aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/EulerAngles/EulerSystem.h
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/EulerAngles/EulerSystem.h')
-rw-r--r--unsupported/Eigen/src/EulerAngles/EulerSystem.h197
1 files changed, 88 insertions, 109 deletions
diff --git a/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
index 98f9f647d..2a833b0a4 100644
--- a/unsupported/Eigen/src/EulerAngles/EulerSystem.h
+++ b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
@@ -12,13 +12,13 @@
namespace Eigen
{
- // Forward declerations
+ // Forward declarations
template <typename _Scalar, class _System>
class EulerAngles;
namespace internal
{
- // TODO: Check if already exists on the rest API
+ // TODO: Add this trait to the Eigen internal API?
template <int Num, bool IsPositive = (Num > 0)>
struct Abs
{
@@ -36,6 +36,12 @@ namespace Eigen
{
enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
};
+
+ template<typename System,
+ typename Other,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+ struct eulerangles_assign_impl;
}
#define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
@@ -69,7 +75,7 @@ namespace Eigen
*
* You can use this class to get two things:
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
- * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
+ * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
*
* Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
* This meta-class store constantly those signed axes. (see \ref EulerAxis)
@@ -80,7 +86,7 @@ namespace Eigen
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
* - all axes X, Y, Z in each valid order (see below what order is valid)
* - rotation over the axis is supported both over the positive and negative directions.
- * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
+ * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
*
* Since EulerSystem support both positive and negative directions,
* you may call this rotation distinction in other names:
@@ -90,7 +96,7 @@ namespace Eigen
* Notice all axed combination are valid, and would trigger a static assertion.
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
* This yield two and only two classes:
- * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
+ * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
* - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
* and the second is different, e.g. {X,Y,X}
*
@@ -112,9 +118,9 @@ namespace Eigen
*
* \tparam _AlphaAxis the first fixed EulerAxis
*
- * \tparam _AlphaAxis the second fixed EulerAxis
+ * \tparam _BetaAxis the second fixed EulerAxis
*
- * \tparam _AlphaAxis the third fixed EulerAxis
+ * \tparam _GammaAxis the third fixed EulerAxis
*/
template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
class EulerSystem
@@ -138,14 +144,16 @@ namespace Eigen
BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
- IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
- IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
- IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
-
- IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
- IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
+ IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
+ IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
+ IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
+
+ // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
+ // by Z, or Z is followed by X; otherwise it is odd.
+ IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
+ IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
- IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
+ IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
};
private:
@@ -165,86 +173,84 @@ namespace Eigen
EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
- enum
- {
+ static const int
// I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
// They are used in this class converters.
// They are always different from each other, and their possible values are: 0, 1, or 2.
- I = AlphaAxisAbs - 1,
- J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
- K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
- };
+ I_ = AlphaAxisAbs - 1,
+ J_ = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
+ K_ = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
+ ;
// TODO: Get @mat parameter in form that avoids double evaluation.
template <typename Derived>
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sin;
- using std::cos;
+ using std::sqrt;
typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,K), mat(K,K));
- Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- res[1] = atan2(-mat(I,K), -c2);
+
+ const Scalar plusMinus = IsEven? 1 : -1;
+ const Scalar minusPlus = IsOdd? 1 : -1;
+
+ const Scalar Rsum = sqrt((mat(I_,I_) * mat(I_,I_) + mat(I_,J_) * mat(I_,J_) + mat(J_,K_) * mat(J_,K_) + mat(K_,K_) * mat(K_,K_))/2);
+ res[1] = atan2(plusMinus * mat(I_,K_), Rsum);
+
+ // There is a singularity when cos(beta) == 0
+ if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
+ res[0] = atan2(minusPlus * mat(J_, K_), mat(K_, K_));
+ res[2] = atan2(minusPlus * mat(I_, J_), mat(I_, I_));
+ }
+ else if(plusMinus * mat(I_, K_) > 0) {// cos(beta) == 0 and sin(beta) == 1
+ Scalar spos = mat(J_, I_) + plusMinus * mat(K_, J_); // 2*sin(alpha + plusMinus * gamma
+ Scalar cpos = mat(J_, J_) + minusPlus * mat(K_, I_); // 2*cos(alpha + plusMinus * gamma)
+ Scalar alphaPlusMinusGamma = atan2(spos, cpos);
+ res[0] = alphaPlusMinusGamma;
+ res[2] = 0;
+ }
+ else {// cos(beta) == 0 and sin(beta) == -1
+ Scalar sneg = plusMinus * (mat(K_, J_) + minusPlus * mat(J_, I_)); // 2*sin(alpha + minusPlus*gamma)
+ Scalar cneg = mat(J_, J_) + plusMinus * mat(K_, I_); // 2*cos(alpha + minusPlus*gamma)
+ Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
+ res[0] = alphaMinusPlusBeta;
+ res[2] = 0;
}
- else
- res[1] = atan2(-mat(I,K), c2);
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
}
template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
+ const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sin;
- using std::cos;
+ using std::sqrt;
typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,I), mat(K,I));
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
- {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = -atan2(s2, mat(I,I));
- }
- else
- {
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = atan2(s2, mat(I,I));
- }
- // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
- // we can compute their respective rotation, and apply its inverse to M. Since the result must
- // be a rotation around x, we have:
- //
- // c2 s1.s2 c1.s2 1 0 0
- // 0 c1 -s1 * M = 0 c3 s3
- // -s2 s1.c2 c1.c2 0 -s3 c3
- //
- // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
+ const Scalar plusMinus = IsEven? 1 : -1;
+ const Scalar minusPlus = IsOdd? 1 : -1;
+
+ const Scalar Rsum = sqrt((mat(I_, J_) * mat(I_, J_) + mat(I_, K_) * mat(I_, K_) + mat(J_, I_) * mat(J_, I_) + mat(K_, I_) * mat(K_, I_)) / 2);
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
+ res[1] = atan2(Rsum, mat(I_, I_));
+
+ // There is a singularity when sin(beta) == 0
+ if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
+ res[0] = atan2(mat(J_, I_), minusPlus * mat(K_, I_));
+ res[2] = atan2(mat(I_, J_), plusMinus * mat(I_, K_));
+ }
+ else if(mat(I_, I_) > 0) {// sin(beta) == 0 and cos(beta) == 1
+ Scalar spos = plusMinus * mat(K_, J_) + minusPlus * mat(J_, K_); // 2*sin(alpha + gamma)
+ Scalar cpos = mat(J_, J_) + mat(K_, K_); // 2*cos(alpha + gamma)
+ res[0] = atan2(spos, cpos);
+ res[2] = 0;
+ }
+ else {// sin(beta) == 0 and cos(beta) == -1
+ Scalar sneg = plusMinus * mat(K_, J_) + plusMinus * mat(J_, K_); // 2*sin(alpha - gamma)
+ Scalar cneg = mat(J_, J_) - mat(K_, K_); // 2*cos(alpha - gamma)
+ res[0] = atan2(sneg, cneg);
+ res[2] = 0;
+ }
}
template<typename Scalar>
@@ -252,55 +258,28 @@ namespace Eigen
EulerAngles<Scalar, EulerSystem>& res,
const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
{
- CalcEulerAngles(res, mat, false, false, false);
- }
-
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
- {
- CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
- }
-
- template<typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma)
- {
CalcEulerAngles_imp(
res.angles(), mat,
typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
- if (IsAlphaOpposite == IsOdd)
+ if (IsAlphaOpposite)
res.alpha() = -res.alpha();
- if (IsBetaOpposite == IsOdd)
+ if (IsBetaOpposite)
res.beta() = -res.beta();
- if (IsGammaOpposite == IsOdd)
+ if (IsGammaOpposite)
res.gamma() = -res.gamma();
-
- // Saturate results to the requested range
- if (PositiveRangeAlpha && (res.alpha() < 0))
- res.alpha() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeBeta && (res.beta() < 0))
- res.beta() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeGamma && (res.gamma() < 0))
- res.gamma() += Scalar(2 * EIGEN_PI);
}
template <typename _Scalar, class _System>
friend class Eigen::EulerAngles;
+
+ template<typename System,
+ typename Other,
+ int OtherRows,
+ int OtherCols>
+ friend struct internal::eulerangles_assign_impl;
};
#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \