aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/Polynomials
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/Eigen/src/Polynomials')
-rw-r--r--unsupported/Eigen/src/Polynomials/Companion.h94
-rw-r--r--unsupported/Eigen/src/Polynomials/PolynomialSolver.h46
-rw-r--r--unsupported/Eigen/src/Polynomials/PolynomialUtils.h8
3 files changed, 87 insertions, 61 deletions
diff --git a/unsupported/Eigen/src/Polynomials/Companion.h b/unsupported/Eigen/src/Polynomials/Companion.h
index b515c2920..59a15b098 100644
--- a/unsupported/Eigen/src/Polynomials/Companion.h
+++ b/unsupported/Eigen/src/Polynomials/Companion.h
@@ -20,12 +20,6 @@ namespace internal {
#ifndef EIGEN_PARSED_BY_DOXYGEN
-template <typename T>
-T radix(){ return 2; }
-
-template <typename T>
-T radix2(){ return radix<T>()*radix<T>(); }
-
template<int Size>
struct decrement_if_fixed_size
{
@@ -75,8 +69,7 @@ class companion
void setPolynomial( const VectorType& poly )
{
const Index deg = poly.size()-1;
- m_monic = -1/poly[deg] * poly.head(deg);
- //m_bl_diag.setIdentity( deg-1 );
+ m_monic = -poly.head(deg)/poly[deg];
m_bl_diag.setOnes(deg-1);
}
@@ -89,13 +82,13 @@ class companion
{
const Index deg = m_monic.size();
const Index deg_1 = deg-1;
- DenseCompanionMatrixType companion(deg,deg);
- companion <<
+ DenseCompanionMatrixType companMat(deg,deg);
+ companMat <<
( LeftBlock(deg,deg_1)
<< LeftBlockFirstRow::Zero(1,deg_1),
BottomLeftBlock::Identity(deg-1,deg-1)*m_bl_diag.asDiagonal() ).finished()
, m_monic;
- return companion;
+ return companMat;
}
@@ -104,20 +97,20 @@ class companion
/** Helper function for the balancing algorithm.
* \returns true if the row and the column, having colNorm and rowNorm
* as norms, are balanced, false otherwise.
- * colB and rowB are repectively the multipliers for
+ * colB and rowB are respectively the multipliers for
* the column and the row in order to balance them.
* */
- bool balanced( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB );
+ bool balanced( RealScalar colNorm, RealScalar rowNorm,
+ bool& isBalanced, RealScalar& colB, RealScalar& rowB );
/** Helper function for the balancing algorithm.
* \returns true if the row and the column, having colNorm and rowNorm
* as norms, are balanced, false otherwise.
- * colB and rowB are repectively the multipliers for
+ * colB and rowB are respectively the multipliers for
* the column and the row in order to balance them.
* */
- bool balancedR( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB );
+ bool balancedR( RealScalar colNorm, RealScalar rowNorm,
+ bool& isBalanced, RealScalar& colB, RealScalar& rowB );
public:
/**
@@ -139,10 +132,13 @@ class companion
template< typename _Scalar, int _Deg >
inline
-bool companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB )
+bool companion<_Scalar,_Deg>::balanced( RealScalar colNorm, RealScalar rowNorm,
+ bool& isBalanced, RealScalar& colB, RealScalar& rowB )
{
- if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
+ if( RealScalar(0) == colNorm || RealScalar(0) == rowNorm
+ || !(numext::isfinite)(colNorm) || !(numext::isfinite)(rowNorm)){
+ return true;
+ }
else
{
//To find the balancing coefficients, if the radix is 2,
@@ -150,53 +146,61 @@ bool companion<_Scalar,_Deg>::balanced( Scalar colNorm, Scalar rowNorm,
// \f$ 2^{2\sigma-1} < rowNorm / colNorm \le 2^{2\sigma+1} \f$
// then the balancing coefficient for the row is \f$ 1/2^{\sigma} \f$
// and the balancing coefficient for the column is \f$ 2^{\sigma} \f$
- rowB = rowNorm / radix<Scalar>();
- colB = Scalar(1);
- const Scalar s = colNorm + rowNorm;
-
- while (colNorm < rowB)
+ const RealScalar radix = RealScalar(2);
+ const RealScalar radix2 = RealScalar(4);
+
+ rowB = rowNorm / radix;
+ colB = RealScalar(1);
+ const RealScalar s = colNorm + rowNorm;
+
+ // Find sigma s.t. rowNorm / 2 <= 2^(2*sigma) * colNorm
+ RealScalar scout = colNorm;
+ while (scout < rowB)
{
- colB *= radix<Scalar>();
- colNorm *= radix2<Scalar>();
+ colB *= radix;
+ scout *= radix2;
}
-
- rowB = rowNorm * radix<Scalar>();
-
- while (colNorm >= rowB)
+
+ // We now have an upper-bound for sigma, try to lower it.
+ // Find sigma s.t. 2^(2*sigma) * colNorm / 2 < rowNorm
+ scout = colNorm * (colB / radix) * colB; // Avoid overflow.
+ while (scout >= rowNorm)
{
- colB /= radix<Scalar>();
- colNorm /= radix2<Scalar>();
+ colB /= radix;
+ scout /= radix2;
}
- //This line is used to avoid insubstantial balancing
- if ((rowNorm + colNorm) < Scalar(0.95) * s * colB)
+ // This line is used to avoid insubstantial balancing.
+ if ((rowNorm + radix * scout) < RealScalar(0.95) * s * colB)
{
isBalanced = false;
- rowB = Scalar(1) / colB;
+ rowB = RealScalar(1) / colB;
return false;
}
- else{
- return true; }
+ else
+ {
+ return true;
+ }
}
}
template< typename _Scalar, int _Deg >
inline
-bool companion<_Scalar,_Deg>::balancedR( Scalar colNorm, Scalar rowNorm,
- bool& isBalanced, Scalar& colB, Scalar& rowB )
+bool companion<_Scalar,_Deg>::balancedR( RealScalar colNorm, RealScalar rowNorm,
+ bool& isBalanced, RealScalar& colB, RealScalar& rowB )
{
- if( Scalar(0) == colNorm || Scalar(0) == rowNorm ){ return true; }
+ if( RealScalar(0) == colNorm || RealScalar(0) == rowNorm ){ return true; }
else
{
/**
* Set the norm of the column and the row to the geometric mean
* of the row and column norm
*/
- const _Scalar q = colNorm/rowNorm;
+ const RealScalar q = colNorm/rowNorm;
if( !isApprox( q, _Scalar(1) ) )
{
rowB = sqrt( colNorm/rowNorm );
- colB = Scalar(1)/rowB;
+ colB = RealScalar(1)/rowB;
isBalanced = false;
return false;
@@ -219,8 +223,8 @@ void companion<_Scalar,_Deg>::balance()
while( !hasConverged )
{
hasConverged = true;
- Scalar colNorm,rowNorm;
- Scalar colB,rowB;
+ RealScalar colNorm,rowNorm;
+ RealScalar colB,rowB;
//First row, first column excluding the diagonal
//==============================================
diff --git a/unsupported/Eigen/src/Polynomials/PolynomialSolver.h b/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
index 03198ec8e..5e0ecbb43 100644
--- a/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
+++ b/unsupported/Eigen/src/Polynomials/PolynomialSolver.h
@@ -99,7 +99,7 @@ class PolynomialSolverBase
*/
inline const RootType& greatestRoot() const
{
- std::greater<Scalar> greater;
+ std::greater<RealScalar> greater;
return selectComplexRoot_withRespectToNorm( greater );
}
@@ -108,7 +108,7 @@ class PolynomialSolverBase
*/
inline const RootType& smallestRoot() const
{
- std::less<Scalar> less;
+ std::less<RealScalar> less;
return selectComplexRoot_withRespectToNorm( less );
}
@@ -126,7 +126,7 @@ class PolynomialSolverBase
for( Index i=0; i<m_roots.size(); ++i )
{
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
+ if( abs( m_roots[i].imag() ) <= absImaginaryThreshold )
{
if( !hasArealRoot )
{
@@ -144,10 +144,10 @@ class PolynomialSolverBase
}
}
}
- else
+ else if(!hasArealRoot)
{
if( abs( m_roots[i].imag() ) < abs( m_roots[res].imag() ) ){
- res = i; }
+ res = i;}
}
}
return numext::real_ref(m_roots[res]);
@@ -167,7 +167,7 @@ class PolynomialSolverBase
for( Index i=0; i<m_roots.size(); ++i )
{
- if( abs( m_roots[i].imag() ) < absImaginaryThreshold )
+ if( abs( m_roots[i].imag() ) <= absImaginaryThreshold )
{
if( !hasArealRoot )
{
@@ -213,7 +213,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::greater<Scalar> greater;
+ std::greater<RealScalar> greater;
return selectRealRoot_withRespectToAbsRealPart( greater, hasArealRoot, absImaginaryThreshold );
}
@@ -236,7 +236,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::less<Scalar> less;
+ std::less<RealScalar> less;
return selectRealRoot_withRespectToAbsRealPart( less, hasArealRoot, absImaginaryThreshold );
}
@@ -259,7 +259,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::greater<Scalar> greater;
+ std::greater<RealScalar> greater;
return selectRealRoot_withRespectToRealPart( greater, hasArealRoot, absImaginaryThreshold );
}
@@ -282,7 +282,7 @@ class PolynomialSolverBase
bool& hasArealRoot,
const RealScalar& absImaginaryThreshold = NumTraits<Scalar>::dummy_precision() ) const
{
- std::less<Scalar> less;
+ std::less<RealScalar> less;
return selectRealRoot_withRespectToRealPart( less, hasArealRoot, absImaginaryThreshold );
}
@@ -327,7 +327,7 @@ class PolynomialSolverBase
* However, almost always, correct accuracy is reached even in these cases for 64bit
* (double) floating types and small polynomial degree (<20).
*/
-template< typename _Scalar, int _Deg >
+template<typename _Scalar, int _Deg>
class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
{
public:
@@ -337,7 +337,10 @@ class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
EIGEN_POLYNOMIAL_SOLVER_BASE_INHERITED_TYPES( PS_Base )
typedef Matrix<Scalar,_Deg,_Deg> CompanionMatrixType;
- typedef EigenSolver<CompanionMatrixType> EigenSolverType;
+ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
+ ComplexEigenSolver<CompanionMatrixType>,
+ EigenSolver<CompanionMatrixType> >::type EigenSolverType;
+ typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, Scalar, std::complex<Scalar> >::type ComplexScalar;
public:
/** Computes the complex roots of a new polynomial. */
@@ -352,6 +355,25 @@ class PolynomialSolver : public PolynomialSolverBase<_Scalar,_Deg>
companion.balance();
m_eigenSolver.compute( companion.denseMatrix() );
m_roots = m_eigenSolver.eigenvalues();
+ // cleanup noise in imaginary part of real roots:
+ // if the imaginary part is rather small compared to the real part
+ // and that cancelling the imaginary part yield a smaller evaluation,
+ // then it's safe to keep the real part only.
+ RealScalar coarse_prec = RealScalar(std::pow(4,poly.size()+1))*NumTraits<RealScalar>::epsilon();
+ for(Index i = 0; i<m_roots.size(); ++i)
+ {
+ if( internal::isMuchSmallerThan(numext::abs(numext::imag(m_roots[i])),
+ numext::abs(numext::real(m_roots[i])),
+ coarse_prec) )
+ {
+ ComplexScalar as_real_root = ComplexScalar(numext::real(m_roots[i]));
+ if( numext::abs(poly_eval(poly, as_real_root))
+ <= numext::abs(poly_eval(poly, m_roots[i])))
+ {
+ m_roots[i] = as_real_root;
+ }
+ }
+ }
}
else if(poly.size () == 2)
{
diff --git a/unsupported/Eigen/src/Polynomials/PolynomialUtils.h b/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
index 40ba65b7e..394e857ac 100644
--- a/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
+++ b/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
@@ -20,8 +20,8 @@ namespace Eigen {
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
* \param[in] x : the value to evaluate the polynomial at.
*
- * <i><b>Note for stability:</b></i>
- * <dd> \f$ |x| \le 1 \f$ </dd>
+ * \note for stability:
+ * \f$ |x| \le 1 \f$
*/
template <typename Polynomials, typename T>
inline
@@ -67,8 +67,8 @@ T poly_eval( const Polynomials& poly, const T& x )
* by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
* e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
*
- * <i><b>Precondition:</b></i>
- * <dd> the leading coefficient of the input polynomial poly must be non zero </dd>
+ * \pre
+ * the leading coefficient of the input polynomial poly must be non zero
*/
template <typename Polynomial>
inline