struct ei_eulerangles_assign_impl;*/
-
/** \class EulerAngles
*
* \ingroup EulerAngles_Module
@@ -36,7 +31,7 @@ namespace Eigen
* ### Rotation representation and conversions ###
*
* It has been proved(see Wikipedia link below) that every rotation can be represented
- * by Euler angles, but there is no singular representation (e.g. unlike rotation matrices).
+ * by Euler angles, but there is no single representation (e.g. unlike rotation matrices).
* Therefore, you can convert from Eigen rotation and to them
* (including rotation matrices, which is not called "rotations" by Eigen design).
*
@@ -55,33 +50,27 @@ namespace Eigen
* Additionally, some axes related computation is done in compile time.
*
* #### Euler angles ranges in conversions ####
+ * Rotations representation as EulerAngles are not single (unlike matrices),
+ * and even have infinite EulerAngles representations.<BR>
+ * For example, add or subtract 2*PI from either angle of EulerAngles
+ * and you'll get the same rotation.
+ * This is the general reason for infinite representation,
+ * but it's not the only general reason for not having a single representation.
*
- * When converting some rotation to Euler angles, there are some ways you can guarantee
- * the Euler angles ranges.
+ * When converting rotation to EulerAngles, this class convert it to specific ranges
+ * When converting some rotation to EulerAngles, the rules for ranges are as follow:
+ * - If the rotation we converting from is an EulerAngles
+ * (even when it represented as RotationBase explicitly), angles ranges are __undefined__.
+ * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
*
- * #### implicit ranges ####
- * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
- * unless you convert from some other Euler angles.
- * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
* \sa EulerAngles(const MatrixBase<Derived>&)
* \sa EulerAngles(const RotationBase<Derived, 3>&)
*
- * #### explicit ranges ####
- * When using explicit ranges, all angles are guarantee to be in the range you choose.
- * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
- * - _true_ - force the range between [0, +2*PI]
- * - _false_ - force the range between [-PI, +PI]
- *
- * ##### compile time ranges #####
- * This is when you have compile time ranges and you prefer to
- * use template parameter. (e.g. for performance)
- * \sa FromRotation()
- *
- * ##### run-time time ranges #####
- * Run-time ranges are also supported.
- * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
- * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
- *
* ### Convenient user typedefs ###
*
* Convenient typedefs for EulerAngles exist for float and double scalar,
@@ -103,7 +92,7 @@ namespace Eigen
*
* More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
*
- * \tparam _Scalar the scalar type, i.e., the type of the angles.
+ * \tparam _Scalar the scalar type, i.e. the type of the angles.
*
* \tparam _System the EulerSystem to use, which represents the axes of rotation.
*/
@@ -111,8 +100,11 @@ namespace Eigen
class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
{
public:
+ typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base;
+
/** the scalar type of the angles */
typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
/** the EulerSystem to use, which represents the axes of rotation. */
typedef _System System;
@@ -146,67 +138,56 @@ namespace Eigen
public:
/** Default constructor without initialization. */
EulerAngles() {}
- /** Constructs and initialize Euler angles(\p alpha, \p beta, \p gamma). */
+ /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */
EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
m_angles(alpha, beta, gamma) {}
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
- *
- * \note All angles will be in the range [-PI, PI].
- */
- template<typename Derived>
- EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
+ // TODO: Test this constructor
+ /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */
+ explicit EulerAngles(const Scalar* data) : m_angles(data) {}
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
+ /** Constructs and initializes an EulerAngles from either:
+ * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
+ * - a 3D vector expression representing Euler angles.
*
- * \param m The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
+ * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR>
+ * Alpha and gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
+ */
template<typename Derived>
- EulerAngles(
- const MatrixBase<Derived>& m,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
+ explicit EulerAngles(const MatrixBase<Derived>& other) { *this = other; }
/** Constructs and initialize Euler angles from a rotation \p rot.
*
- * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
- * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
- * (Use other functions here for enforcing range if this effect is desired)
+ * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly),
+ * angles ranges are __undefined__.
+ * Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
*/
template<typename Derived>
- EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
+ EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); }
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param rot The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<typename Derived>
- EulerAngles(
- const RotationBase<Derived, 3>& rot,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
+ /*EulerAngles(const QuaternionType& q)
+ {
+ // TODO: Implement it in a faster way for quaternions
+ // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
+ // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
+ // Currently we compute all matrix cells from quaternion.
+
+ // Special case only for ZYX
+ //Scalar y2 = q.y() * q.y();
+ //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
+ //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
+ //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
+ }*/
/** \returns The angle values stored in a vector (alpha, beta, gamma). */
const Vector3& angles() const { return m_angles; }
@@ -246,90 +227,48 @@ namespace Eigen
return inverse();
}
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range (__only in compile time__).
+ /** Set \c *this from either:
+ * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
+ * - a 3D vector expression representing Euler angles.
*
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param m The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const MatrixBase<Derived>& m)
- {
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
-
- EulerAngles e;
- System::template CalcEulerAngles<
- PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
- return e;
- }
-
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range (__only in compile time__).
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param rot The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about
+ * angles ranges output.
*/
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
- {
- return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
- }
-
- /*EulerAngles& fromQuaternion(const QuaternionType& q)
+ template<class Derived>
+ EulerAngles& operator=(const MatrixBase<Derived>& other)
{
- // TODO: Implement it in a faster way for quaternions
- // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
- // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
- // Currently we compute all matrix cells from quaternion.
-
- // Special case only for ZYX
- //Scalar y2 = q.y() * q.y();
- //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
- //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
- //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
- }*/
-
- /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
- template<typename Derived>
- EulerAngles& operator=(const MatrixBase<Derived>& m) {
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename Derived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- System::CalcEulerAngles(*this, m);
+ internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived());
return *this;
}
// TODO: Assign and construct from another EulerAngles (with different system)
- /** Set \c *this from a rotation. */
+ /** Set \c *this from a rotation.
+ *
+ * See EulerAngles(const RotationBase<Derived, 3>&) for more information about
+ * angles ranges output.
+ */
template<typename Derived>
EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
System::CalcEulerAngles(*this, rot.toRotationMatrix());
return *this;
}
- // TODO: Support isApprox function
+ /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+ * determined by \a prec.
+ *
+ * \sa MatrixBase::isApprox() */
+ bool isApprox(const EulerAngles& other,
+ const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
+ { return angles().isApprox(other.angles(), prec); }
/** \returns an equivalent 3x3 rotation matrix. */
Matrix3 toRotationMatrix() const
{
+ // TODO: Calc it faster
return static_cast<QuaternionType>(*this).toRotationMatrix();
}
@@ -347,6 +286,15 @@ namespace Eigen
s << eulerAngles.angles().transpose();
return s;
}
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType */
+ template <typename NewScalarType>
+ EulerAngles<NewScalarType, System> cast() const
+ {
+ EulerAngles<NewScalarType, System> e;
+ e.angles() = angles().template cast<NewScalarType>();
+ return e;
+ }
};
#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
@@ -379,8 +327,29 @@ EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
{
typedef _Scalar Scalar;
};
+
+ // set from a rotation matrix
+ template<class System, class Other>
+ struct eulerangles_assign_impl<System,Other,3,3>
+ {
+ typedef typename Other::Scalar Scalar;
+ static void run(EulerAngles<Scalar, System>& e, const Other& m)
+ {
+ System::CalcEulerAngles(e, m);
+ }
+ };
+
+ // set from a vector of Euler angles
+ template<class System, class Other>
+ struct eulerangles_assign_impl<System,Other,3,1>
+ {
+ typedef typename Other::Scalar Scalar;
+ static void run(EulerAngles<Scalar, System>& e, const Other& vec)
+ {
+ e.angles() = vec;
+ }
+ };
}
-
}
#endif // EIGEN_EULERANGLESCLASS_H