aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/cxx11_tensor_block_eval.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/cxx11_tensor_block_eval.cpp')
-rw-r--r--unsupported/test/cxx11_tensor_block_eval.cpp858
1 files changed, 858 insertions, 0 deletions
diff --git a/unsupported/test/cxx11_tensor_block_eval.cpp b/unsupported/test/cxx11_tensor_block_eval.cpp
new file mode 100644
index 000000000..b2e26ebb7
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_block_eval.cpp
@@ -0,0 +1,858 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// clang-format off
+#include "main.h"
+#include <Eigen/CXX11/Tensor>
+// clang-format on
+
+using Eigen::internal::TensorBlockDescriptor;
+using Eigen::internal::TensorExecutor;
+
+// -------------------------------------------------------------------------- //
+// Utility functions to generate random tensors, blocks, and evaluate them.
+
+template <int NumDims>
+static DSizes<Index, NumDims> RandomDims(Index min, Index max) {
+ DSizes<Index, NumDims> dims;
+ for (int i = 0; i < NumDims; ++i) {
+ dims[i] = internal::random<Index>(min, max);
+ }
+ return DSizes<Index, NumDims>(dims);
+}
+
+// Block offsets and extents allows to construct a TensorSlicingOp corresponding
+// to a TensorBlockDescriptor.
+template <int NumDims>
+struct TensorBlockParams {
+ DSizes<Index, NumDims> offsets;
+ DSizes<Index, NumDims> sizes;
+ TensorBlockDescriptor<NumDims, Index> desc;
+};
+
+template <int Layout, int NumDims>
+static TensorBlockParams<NumDims> RandomBlock(DSizes<Index, NumDims> dims,
+ Index min, Index max) {
+ // Choose random offsets and sizes along all tensor dimensions.
+ DSizes<Index, NumDims> offsets(RandomDims<NumDims>(min, max));
+ DSizes<Index, NumDims> sizes(RandomDims<NumDims>(min, max));
+
+ // Make sure that offset + size do not overflow dims.
+ for (int i = 0; i < NumDims; ++i) {
+ offsets[i] = numext::mini(dims[i] - 1, offsets[i]);
+ sizes[i] = numext::mini(sizes[i], dims[i] - offsets[i]);
+ }
+
+ Index offset = 0;
+ DSizes<Index, NumDims> strides = Eigen::internal::strides<Layout>(dims);
+ for (int i = 0; i < NumDims; ++i) {
+ offset += strides[i] * offsets[i];
+ }
+
+ return {offsets, sizes, TensorBlockDescriptor<NumDims, Index>(offset, sizes)};
+}
+
+// Generate block with block sizes skewed towards inner dimensions. This type of
+// block is required for evaluating broadcast expressions.
+template <int Layout, int NumDims>
+static TensorBlockParams<NumDims> SkewedInnerBlock(
+ DSizes<Index, NumDims> dims) {
+ using BlockMapper = internal::TensorBlockMapper<NumDims, Layout, Index>;
+ BlockMapper block_mapper(dims,
+ {internal::TensorBlockShapeType::kSkewedInnerDims,
+ internal::random<size_t>(1, dims.TotalSize()),
+ {0, 0, 0}});
+
+ Index total_blocks = block_mapper.blockCount();
+ Index block_index = internal::random<Index>(0, total_blocks - 1);
+ auto block = block_mapper.blockDescriptor(block_index);
+ DSizes<Index, NumDims> sizes = block.dimensions();
+
+ auto strides = internal::strides<Layout>(dims);
+ DSizes<Index, NumDims> offsets;
+
+ // Compute offsets for the first block coefficient.
+ Index index = block.offset();
+ if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
+ for (int i = NumDims - 1; i > 0; --i) {
+ const Index idx = index / strides[i];
+ index -= idx * strides[i];
+ offsets[i] = idx;
+ }
+ if (NumDims > 0) offsets[0] = index;
+ } else {
+ for (int i = 0; i < NumDims - 1; ++i) {
+ const Index idx = index / strides[i];
+ index -= idx * strides[i];
+ offsets[i] = idx;
+ }
+ if (NumDims > 0) offsets[NumDims - 1] = index;
+ }
+
+ return {offsets, sizes, block};
+}
+
+template <int NumDims>
+static TensorBlockParams<NumDims> FixedSizeBlock(DSizes<Index, NumDims> dims) {
+ DSizes<Index, NumDims> offsets;
+ for (int i = 0; i < NumDims; ++i) offsets[i] = 0;
+
+ return {offsets, dims, TensorBlockDescriptor<NumDims, Index>(0, dims)};
+}
+
+inline Eigen::IndexList<Index, Eigen::type2index<1>> NByOne(Index n) {
+ Eigen::IndexList<Index, Eigen::type2index<1>> ret;
+ ret.set(0, n);
+ return ret;
+}
+inline Eigen::IndexList<Eigen::type2index<1>, Index> OneByM(Index m) {
+ Eigen::IndexList<Eigen::type2index<1>, Index> ret;
+ ret.set(1, m);
+ return ret;
+}
+
+// -------------------------------------------------------------------------- //
+// Verify that block expression evaluation produces the same result as a
+// TensorSliceOp (reading a tensor block is same to taking a tensor slice).
+
+template <typename T, int NumDims, int Layout, typename Expression,
+ typename GenBlockParams>
+static void VerifyBlockEvaluator(Expression expr, GenBlockParams gen_block) {
+ using Device = DefaultDevice;
+ auto d = Device();
+
+ // Scratch memory allocator for block evaluation.
+ typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
+ TensorBlockScratch scratch(d);
+
+ // TensorEvaluator is needed to produce tensor blocks of the expression.
+ auto eval = TensorEvaluator<const decltype(expr), Device>(expr, d);
+ eval.evalSubExprsIfNeeded(nullptr);
+
+ // Choose a random offsets, sizes and TensorBlockDescriptor.
+ TensorBlockParams<NumDims> block_params = gen_block();
+
+ // Evaluate TensorBlock expression into a tensor.
+ Tensor<T, NumDims, Layout> block(block_params.desc.dimensions());
+
+ // Dimensions for the potential destination buffer.
+ DSizes<Index, NumDims> dst_dims;
+ if (internal::random<bool>()) {
+ dst_dims = block_params.desc.dimensions();
+ } else {
+ for (int i = 0; i < NumDims; ++i) {
+ Index extent = internal::random<Index>(0, 5);
+ dst_dims[i] = block_params.desc.dimension(i) + extent;
+ }
+ }
+
+ // Maybe use this tensor as a block desc destination.
+ Tensor<T, NumDims, Layout> dst(dst_dims);
+ dst.setZero();
+ if (internal::random<bool>()) {
+ block_params.desc.template AddDestinationBuffer<Layout>(
+ dst.data(), internal::strides<Layout>(dst.dimensions()));
+ }
+
+ const bool root_of_expr = internal::random<bool>();
+ auto tensor_block = eval.block(block_params.desc, scratch, root_of_expr);
+
+ if (tensor_block.kind() == internal::TensorBlockKind::kMaterializedInOutput) {
+ // Copy data from destination buffer.
+ if (dimensions_match(dst.dimensions(), block.dimensions())) {
+ block = dst;
+ } else {
+ DSizes<Index, NumDims> offsets;
+ for (int i = 0; i < NumDims; ++i) offsets[i] = 0;
+ block = dst.slice(offsets, block.dimensions());
+ }
+
+ } else {
+ // Assign to block from expression.
+ auto b_expr = tensor_block.expr();
+
+ // We explicitly disable vectorization and tiling, to run a simple coefficient
+ // wise assignment loop, because it's very simple and should be correct.
+ using BlockAssign = TensorAssignOp<decltype(block), const decltype(b_expr)>;
+ using BlockExecutor = TensorExecutor<const BlockAssign, Device, false,
+ internal::TiledEvaluation::Off>;
+ BlockExecutor::run(BlockAssign(block, b_expr), d);
+ }
+
+ // Cleanup temporary buffers owned by a tensor block.
+ tensor_block.cleanup();
+
+ // Compute a Tensor slice corresponding to a Tensor block.
+ Tensor<T, NumDims, Layout> slice(block_params.desc.dimensions());
+ auto s_expr = expr.slice(block_params.offsets, block_params.sizes);
+
+ // Explicitly use coefficient assignment to evaluate slice expression.
+ using SliceAssign = TensorAssignOp<decltype(slice), const decltype(s_expr)>;
+ using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
+ internal::TiledEvaluation::Off>;
+ SliceExecutor::run(SliceAssign(slice, s_expr), d);
+
+ // Tensor block and tensor slice must be the same.
+ for (Index i = 0; i < block.dimensions().TotalSize(); ++i) {
+ VERIFY_IS_EQUAL(block.coeff(i), slice.coeff(i));
+ }
+}
+
+// -------------------------------------------------------------------------- //
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_block() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ // Identity tensor expression transformation.
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_unary_expr_block() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.abs(), [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_binary_expr_block() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
+ lhs.setRandom();
+ rhs.setRandom();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ lhs * rhs, [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_binary_with_unary_expr_block() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> lhs(dims), rhs(dims);
+ lhs.setRandom();
+ rhs.setRandom();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ (lhs.square() + rhs.square()).sqrt(),
+ [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_broadcast() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ DSizes<Index, NumDims> bcast = RandomDims<NumDims>(1, 5);
+
+ DSizes<Index, NumDims> bcasted_dims;
+ for (int i = 0; i < NumDims; ++i) bcasted_dims[i] = dims[i] * bcast[i];
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.broadcast(bcast),
+ [&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.broadcast(bcast),
+ [&bcasted_dims]() { return RandomBlock<Layout>(bcasted_dims, 5, 10); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.broadcast(bcast),
+ [&bcasted_dims]() { return FixedSizeBlock(bcasted_dims); });
+
+ // Check that desc.destination() memory is not shared between two broadcast
+ // materializations.
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.broadcast(bcast) * input.abs().broadcast(bcast),
+ [&bcasted_dims]() { return SkewedInnerBlock<Layout>(bcasted_dims); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_reshape() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(1, 10);
+
+ DSizes<Index, NumDims> shuffled = dims;
+ std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
+
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.reshape(shuffled),
+ [&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.reshape(shuffled),
+ [&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_cast() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.template cast<int>().template cast<T>(),
+ [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_select() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> lhs(dims);
+ Tensor<T, NumDims, Layout> rhs(dims);
+ Tensor<bool, NumDims, Layout> cond(dims);
+ lhs.setRandom();
+ rhs.setRandom();
+ cond.setRandom();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(cond.select(lhs, rhs), [&dims]() {
+ return RandomBlock<Layout>(dims, 1, 20);
+ });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_padding() {
+ const int inner_dim = Layout == static_cast<int>(ColMajor) ? 0 : NumDims - 1;
+
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ DSizes<Index, NumDims> pad_before = RandomDims<NumDims>(0, 4);
+ DSizes<Index, NumDims> pad_after = RandomDims<NumDims>(0, 4);
+ array<std::pair<Index, Index>, NumDims> paddings;
+ for (int i = 0; i < NumDims; ++i) {
+ paddings[i] = std::make_pair(pad_before[i], pad_after[i]);
+ }
+
+ // Test squeezing reads from inner dim.
+ if (internal::random<bool>()) {
+ pad_before[inner_dim] = 0;
+ pad_after[inner_dim] = 0;
+ paddings[inner_dim] = std::make_pair(0, 0);
+ }
+
+ DSizes<Index, NumDims> padded_dims;
+ for (int i = 0; i < NumDims; ++i) {
+ padded_dims[i] = dims[i] + pad_before[i] + pad_after[i];
+ }
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.pad(paddings),
+ [&padded_dims]() { return FixedSizeBlock(padded_dims); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.pad(paddings),
+ [&padded_dims]() { return RandomBlock<Layout>(padded_dims, 1, 10); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.pad(paddings),
+ [&padded_dims]() { return SkewedInnerBlock<Layout>(padded_dims); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_chipping() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ Index chip_dim = internal::random<int>(0, NumDims - 1);
+ Index chip_offset = internal::random<Index>(0, dims[chip_dim] - 2);
+
+ DSizes<Index, NumDims - 1> chipped_dims;
+ for (Index i = 0; i < chip_dim; ++i) {
+ chipped_dims[i] = dims[i];
+ }
+ for (Index i = chip_dim + 1; i < NumDims; ++i) {
+ chipped_dims[i - 1] = dims[i];
+ }
+
+ // Block buffer forwarding.
+ VerifyBlockEvaluator<T, NumDims - 1, Layout>(
+ input.chip(chip_offset, chip_dim),
+ [&chipped_dims]() { return FixedSizeBlock(chipped_dims); });
+
+ VerifyBlockEvaluator<T, NumDims - 1, Layout>(
+ input.chip(chip_offset, chip_dim),
+ [&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); });
+
+ // Block expression assignment.
+ VerifyBlockEvaluator<T, NumDims - 1, Layout>(
+ input.abs().chip(chip_offset, chip_dim),
+ [&chipped_dims]() { return FixedSizeBlock(chipped_dims); });
+
+ VerifyBlockEvaluator<T, NumDims - 1, Layout>(
+ input.abs().chip(chip_offset, chip_dim),
+ [&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); });
+}
+
+
+template<typename T, int NumDims>
+struct SimpleTensorGenerator {
+ T operator()(const array<Index, NumDims>& coords) const {
+ T result = static_cast<T>(0);
+ for (int i = 0; i < NumDims; ++i) {
+ result += static_cast<T>((i + 1) * coords[i]);
+ }
+ return result;
+ }
+};
+
+// Boolean specialization to avoid -Wint-in-bool-context warnings on GCC.
+template<int NumDims>
+struct SimpleTensorGenerator<bool, NumDims> {
+ bool operator()(const array<Index, NumDims>& coords) const {
+ bool result = false;
+ for (int i = 0; i < NumDims; ++i) {
+ result ^= coords[i];
+ }
+ return result;
+ }
+};
+
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_generator() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ auto generator = SimpleTensorGenerator<T, NumDims>();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.generate(generator), [&dims]() { return FixedSizeBlock(dims); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.generate(generator),
+ [&dims]() { return RandomBlock<Layout>(dims, 1, 10); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_reverse() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ // Randomly reverse dimensions.
+ Eigen::DSizes<bool, NumDims> reverse;
+ for (int i = 0; i < NumDims; ++i) reverse[i] = internal::random<bool>();
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.reverse(reverse), [&dims]() { return FixedSizeBlock(dims); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(input.reverse(reverse), [&dims]() {
+ return RandomBlock<Layout>(dims, 1, 10);
+ });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_slice() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ // Pick a random slice of an input tensor.
+ DSizes<Index, NumDims> slice_start = RandomDims<NumDims>(5, 10);
+ DSizes<Index, NumDims> slice_size = RandomDims<NumDims>(5, 10);
+
+ // Make sure that slice start + size do not overflow tensor dims.
+ for (int i = 0; i < NumDims; ++i) {
+ slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
+ slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
+ }
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.slice(slice_start, slice_size),
+ [&slice_size]() { return FixedSizeBlock(slice_size); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.slice(slice_start, slice_size),
+ [&slice_size]() { return RandomBlock<Layout>(slice_size, 1, 10); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_eval_tensor_shuffle() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(5, 15);
+ Tensor<T, NumDims, Layout> input(dims);
+ input.setRandom();
+
+ DSizes<Index, NumDims> shuffle;
+ for (int i = 0; i < NumDims; ++i) shuffle[i] = i;
+
+ do {
+ DSizes<Index, NumDims> shuffled_dims;
+ for (int i = 0; i < NumDims; ++i) shuffled_dims[i] = dims[shuffle[i]];
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.shuffle(shuffle),
+ [&shuffled_dims]() { return FixedSizeBlock(shuffled_dims); });
+
+ VerifyBlockEvaluator<T, NumDims, Layout>(
+ input.shuffle(shuffle), [&shuffled_dims]() {
+ return RandomBlock<Layout>(shuffled_dims, 1, 5);
+ });
+
+ break;
+
+ } while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims));
+}
+
+template <typename T, int Layout>
+static void test_eval_tensor_reshape_with_bcast() {
+ Index dim = internal::random<Index>(1, 100);
+
+ Tensor<T, 2, Layout> lhs(1, dim);
+ Tensor<T, 2, Layout> rhs(dim, 1);
+ lhs.setRandom();
+ rhs.setRandom();
+
+ auto reshapeLhs = NByOne(dim);
+ auto reshapeRhs = OneByM(dim);
+
+ auto bcastLhs = OneByM(dim);
+ auto bcastRhs = NByOne(dim);
+
+ DSizes<Index, 2> dims(dim, dim);
+
+ VerifyBlockEvaluator<T, 2, Layout>(
+ lhs.reshape(reshapeLhs).broadcast(bcastLhs) *
+ rhs.reshape(reshapeRhs).broadcast(bcastRhs),
+ [dims]() { return SkewedInnerBlock<Layout, 2>(dims); });
+}
+
+template <typename T, int Layout>
+static void test_eval_tensor_forced_eval() {
+ Index dim = internal::random<Index>(1, 100);
+
+ Tensor<T, 2, Layout> lhs(dim, 1);
+ Tensor<T, 2, Layout> rhs(1, dim);
+ lhs.setRandom();
+ rhs.setRandom();
+
+ auto bcastLhs = OneByM(dim);
+ auto bcastRhs = NByOne(dim);
+
+ DSizes<Index, 2> dims(dim, dim);
+
+ VerifyBlockEvaluator<T, 2, Layout>(
+ (lhs.broadcast(bcastLhs) * rhs.broadcast(bcastRhs)).eval().reshape(dims),
+ [dims]() { return SkewedInnerBlock<Layout, 2>(dims); });
+
+ VerifyBlockEvaluator<T, 2, Layout>(
+ (lhs.broadcast(bcastLhs) * rhs.broadcast(bcastRhs)).eval().reshape(dims),
+ [dims]() { return RandomBlock<Layout, 2>(dims, 1, 50); });
+}
+
+template <typename T, int Layout>
+static void test_eval_tensor_chipping_of_bcast() {
+ if (Layout != static_cast<int>(RowMajor)) return;
+
+ Index dim0 = internal::random<Index>(1, 10);
+ Index dim1 = internal::random<Index>(1, 10);
+ Index dim2 = internal::random<Index>(1, 10);
+
+ Tensor<T, 3, Layout> input(1, dim1, dim2);
+ input.setRandom();
+
+ Eigen::array<Index, 3> bcast = {{dim0, 1, 1}};
+ DSizes<Index, 2> chipped_dims(dim0, dim2);
+
+ VerifyBlockEvaluator<T, 2, Layout>(
+ input.broadcast(bcast).chip(0, 1),
+ [chipped_dims]() { return FixedSizeBlock(chipped_dims); });
+
+ VerifyBlockEvaluator<T, 2, Layout>(
+ input.broadcast(bcast).chip(0, 1),
+ [chipped_dims]() { return SkewedInnerBlock<Layout, 2>(chipped_dims); });
+
+ VerifyBlockEvaluator<T, 2, Layout>(
+ input.broadcast(bcast).chip(0, 1),
+ [chipped_dims]() { return RandomBlock<Layout, 2>(chipped_dims, 1, 5); });
+}
+
+// -------------------------------------------------------------------------- //
+// Verify that assigning block to a Tensor expression produces the same result
+// as an assignment to TensorSliceOp (writing a block is is identical to
+// assigning one tensor to a slice of another tensor).
+
+template <typename T, int NumDims, int Layout, int NumExprDims = NumDims,
+ typename Expression, typename GenBlockParams>
+static void VerifyBlockAssignment(Tensor<T, NumDims, Layout>& tensor,
+ Expression expr, GenBlockParams gen_block) {
+ using Device = DefaultDevice;
+ auto d = Device();
+
+ // We use tensor evaluator as a target for block and slice assignments.
+ auto eval = TensorEvaluator<decltype(expr), Device>(expr, d);
+
+ // Generate a random block, or choose a block that fits in full expression.
+ TensorBlockParams<NumExprDims> block_params = gen_block();
+
+ // Generate random data of the selected block size.
+ Tensor<T, NumExprDims, Layout> block(block_params.desc.dimensions());
+ block.setRandom();
+
+ // ************************************************************************ //
+ // (1) Assignment from a block.
+
+ // Construct a materialize block from a random generated block tensor.
+ internal::TensorMaterializedBlock<T, NumExprDims, Layout> blk(
+ internal::TensorBlockKind::kView, block.data(), block.dimensions());
+
+ // Reset all underlying tensor values to zero.
+ tensor.setZero();
+
+ // Use evaluator to write block into a tensor.
+ eval.writeBlock(block_params.desc, blk);
+
+ // Make a copy of the result after assignment.
+ Tensor<T, NumDims, Layout> block_assigned = tensor;
+
+ // ************************************************************************ //
+ // (2) Assignment to a slice
+
+ // Reset all underlying tensor values to zero.
+ tensor.setZero();
+
+ // Assign block to a slice of original expression
+ auto s_expr = expr.slice(block_params.offsets, block_params.sizes);
+
+ // Explicitly use coefficient assignment to evaluate slice expression.
+ using SliceAssign = TensorAssignOp<decltype(s_expr), const decltype(block)>;
+ using SliceExecutor = TensorExecutor<const SliceAssign, Device, false,
+ internal::TiledEvaluation::Off>;
+ SliceExecutor::run(SliceAssign(s_expr, block), d);
+
+ // Make a copy of the result after assignment.
+ Tensor<T, NumDims, Layout> slice_assigned = tensor;
+
+ for (Index i = 0; i < tensor.dimensions().TotalSize(); ++i) {
+ VERIFY_IS_EQUAL(block_assigned.coeff(i), slice_assigned.coeff(i));
+ }
+}
+
+// -------------------------------------------------------------------------- //
+
+template <typename T, int NumDims, int Layout>
+static void test_assign_to_tensor() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> tensor(dims);
+
+ TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map, [&dims]() { return RandomBlock<Layout>(dims, 10, 20); });
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map, [&dims]() { return FixedSizeBlock(dims); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_assign_to_tensor_reshape() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> tensor(dims);
+
+ TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
+
+ DSizes<Index, NumDims> shuffled = dims;
+ std::shuffle(&shuffled[0], &shuffled[NumDims - 1], std::mt19937(g_seed));
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.reshape(shuffled),
+ [&shuffled]() { return RandomBlock<Layout>(shuffled, 1, 10); });
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.reshape(shuffled),
+ [&shuffled]() { return SkewedInnerBlock<Layout>(shuffled); });
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.reshape(shuffled),
+ [&shuffled]() { return FixedSizeBlock(shuffled); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_assign_to_tensor_chipping() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> tensor(dims);
+
+ Index chip_dim = internal::random<int>(0, NumDims - 1);
+ Index chip_offset = internal::random<Index>(0, dims[chip_dim] - 2);
+
+ DSizes<Index, NumDims - 1> chipped_dims;
+ for (Index i = 0; i < chip_dim; ++i) {
+ chipped_dims[i] = dims[i];
+ }
+ for (Index i = chip_dim + 1; i < NumDims; ++i) {
+ chipped_dims[i - 1] = dims[i];
+ }
+
+ TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
+
+ VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>(
+ tensor, map.chip(chip_offset, chip_dim),
+ [&chipped_dims]() { return RandomBlock<Layout>(chipped_dims, 1, 10); });
+
+ VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>(
+ tensor, map.chip(chip_offset, chip_dim),
+ [&chipped_dims]() { return SkewedInnerBlock<Layout>(chipped_dims); });
+
+ VerifyBlockAssignment<T, NumDims, Layout, NumDims - 1>(
+ tensor, map.chip(chip_offset, chip_dim),
+ [&chipped_dims]() { return FixedSizeBlock(chipped_dims); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_assign_to_tensor_slice() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(10, 20);
+ Tensor<T, NumDims, Layout> tensor(dims);
+
+ // Pick a random slice of tensor.
+ DSizes<Index, NumDims> slice_start = RandomDims<NumDims>(5, 10);
+ DSizes<Index, NumDims> slice_size = RandomDims<NumDims>(5, 10);
+
+ // Make sure that slice start + size do not overflow tensor dims.
+ for (int i = 0; i < NumDims; ++i) {
+ slice_start[i] = numext::mini(dims[i] - 1, slice_start[i]);
+ slice_size[i] = numext::mini(slice_size[i], dims[i] - slice_start[i]);
+ }
+
+ TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.slice(slice_start, slice_size),
+ [&slice_size]() { return RandomBlock<Layout>(slice_size, 1, 10); });
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.slice(slice_start, slice_size),
+ [&slice_size]() { return SkewedInnerBlock<Layout>(slice_size); });
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.slice(slice_start, slice_size),
+ [&slice_size]() { return FixedSizeBlock(slice_size); });
+}
+
+template <typename T, int NumDims, int Layout>
+static void test_assign_to_tensor_shuffle() {
+ DSizes<Index, NumDims> dims = RandomDims<NumDims>(5, 15);
+ Tensor<T, NumDims, Layout> tensor(dims);
+
+ DSizes<Index, NumDims> shuffle;
+ for (int i = 0; i < NumDims; ++i) shuffle[i] = i;
+
+ TensorMap<Tensor<T, NumDims, Layout>> map(tensor.data(), dims);
+
+ do {
+ DSizes<Index, NumDims> shuffled_dims;
+ for (int i = 0; i < NumDims; ++i) shuffled_dims[i] = dims[shuffle[i]];
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.shuffle(shuffle),
+ [&shuffled_dims]() { return FixedSizeBlock(shuffled_dims); });
+
+ VerifyBlockAssignment<T, NumDims, Layout>(
+ tensor, map.shuffle(shuffle), [&shuffled_dims]() {
+ return RandomBlock<Layout>(shuffled_dims, 1, 5);
+ });
+
+ } while (std::next_permutation(&shuffle[0], &shuffle[0] + NumDims));
+}
+
+// -------------------------------------------------------------------------- //
+
+#define CALL_SUBTEST_PART(PART) \
+ CALL_SUBTEST_##PART
+
+#define CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(PART, NAME) \
+ CALL_SUBTEST_PART(PART)((NAME<float, 1, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 2, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 3, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 4, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 5, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 1, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 2, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 5, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 1, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 2, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 3, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 4, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 5, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 1, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 2, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<int, 5, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 1, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 2, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 3, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 4, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 5, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 1, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 2, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, 5, ColMajor>()))
+
+#define CALL_SUBTESTS_DIMS_LAYOUTS(PART, NAME) \
+ CALL_SUBTEST_PART(PART)((NAME<float, 1, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 2, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 3, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 4, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 5, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 1, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 2, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 4, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, 5, ColMajor>()))
+
+#define CALL_SUBTESTS_LAYOUTS_TYPES(PART, NAME) \
+ CALL_SUBTEST_PART(PART)((NAME<float, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<float, ColMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, RowMajor>())); \
+ CALL_SUBTEST_PART(PART)((NAME<bool, ColMajor>()))
+
+EIGEN_DECLARE_TEST(cxx11_tensor_block_eval) {
+ // clang-format off
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(1, test_eval_tensor_block);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(1, test_eval_tensor_binary_expr_block);
+ CALL_SUBTESTS_DIMS_LAYOUTS(1, test_eval_tensor_unary_expr_block);
+ CALL_SUBTESTS_DIMS_LAYOUTS(2, test_eval_tensor_binary_with_unary_expr_block);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(2, test_eval_tensor_broadcast);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(2, test_eval_tensor_reshape);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_cast);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_select);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(3, test_eval_tensor_padding);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_chipping);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_generator);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(4, test_eval_tensor_reverse);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(5, test_eval_tensor_slice);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(5, test_eval_tensor_shuffle);
+
+ CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_reshape_with_bcast);
+ CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_forced_eval);
+ CALL_SUBTESTS_LAYOUTS_TYPES(6, test_eval_tensor_chipping_of_bcast);
+
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor_reshape);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(7, test_assign_to_tensor_chipping);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(8, test_assign_to_tensor_slice);
+ CALL_SUBTESTS_DIMS_LAYOUTS_TYPES(8, test_assign_to_tensor_shuffle);
+
+ // Force CMake to split this test.
+ // EIGEN_SUFFIXES;1;2;3;4;5;6;7;8
+
+ // clang-format on
+}