aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/cxx11_tensor_contract_sycl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/cxx11_tensor_contract_sycl.cpp')
-rw-r--r--unsupported/test/cxx11_tensor_contract_sycl.cpp1026
1 files changed, 1026 insertions, 0 deletions
diff --git a/unsupported/test/cxx11_tensor_contract_sycl.cpp b/unsupported/test/cxx11_tensor_contract_sycl.cpp
new file mode 100644
index 000000000..fbcc29358
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_contract_sycl.cpp
@@ -0,0 +1,1026 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
+#define EIGEN_USE_SYCL
+
+#include <algorithm>
+#include <chrono>
+#include <ctime>
+#include <iostream>
+
+#include "main.h"
+
+#include <unsupported/Eigen/CXX11/Tensor>
+
+using Eigen::array;
+using Eigen::SyclDevice;
+using Eigen::Tensor;
+using Eigen::TensorMap;
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void static test_sycl_contraction(const Device &sycl_device, IndexType m_size,
+ IndexType k_size, IndexType n_size) {
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair
+ DimPair;
+ static const DataType error_threshold = DataType(1e-4);
+ // with these dimensions, the output has 300 * 140 elements, which is
+ // more than 30 * 1024, which is the number of threads in blocks on
+ // a 15 SM GK110 GPU
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result(m_size, n_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(m_size, n_size);
+ Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}};
+ Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}};
+ Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}};
+ Eigen::array<IndexType, 2> result_dims = {{m_size, n_size}};
+
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
+
+ DataType *d_t_left =
+ static_cast<DataType *>(sycl_device.allocate(t_left_bytes));
+ DataType *d_t_right =
+ static_cast<DataType *>(sycl_device.allocate(t_right_bytes));
+ DataType *d_t_result =
+ static_cast<DataType *>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_result(d_t_result, result_dims);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result,
+ t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ for (IndexType i = 0; i < t_result.size(); i++) {
+ if (static_cast<DataType>(std::fabs(static_cast<DataType>(
+ t_result(i) - t_result_gpu(i)))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i),
+ error_threshold)) {
+ continue;
+ }
+
+ std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size
+ << ", mismatch detected at IndexType " << i << ": " << t_result(i)
+ << " vs " << t_result_gpu(i) << std::endl;
+ VERIFY_IS_APPROX(t_result_gpu(i), t_result(i));
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void test_sycl_contraction_m(const Device &sycl_device) {
+ for (IndexType k = 32; k < 256; k++) {
+ test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, k, 128,
+ 128);
+ }
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void test_sycl_contraction_k(const Device &sycl_device) {
+ for (IndexType k = 32; k < 256; k++) {
+ test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, 128, k,
+ 128);
+ }
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void test_sycl_contraction_n(const Device &sycl_device) {
+ for (IndexType k = 32; k < 256; k++) {
+ test_sycl_contraction<DataLayout, DataType, IndexType>(sycl_device, 128,
+ 128, k);
+ }
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void test_sycl_contraction_sizes(const Device &sycl_device) {
+ IndexType m_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255,
+ 257, 511, 512, 513, 1023, 1024, 1025};
+
+ IndexType n_sizes[] = {31, 39, 63, 64, 65, 127, 129, 255,
+ 257, 511, 512, 513, 1023, 1024, 1025};
+
+ IndexType k_sizes[] = {31, 39, 63, 64, 65, 95, 96, 127, 129,
+ 255, 257, 511, 512, 513, 1023, 1024, 1025};
+
+ for (IndexType i = 0; i < 15; i++) {
+ for (IndexType j = 0; j < 15; j++) {
+ for (IndexType k = 0; k < 17; k++) {
+ test_sycl_contraction<DataLayout, DataType, IndexType>(
+ sycl_device, m_sizes[i], n_sizes[j], k_sizes[k]);
+ }
+ }
+ }
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void static test_no_out_of_bounds(const Device &sycl_device, IndexType m_size,
+ IndexType k_size, IndexType n_size) {
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair
+ DimPair;
+ static const DataType error_threshold = DataType(1e-4);
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result(m_size, n_size);
+
+ Eigen::array<DimPair, 1> dims = {{DimPair(1, 0)}};
+ Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}};
+ Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}};
+ Eigen::array<IndexType, 2> result_dims = {{m_size, n_size}};
+
+ t_left.setRandom();
+ t_right.setRandom();
+
+ // Allocate buffers twice as big to check for invalid read and write
+ auto padded_left_size = 2 * t_left.size();
+ auto padded_right_size = 2 * t_right.size();
+ auto padded_result_size = 2 * t_result.size();
+
+ std::size_t t_left_bytes = padded_left_size * sizeof(DataType);
+ std::size_t t_right_bytes = padded_right_size * sizeof(DataType);
+ std::size_t t_result_bytes = padded_result_size * sizeof(DataType);
+
+ DataType *d_t_left =
+ static_cast<DataType *>(sycl_device.allocate(t_left_bytes));
+ DataType *d_t_right =
+ static_cast<DataType *>(sycl_device.allocate(t_right_bytes));
+ DataType *d_t_result =
+ static_cast<DataType *>(sycl_device.allocate(t_result_bytes));
+
+ // TensorMaps are still of the same size than the Tensors
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_result(d_t_result, result_dims);
+
+ // Write nan after the actual buffer to propagate nans everywhere in case of
+ // invalid reads
+ DataType nan = std::numeric_limits<DataType>::quiet_NaN();
+ auto host_left_data = new DataType[padded_left_size];
+ std::copy_n(t_left.data(), t_left.size(), host_left_data);
+ std::fill_n(host_left_data + t_left.size(), t_left.size(), nan);
+ auto host_right_data = new DataType[padded_right_size];
+ std::copy_n(t_right.data(), t_right.size(), host_right_data);
+ std::fill_n(host_right_data + t_right.size(), t_right.size(), nan);
+ auto host_result_data = new DataType[padded_result_size];
+ std::fill_n(host_result_data, padded_result_size, nan);
+
+ sycl_device.memcpyHostToDevice(d_t_left, host_left_data, t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, host_right_data, t_right_bytes);
+ sycl_device.memcpyHostToDevice(d_t_result, host_result_data, t_result_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(host_result_data, d_t_result, t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ for (IndexType i = 0; i < t_result.size(); i++) {
+ if (static_cast<DataType>(std::fabs(static_cast<DataType>(
+ t_result(i) - host_result_data[i]))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(i), host_result_data[i],
+ error_threshold)) {
+ continue;
+ }
+ if (std::isnan(host_result_data[i])) {
+ std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size
+ << ", invalid read detected at IndexType " << i << ": "
+ << t_result(i) << " vs " << host_result_data[i] << std::endl;
+ } else {
+ std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size
+ << ", mismatch detected at IndexType " << i << ": "
+ << t_result(i) << " vs " << host_result_data[i] << std::endl;
+ }
+ VERIFY_IS_APPROX(host_result_data[i], t_result(i));
+ }
+ // Make sure that the rest of the result is still nans
+ for (IndexType i = t_result.size(); i < padded_result_size; i++) {
+ if (std::isnan(host_result_data[i])) {
+ continue;
+ }
+ std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size
+ << ", invalid write detected at IndexType " << i << ": "
+ << host_result_data[i] << std::endl;
+ VERIFY_IS_APPROX(host_result_data[i], t_result(i));
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+
+ delete[] host_left_data;
+ delete[] host_right_data;
+ delete[] host_result_data;
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void test_scalar(const Device &sycl_device, IndexType m_size, IndexType k_size,
+ IndexType n_size) {
+ // std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size <<
+ // ")" << std::endl;
+ // with these dimensions, the output has 300 * 140 elements, which is
+ // more than 30 * 1024, which is the number of threads in blocks on
+ // a 15 SM GK110 GPU
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair
+ DimPair;
+ static const DataType error_threshold = DataType(1e-4);
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(m_size, k_size);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(k_size, n_size);
+ Tensor<DataType, 0, DataLayout, IndexType> t_result;
+ Tensor<DataType, 0, DataLayout, IndexType> t_result_gpu;
+ Eigen::array<DimPair, 2> dims = {{DimPair(0, 0), DimPair(1, 1)}};
+ Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}};
+ Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}};
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = sizeof(DataType);
+
+ DataType *d_t_left =
+ static_cast<DataType *>(sycl_device.allocate(t_left_bytes));
+ DataType *d_t_right =
+ static_cast<DataType *>(sycl_device.allocate(t_right_bytes));
+ DataType *d_t_result =
+ static_cast<DataType *>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 0, DataLayout, IndexType>>
+ gpu_t_result(d_t_result);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result,
+ t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ if (static_cast<DataType>(std::fabs(static_cast<DataType>(
+ t_result() - t_result_gpu()))) > error_threshold &&
+ !Eigen::internal::isApprox(t_result(), t_result_gpu(), error_threshold)) {
+ std::cout << "K: " << k_size << ", N: " << n_size << ", M: " << m_size
+ << " : mismatch detected: " << t_result() << " vs "
+ << t_result_gpu() << std::endl;
+ VERIFY_IS_APPROX(t_result_gpu(), t_result());
+ }
+
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void contraction_batch(const Device &sycl_device, IndexType m_size,
+ IndexType k_size, IndexType n_size, IndexType m_batch,
+ IndexType start, IndexType limit) {
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair
+ DimPair;
+ static const DataType error_threshold = DataType(1e-4);
+ typedef Eigen::array<IndexType, 3> TensorDim;
+ typedef Eigen::Tensor<DataType, 3, DataLayout, IndexType> TensorType;
+ TensorDim left_dims = {{m_batch, k_size, m_size}};
+ TensorDim right_dims = {{m_batch, n_size, k_size}};
+ TensorDim res_dims = {{m_batch, m_size, n_size}};
+ Eigen::array<DimPair, 1> contract_pairs = {{DimPair(0, 1)}};
+
+ TensorType t_left(left_dims);
+ TensorType t_right(right_dims);
+ TensorType t_result_gpu(res_dims);
+ TensorType t_result(res_dims);
+
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
+
+ DataType *d_t_left =
+ static_cast<DataType *>(sycl_device.allocate(t_left_bytes));
+ DataType *d_t_right =
+ static_cast<DataType *>(sycl_device.allocate(t_right_bytes));
+ DataType *d_t_result =
+ static_cast<DataType *>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<TensorType> gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<TensorType> gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<TensorType> gpu_t_result(d_t_result, res_dims);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes);
+ for (int i = start; i < limit; ++i) {
+ auto x = gpu_t_left.template chip<0>(i);
+ auto y = gpu_t_right.template chip<0>(i);
+ auto z = gpu_t_result.template chip<0>(i);
+ z.device(sycl_device) = x.contract(y, contract_pairs);
+ }
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result,
+ t_result_bytes);
+
+ for (int i = start; i < limit; ++i) {
+ auto x = t_left.template chip<0>(i);
+ auto y = t_right.template chip<0>(i);
+ auto z = t_result.template chip<0>(i);
+ z = x.contract(y, contract_pairs);
+ }
+
+ for (IndexType i = 0; i < t_result.size(); i++) {
+ if (static_cast<DataType>(std::fabs(static_cast<DataType>(
+ t_result(i) - t_result_gpu(i)))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i),
+ error_threshold)) {
+ continue;
+ }
+ std::cout << "mismatch detected at IndexType " << i << ": " << t_result(i)
+ << " vs " << t_result_gpu(i) << std::endl;
+ VERIFY_IS_APPROX(t_result_gpu(i), t_result(i));
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void contraction_rhs_transposed(const Device &sycl_device, IndexType m_size,
+ IndexType k_size, IndexType n_size) {
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair
+ DimPair;
+ static const DataType error_threshold = DataType(1e-4);
+ Eigen::array<IndexType, 2> left_dims = {{m_size, k_size}};
+ Eigen::array<IndexType, 2> right_dims = {{n_size, k_size}};
+ Eigen::array<IndexType, 2> res_dims = {{m_size, n_size}};
+ Eigen::array<DimPair, 1> dims = {{DimPair(1, 1)}};
+
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(left_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(right_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(res_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result(res_dims);
+
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
+
+ DataType *d_t_left =
+ static_cast<DataType *>(sycl_device.allocate(t_left_bytes));
+ DataType *d_t_right =
+ static_cast<DataType *>(sycl_device.allocate(t_right_bytes));
+ DataType *d_t_result =
+ static_cast<DataType *>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_result(d_t_result, res_dims);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result,
+ t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ for (IndexType j = 0; j < m_size; j++) {
+ for (IndexType i = 0; i < n_size; i++) {
+ if (static_cast<DataType>(std::fabs(static_cast<DataType>(
+ t_result(j, i) - t_result_gpu(j, i)))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(j, i), t_result_gpu(j, i),
+ error_threshold)) {
+ continue;
+ }
+ std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size
+ << ", mismatch detected at IndexType m: " << j << " n: " << i
+ << " CPU : " << t_result(j, i)
+ << " vs SYCL:" << t_result_gpu(j, i) << std::endl;
+ VERIFY_IS_APPROX(t_result_gpu(j, i), t_result(j, i));
+ }
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void contraction_lhs_transposed(const Device &sycl_device, IndexType m_size,
+ IndexType k_size, IndexType n_size) {
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair
+ DimPair;
+ static const DataType error_threshold = DataType(1e-4);
+ Eigen::array<IndexType, 2> left_dims = {{k_size, m_size}};
+ Eigen::array<IndexType, 2> right_dims = {{k_size, n_size}};
+ Eigen::array<IndexType, 2> res_dims = {{m_size, n_size}};
+ Eigen::array<DimPair, 1> dims = {{DimPair(0, 0)}};
+
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(left_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(right_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(res_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result(res_dims);
+
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
+
+ DataType *d_t_left =
+ static_cast<DataType *>(sycl_device.allocate(t_left_bytes));
+ DataType *d_t_right =
+ static_cast<DataType *>(sycl_device.allocate(t_right_bytes));
+ DataType *d_t_result =
+ static_cast<DataType *>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_result(d_t_result, res_dims);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result,
+ t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ for (IndexType i = 0; i < t_result.size(); i++) {
+ if (static_cast<DataType>(std::fabs(static_cast<DataType>(
+ t_result(i) - t_result_gpu(i)))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i),
+ error_threshold)) {
+ continue;
+ }
+ std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size
+ << ", mismatch detected at IndexType " << i << ": " << t_result(i)
+ << " vs " << t_result_gpu(i) << std::endl;
+ VERIFY_IS_APPROX(t_result_gpu(i), t_result(i));
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+template <int DataLayout, typename DataType, typename IndexType,
+ typename Device>
+void contraction_both_transposed(const Device &sycl_device, IndexType m_size,
+ IndexType k_size, IndexType n_size) {
+ typedef typename Tensor<DataType, 1, DataLayout, IndexType>::DimensionPair
+ DimPair;
+ static const DataType error_threshold = DataType(1e-4);
+ Eigen::array<IndexType, 2> left_dims = {{k_size, m_size}};
+ Eigen::array<IndexType, 2> right_dims = {{n_size, k_size}};
+ Eigen::array<IndexType, 2> res_dims = {{m_size, n_size}};
+ Eigen::array<DimPair, 1> dims = {{DimPair(0, 1)}};
+
+ Tensor<DataType, 2, DataLayout, IndexType> t_left(left_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_right(right_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result_gpu(res_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> t_result(res_dims);
+
+ t_left.setRandom();
+ t_right.setRandom();
+
+ std::size_t t_left_bytes = t_left.size() * sizeof(DataType);
+ std::size_t t_right_bytes = t_right.size() * sizeof(DataType);
+ std::size_t t_result_bytes = t_result.size() * sizeof(DataType);
+
+ DataType *d_t_left =
+ static_cast<DataType *>(sycl_device.allocate(t_left_bytes));
+ DataType *d_t_right =
+ static_cast<DataType *>(sycl_device.allocate(t_right_bytes));
+ DataType *d_t_result =
+ static_cast<DataType *>(sycl_device.allocate(t_result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_left(d_t_left, left_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_right(d_t_right, right_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType>>
+ gpu_t_result(d_t_result, res_dims);
+
+ sycl_device.memcpyHostToDevice(d_t_left, t_left.data(), t_left_bytes);
+ sycl_device.memcpyHostToDevice(d_t_right, t_right.data(), t_right_bytes);
+
+ gpu_t_result.device(sycl_device) = gpu_t_left.contract(gpu_t_right, dims);
+ sycl_device.memcpyDeviceToHost(t_result_gpu.data(), d_t_result,
+ t_result_bytes);
+
+ t_result = t_left.contract(t_right, dims);
+
+ for (IndexType i = 0; i < t_result.size(); i++) {
+ if (static_cast<DataType>(std::fabs(static_cast<DataType>(
+ t_result(i) - t_result_gpu(i)))) < error_threshold) {
+ continue;
+ }
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i),
+ error_threshold)) {
+ continue;
+ }
+ std::cout << "M : " << m_size << ", N : " << n_size << ", K : " << k_size
+ << ", mismatch detected at IndexType " << i << ": " << t_result(i)
+ << " vs " << t_result_gpu(i) << std::endl;
+
+ VERIFY_IS_APPROX(t_result_gpu(i), t_result(i));
+ }
+ sycl_device.deallocate(d_t_left);
+ sycl_device.deallocate(d_t_right);
+ sycl_device.deallocate(d_t_result);
+}
+
+template <typename Dev>
+void inline tensorOutofBound(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Test out of bound for Tensor-Tensor
+ test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 10, 1024,
+ 1024);
+ test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 1024, 1024,
+ 4096);
+ test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 4096, 1024,
+ 2048);
+ test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 784, 2048,
+ 1024);
+ test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 2048, 1024,
+ 784);
+ test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 10, 1024,
+ 10);
+ test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 513, 4096,
+ 513);
+ test_no_out_of_bounds<RowMajor, DataType, IndexType>(sycl_device, 783, 1024,
+ 783);
+ test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 784, 2048,
+ 784);
+ test_no_out_of_bounds<ColMajor, DataType, IndexType>(sycl_device, 11, 1024,
+ 11);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "tensor out of bound tests finished computation at "
+ << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensorTensor(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Tensor Tensor Contraction
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 128, 128,
+ 128);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 128, 128,
+ 128);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "tensor tensor tests finished computation at "
+ << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensorTensor_m(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Tensor Tensor Contraction
+ test_sycl_contraction_m<ColMajor, DataType, IndexType>(sycl_device);
+ test_sycl_contraction_m<RowMajor, DataType, IndexType>(sycl_device);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "tensor tensor tests finished computation at "
+ << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensorTensor_n(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Tensor Tensor Contraction
+ test_sycl_contraction_n<ColMajor, DataType, IndexType>(sycl_device);
+ test_sycl_contraction_n<RowMajor, DataType, IndexType>(sycl_device);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "tensor tensor tests finished computation at "
+ << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensorTensor_k(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ test_sycl_contraction_k<ColMajor, DataType, IndexType>(sycl_device);
+ test_sycl_contraction_k<RowMajor, DataType, IndexType>(sycl_device);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "tensor tensor tests finished computation at "
+ << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensorTensor_sizes(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Tensor Tensor Contraction
+ test_sycl_contraction_sizes<ColMajor, DataType, IndexType>(sycl_device);
+ test_sycl_contraction_sizes<RowMajor, DataType, IndexType>(sycl_device);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "tensor tensor tests finished computation at "
+ << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+template <typename Dev>
+void inline vectorVector(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // VECTOR-VECTOR
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1025, 1,
+ 1025);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1025, 1,
+ 1025);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1024, 1,
+ 1024);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1024, 1,
+ 1024);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1023, 1,
+ 1023);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1023, 1,
+ 1023);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "contracted tensor tests finished computation at "
+ << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline vectorTensor(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Vector-Tensor
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 1025,
+ 1025);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 1025,
+ 1025);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 1024,
+ 1024);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 1024,
+ 1024);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 1023,
+ 1023);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 1023,
+ 1023);
+
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 4097,
+ 4097);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 4097,
+ 4097);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 4096,
+ 4096);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 4096,
+ 4096);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 4095,
+ 4095);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1, 4095,
+ 4095);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1, 802816,
+ 32);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensorVector(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Matrix-Vector
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1025, 1025,
+ 1);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1125, 1025,
+ 1);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1224, 1024,
+ 1);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1024, 1024,
+ 1);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 1023, 1023,
+ 1);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 1023, 1023,
+ 1);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 4097, 4197,
+ 1);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 4097, 4097,
+ 1);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 4096, 4096,
+ 1);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 4096, 8196,
+ 1);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 4095, 4095,
+ 1);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 4095, 4095,
+ 1);
+// If the GEMV disabled it will creates one kernel to calculate the contraction.
+// Therefore the acumuation of float number will overflow the precision
+// threshold for float and cause the test to fail. While it the GMV multiple
+// kernel will be created and each one run the overflow of accumutation breaks
+// among the kernels.
+#ifndef EIGEN_SYCL_DISABLE_GEMV
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 32, 802032,
+ 1);
+#endif
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensorScalar(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // SCALAR Contraction
+ test_scalar<ColMajor, DataType, IndexType>(sycl_device, 127, 127, 127);
+ test_scalar<RowMajor, DataType, IndexType>(sycl_device, 127, 127, 127);
+ test_scalar<ColMajor, DataType, IndexType>(sycl_device, 128, 128, 128);
+ test_scalar<RowMajor, DataType, IndexType>(sycl_device, 128, 128, 128);
+ test_scalar<ColMajor, DataType, IndexType>(sycl_device, 129, 129, 129);
+ test_scalar<RowMajor, DataType, IndexType>(sycl_device, 129, 129, 129);
+
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline skinnyTensor_row(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Tensor Tensor Contraction
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 16, 4, 16);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 257, 131073,
+ 257);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 256, 131072,
+ 256);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 16, 131073,
+ 16);
+ test_sycl_contraction<RowMajor, DataType, IndexType>(sycl_device, 17, 131072,
+ 17);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline skinnyTensor_col(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+ // Tensor Tensor Contraction
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 16, 4, 16);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 257, 131073,
+ 257);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 256, 131072,
+ 256);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 16, 131073,
+ 16);
+ test_sycl_contraction<ColMajor, DataType, IndexType>(sycl_device, 17, 131072,
+ 17);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensor_contraction_batch_per_device(const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+
+ contraction_batch<RowMajor, DataType, IndexType>(sycl_device, 64, 75, 30, 4,
+ 0, 4);
+ contraction_batch<ColMajor, DataType, IndexType>(sycl_device, 64, 75, 30, 4,
+ 0, 4);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensor_contraction_lhs_transposed_per_device(
+ const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+
+ contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 8, 4,
+ 8);
+ contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 32, 8,
+ 32);
+ contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 64, 16,
+ 64);
+ contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 784,
+ 2048, 1024);
+ contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 1024,
+ 10, 1024);
+ contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 4096,
+ 1024, 1024);
+ contraction_lhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 2048,
+ 4096, 1024);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensor_contraction_rhs_transposed_per_device(
+ const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 16, 4,
+ 16);
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 17, 5,
+ 17);
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 32, 8,
+ 32);
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 64, 16,
+ 64);
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 10,
+ 1024, 1024);
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 1024,
+ 1024, 4096);
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 4096,
+ 1024, 2048);
+ contraction_rhs_transposed<RowMajor, DataType, IndexType>(sycl_device, 2048,
+ 1024, 784);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+template <typename Dev>
+void inline tensor_contraction_both_transposed_per_device(
+ const Dev &sycl_device) {
+ typedef float DataType;
+ typedef int64_t IndexType;
+ std::chrono::time_point<std::chrono::system_clock> start, end;
+ start = std::chrono::system_clock::now();
+
+ contraction_both_transposed<RowMajor, DataType, IndexType>(sycl_device, 17, 5,
+ 17);
+ contraction_both_transposed<RowMajor, DataType, IndexType>(sycl_device, 32, 8,
+ 32);
+ contraction_both_transposed<RowMajor, DataType, IndexType>(sycl_device, 64,
+ 16, 64);
+ end = std::chrono::system_clock::now();
+ std::chrono::duration<double> elapsed_seconds = end - start;
+ std::time_t end_time = std::chrono::system_clock::to_time_t(end);
+ std::cout << "finished computation at " << std::ctime(&end_time)
+ << "elapsed time: " << elapsed_seconds.count() << "s\n";
+}
+
+EIGEN_DECLARE_TEST(cxx11_tensor_contract_sycl) {
+ for (const auto &device : Eigen::get_sycl_supported_devices()) {
+ std::cout << "Running on "
+ << device.template get_info<cl::sycl::info::device::name>()
+ << std::endl;
+ QueueInterface queueInterface(device);
+ auto sycl_device = Eigen::SyclDevice(&queueInterface);
+ CALL_SUBTEST_1(tensorOutofBound(sycl_device));
+ CALL_SUBTEST_2(tensorTensor(sycl_device));
+ CALL_SUBTEST_2(tensorTensor_m(sycl_device));
+ CALL_SUBTEST_2(tensorTensor_n(sycl_device));
+ CALL_SUBTEST_2(tensorTensor_k(sycl_device));
+ CALL_SUBTEST_2(tensorTensor_sizes(sycl_device));
+ CALL_SUBTEST_3(vectorVector(sycl_device));
+ CALL_SUBTEST_4(vectorTensor(sycl_device));
+ CALL_SUBTEST_5(tensorVector(sycl_device));
+ CALL_SUBTEST_6(tensorScalar(sycl_device));
+ CALL_SUBTEST_7(skinnyTensor_row(sycl_device));
+ CALL_SUBTEST_7(skinnyTensor_col(sycl_device));
+ CALL_SUBTEST_8(tensor_contraction_batch_per_device(sycl_device));
+ CALL_SUBTEST_9(tensor_contraction_lhs_transposed_per_device(sycl_device));
+ CALL_SUBTEST_10(tensor_contraction_rhs_transposed_per_device(sycl_device));
+ CALL_SUBTEST_11(tensor_contraction_both_transposed_per_device(sycl_device));
+ }
+}