aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/cxx11_tensor_morphing_sycl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/cxx11_tensor_morphing_sycl.cpp')
-rw-r--r--unsupported/test/cxx11_tensor_morphing_sycl.cpp386
1 files changed, 386 insertions, 0 deletions
diff --git a/unsupported/test/cxx11_tensor_morphing_sycl.cpp b/unsupported/test/cxx11_tensor_morphing_sycl.cpp
new file mode 100644
index 000000000..bf001b40f
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_morphing_sycl.cpp
@@ -0,0 +1,386 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+// Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
+#define EIGEN_USE_SYCL
+
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+
+using Eigen::array;
+using Eigen::SyclDevice;
+using Eigen::Tensor;
+using Eigen::TensorMap;
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_simple_reshape(const Eigen::SyclDevice& sycl_device)
+{
+ typename Tensor<DataType, 5 ,DataLayout, IndexType>::Dimensions dim1(2,3,1,7,1);
+ typename Tensor<DataType, 3 ,DataLayout, IndexType>::Dimensions dim2(2,3,7);
+ typename Tensor<DataType, 2 ,DataLayout, IndexType>::Dimensions dim3(6,7);
+ typename Tensor<DataType, 2 ,DataLayout, IndexType>::Dimensions dim4(2,21);
+
+ Tensor<DataType, 5, DataLayout, IndexType> tensor1(dim1);
+ Tensor<DataType, 3, DataLayout, IndexType> tensor2(dim2);
+ Tensor<DataType, 2, DataLayout, IndexType> tensor3(dim3);
+ Tensor<DataType, 2, DataLayout, IndexType> tensor4(dim4);
+
+ tensor1.setRandom();
+
+ DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor1.size()*sizeof(DataType)));
+ DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
+ DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(tensor3.size()*sizeof(DataType)));
+ DataType* gpu_data4 = static_cast<DataType*>(sycl_device.allocate(tensor4.size()*sizeof(DataType)));
+
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, dim1);
+ TensorMap<Tensor<DataType, 3,DataLayout, IndexType>> gpu2(gpu_data2, dim2);
+ TensorMap<Tensor<DataType, 2,DataLayout, IndexType>> gpu3(gpu_data3, dim3);
+ TensorMap<Tensor<DataType, 2,DataLayout, IndexType>> gpu4(gpu_data4, dim4);
+
+ sycl_device.memcpyHostToDevice(gpu_data1, tensor1.data(),(tensor1.size())*sizeof(DataType));
+
+ gpu2.device(sycl_device)=gpu1.reshape(dim2);
+ sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor1.size())*sizeof(DataType));
+
+ gpu3.device(sycl_device)=gpu1.reshape(dim3);
+ sycl_device.memcpyDeviceToHost(tensor3.data(), gpu_data3,(tensor3.size())*sizeof(DataType));
+
+ gpu4.device(sycl_device)=gpu1.reshape(dim2).reshape(dim4);
+ sycl_device.memcpyDeviceToHost(tensor4.data(), gpu_data4,(tensor4.size())*sizeof(DataType));
+ for (IndexType i = 0; i < 2; ++i){
+ for (IndexType j = 0; j < 3; ++j){
+ for (IndexType k = 0; k < 7; ++k){
+ VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k)); ///ColMajor
+ if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) {
+ VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i+2*j,k)); ///ColMajor
+ VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j+3*k)); ///ColMajor
+ }
+ else{
+ //VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor2(i,j,k)); /// RowMajor
+ VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor4(i,j*7 +k)); /// RowMajor
+ VERIFY_IS_EQUAL(tensor1(i,j,0,k,0), tensor3(i*3 +j,k)); /// RowMajor
+ }
+ }
+ }
+ }
+ sycl_device.deallocate(gpu_data1);
+ sycl_device.deallocate(gpu_data2);
+ sycl_device.deallocate(gpu_data3);
+ sycl_device.deallocate(gpu_data4);
+}
+
+
+template<typename DataType, int DataLayout, typename IndexType>
+static void test_reshape_as_lvalue(const Eigen::SyclDevice& sycl_device)
+{
+ typename Tensor<DataType, 3, DataLayout, IndexType>::Dimensions dim1(2,3,7);
+ typename Tensor<DataType, 2, DataLayout, IndexType>::Dimensions dim2(6,7);
+ typename Tensor<DataType, 5, DataLayout, IndexType>::Dimensions dim3(2,3,1,7,1);
+ Tensor<DataType, 3, DataLayout, IndexType> tensor(dim1);
+ Tensor<DataType, 2, DataLayout, IndexType> tensor2d(dim2);
+ Tensor<DataType, 5, DataLayout, IndexType> tensor5d(dim3);
+
+ tensor.setRandom();
+
+ DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
+ DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2d.size()*sizeof(DataType)));
+ DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(tensor5d.size()*sizeof(DataType)));
+
+ TensorMap< Tensor<DataType, 3, DataLayout, IndexType> > gpu1(gpu_data1, dim1);
+ TensorMap< Tensor<DataType, 2, DataLayout, IndexType> > gpu2(gpu_data2, dim2);
+ TensorMap< Tensor<DataType, 5, DataLayout, IndexType> > gpu3(gpu_data3, dim3);
+
+ sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
+
+ gpu2.reshape(dim1).device(sycl_device)=gpu1;
+ sycl_device.memcpyDeviceToHost(tensor2d.data(), gpu_data2,(tensor2d.size())*sizeof(DataType));
+
+ gpu3.reshape(dim1).device(sycl_device)=gpu1;
+ sycl_device.memcpyDeviceToHost(tensor5d.data(), gpu_data3,(tensor5d.size())*sizeof(DataType));
+
+
+ for (IndexType i = 0; i < 2; ++i){
+ for (IndexType j = 0; j < 3; ++j){
+ for (IndexType k = 0; k < 7; ++k){
+ VERIFY_IS_EQUAL(tensor5d(i,j,0,k,0), tensor(i,j,k));
+ if (static_cast<int>(DataLayout) == static_cast<int>(ColMajor)) {
+ VERIFY_IS_EQUAL(tensor2d(i+2*j,k), tensor(i,j,k)); ///ColMajor
+ }
+ else{
+ VERIFY_IS_EQUAL(tensor2d(i*3 +j,k),tensor(i,j,k)); /// RowMajor
+ }
+ }
+ }
+ }
+ sycl_device.deallocate(gpu_data1);
+ sycl_device.deallocate(gpu_data2);
+ sycl_device.deallocate(gpu_data3);
+}
+
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_simple_slice(const Eigen::SyclDevice &sycl_device)
+{
+ IndexType sizeDim1 = 2;
+ IndexType sizeDim2 = 3;
+ IndexType sizeDim3 = 5;
+ IndexType sizeDim4 = 7;
+ IndexType sizeDim5 = 11;
+ array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+ Tensor<DataType, 5,DataLayout, IndexType> tensor(tensorRange);
+ tensor.setRandom();
+ array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}};
+ Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range);
+
+ DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
+ DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType)));
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range);
+ Eigen::DSizes<IndexType, 5> indices(1,2,3,4,5);
+ Eigen::DSizes<IndexType, 5> sizes(1,1,1,1,1);
+ sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
+ gpu2.device(sycl_device)=gpu1.slice(indices, sizes);
+ sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType));
+ VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
+
+
+ array<IndexType, 5> slice2_range ={{1,1,2,2,3}};
+ Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range);
+ DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType)));
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range);
+ Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5);
+ Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3);
+ gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2);
+ sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType));
+ for (IndexType i = 0; i < 2; ++i) {
+ for (IndexType j = 0; j < 2; ++j) {
+ for (IndexType k = 0; k < 3; ++k) {
+ VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
+ }
+ }
+ }
+ sycl_device.deallocate(gpu_data1);
+ sycl_device.deallocate(gpu_data2);
+ sycl_device.deallocate(gpu_data3);
+}
+
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_strided_slice_as_rhs_sycl(const Eigen::SyclDevice &sycl_device)
+{
+ IndexType sizeDim1 = 2;
+ IndexType sizeDim2 = 3;
+ IndexType sizeDim3 = 5;
+ IndexType sizeDim4 = 7;
+ IndexType sizeDim5 = 11;
+ typedef Eigen::DSizes<IndexType, 5> Index5;
+ Index5 strides(1L,1L,1L,1L,1L);
+ Index5 indicesStart(1L,2L,3L,4L,5L);
+ Index5 indicesStop(2L,3L,4L,5L,6L);
+ Index5 lengths(1L,1L,1L,1L,1L);
+
+ array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+ Tensor<DataType, 5, DataLayout, IndexType> tensor(tensorRange);
+ tensor.setRandom();
+
+ array<IndexType, 5> slice1_range ={{1, 1, 1, 1, 1}};
+ Tensor<DataType, 5,DataLayout, IndexType> slice1(slice1_range);
+ Tensor<DataType, 5, DataLayout, IndexType> slice_stride1(slice1_range);
+
+ DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
+ DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(slice1.size()*sizeof(DataType)));
+ DataType* gpu_data_stride2 = static_cast<DataType*>(sycl_device.allocate(slice_stride1.size()*sizeof(DataType)));
+
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu1(gpu_data1, tensorRange);
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu2(gpu_data2, slice1_range);
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride2(gpu_data_stride2, slice1_range);
+
+ Eigen::DSizes<IndexType, 5> indices(1,2,3,4,5);
+ Eigen::DSizes<IndexType, 5> sizes(1,1,1,1,1);
+ sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
+ gpu2.device(sycl_device)=gpu1.slice(indices, sizes);
+ sycl_device.memcpyDeviceToHost(slice1.data(), gpu_data2,(slice1.size())*sizeof(DataType));
+
+ gpu_stride2.device(sycl_device)=gpu1.stridedSlice(indicesStart,indicesStop,strides);
+ sycl_device.memcpyDeviceToHost(slice_stride1.data(), gpu_data_stride2,(slice_stride1.size())*sizeof(DataType));
+
+ VERIFY_IS_EQUAL(slice1(0,0,0,0,0), tensor(1,2,3,4,5));
+ VERIFY_IS_EQUAL(slice_stride1(0,0,0,0,0), tensor(1,2,3,4,5));
+
+ array<IndexType, 5> slice2_range ={{1,1,2,2,3}};
+ Tensor<DataType, 5,DataLayout, IndexType> slice2(slice2_range);
+ Tensor<DataType, 5, DataLayout, IndexType> strideSlice2(slice2_range);
+
+ DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice2.size()*sizeof(DataType)));
+ DataType* gpu_data_stride3 = static_cast<DataType*>(sycl_device.allocate(strideSlice2.size()*sizeof(DataType)));
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu3(gpu_data3, slice2_range);
+ TensorMap<Tensor<DataType, 5,DataLayout, IndexType>> gpu_stride3(gpu_data_stride3, slice2_range);
+ Eigen::DSizes<IndexType, 5> indices2(1,1,3,4,5);
+ Eigen::DSizes<IndexType, 5> sizes2(1,1,2,2,3);
+ Index5 strides2(1L,1L,1L,1L,1L);
+ Index5 indicesStart2(1L,1L,3L,4L,5L);
+ Index5 indicesStop2(2L,2L,5L,6L,8L);
+
+ gpu3.device(sycl_device)=gpu1.slice(indices2, sizes2);
+ sycl_device.memcpyDeviceToHost(slice2.data(), gpu_data3,(slice2.size())*sizeof(DataType));
+
+ gpu_stride3.device(sycl_device)=gpu1.stridedSlice(indicesStart2,indicesStop2,strides2);
+ sycl_device.memcpyDeviceToHost(strideSlice2.data(), gpu_data_stride3,(strideSlice2.size())*sizeof(DataType));
+
+ for (IndexType i = 0; i < 2; ++i) {
+ for (IndexType j = 0; j < 2; ++j) {
+ for (IndexType k = 0; k < 3; ++k) {
+ VERIFY_IS_EQUAL(slice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
+ VERIFY_IS_EQUAL(strideSlice2(0,0,i,j,k), tensor(1,1,3+i,4+j,5+k));
+ }
+ }
+ }
+ sycl_device.deallocate(gpu_data1);
+ sycl_device.deallocate(gpu_data2);
+ sycl_device.deallocate(gpu_data3);
+}
+
+template<typename DataType, int DataLayout, typename IndexType>
+static void test_strided_slice_write_sycl(const Eigen::SyclDevice& sycl_device)
+{
+ typedef Tensor<DataType, 2, DataLayout, IndexType> Tensor2f;
+ typedef Eigen::DSizes<IndexType, 2> Index2;
+ IndexType sizeDim1 = 7L;
+ IndexType sizeDim2 = 11L;
+ array<IndexType, 2> tensorRange = {{sizeDim1, sizeDim2}};
+ Tensor<DataType, 2, DataLayout, IndexType> tensor(tensorRange),tensor2(tensorRange);
+ IndexType sliceDim1 = 2;
+ IndexType sliceDim2 = 3;
+ array<IndexType, 2> sliceRange = {{sliceDim1, sliceDim2}};
+ Tensor2f slice(sliceRange);
+ Index2 strides(1L,1L);
+ Index2 indicesStart(3L,4L);
+ Index2 indicesStop(5L,7L);
+ Index2 lengths(2L,3L);
+
+ DataType* gpu_data1 = static_cast<DataType*>(sycl_device.allocate(tensor.size()*sizeof(DataType)));
+ DataType* gpu_data2 = static_cast<DataType*>(sycl_device.allocate(tensor2.size()*sizeof(DataType)));
+ DataType* gpu_data3 = static_cast<DataType*>(sycl_device.allocate(slice.size()*sizeof(DataType)));
+ TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu1(gpu_data1, tensorRange);
+ TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu2(gpu_data2, tensorRange);
+ TensorMap<Tensor<DataType, 2,DataLayout,IndexType>> gpu3(gpu_data3, sliceRange);
+
+
+ tensor.setRandom();
+ sycl_device.memcpyHostToDevice(gpu_data1, tensor.data(),(tensor.size())*sizeof(DataType));
+ gpu2.device(sycl_device)=gpu1;
+
+ slice.setRandom();
+ sycl_device.memcpyHostToDevice(gpu_data3, slice.data(),(slice.size())*sizeof(DataType));
+
+
+ gpu1.slice(indicesStart,lengths).device(sycl_device)=gpu3;
+ gpu2.stridedSlice(indicesStart,indicesStop,strides).device(sycl_device)=gpu3;
+ sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data1,(tensor.size())*sizeof(DataType));
+ sycl_device.memcpyDeviceToHost(tensor2.data(), gpu_data2,(tensor2.size())*sizeof(DataType));
+
+ for(IndexType i=0;i<sizeDim1;i++)
+ for(IndexType j=0;j<sizeDim2;j++){
+ VERIFY_IS_EQUAL(tensor(i,j), tensor2(i,j));
+ }
+ sycl_device.deallocate(gpu_data1);
+ sycl_device.deallocate(gpu_data2);
+ sycl_device.deallocate(gpu_data3);
+}
+
+template <typename OutIndex, typename DSizes>
+Eigen::array<OutIndex, DSizes::count> To32BitDims(const DSizes& in) {
+ Eigen::array<OutIndex, DSizes::count> out;
+ for (int i = 0; i < DSizes::count; ++i) {
+ out[i] = in[i];
+ }
+ return out;
+}
+
+template <class DataType, int DataLayout, typename IndexType, typename ConvertedIndexType>
+int run_eigen(const SyclDevice& sycl_device) {
+ using TensorI64 = Tensor<DataType, 5, DataLayout, IndexType>;
+ using TensorI32 = Tensor<DataType, 5, DataLayout, ConvertedIndexType>;
+ using TensorMI64 = TensorMap<TensorI64>;
+ using TensorMI32 = TensorMap<TensorI32>;
+ Eigen::array<IndexType, 5> tensor_range{{4, 1, 1, 1, 6}};
+ Eigen::array<IndexType, 5> slice_range{{4, 1, 1, 1, 3}};
+
+ TensorI64 out_tensor_gpu(tensor_range);
+ TensorI64 out_tensor_cpu(tensor_range);
+ out_tensor_cpu.setRandom();
+
+ TensorI64 sub_tensor(slice_range);
+ sub_tensor.setRandom();
+
+ DataType* out_gpu_data = static_cast<DataType*>(sycl_device.allocate(out_tensor_cpu.size() * sizeof(DataType)));
+ DataType* sub_gpu_data = static_cast<DataType*>(sycl_device.allocate(sub_tensor.size() * sizeof(DataType)));
+ TensorMI64 out_gpu(out_gpu_data, tensor_range);
+ TensorMI64 sub_gpu(sub_gpu_data, slice_range);
+
+ sycl_device.memcpyHostToDevice(out_gpu_data, out_tensor_cpu.data(), out_tensor_cpu.size() * sizeof(DataType));
+ sycl_device.memcpyHostToDevice(sub_gpu_data, sub_tensor.data(), sub_tensor.size() * sizeof(DataType));
+
+ Eigen::array<ConvertedIndexType, 5> slice_offset_32{{0, 0, 0, 0, 3}};
+ Eigen::array<ConvertedIndexType, 5> slice_range_32{{4, 1, 1, 1, 3}};
+ TensorMI32 out_cpu_32(out_tensor_cpu.data(), To32BitDims<ConvertedIndexType>(out_tensor_cpu.dimensions()));
+ TensorMI32 sub_cpu_32(sub_tensor.data(), To32BitDims<ConvertedIndexType>(sub_tensor.dimensions()));
+ TensorMI32 out_gpu_32(out_gpu.data(), To32BitDims<ConvertedIndexType>(out_gpu.dimensions()));
+ TensorMI32 sub_gpu_32(sub_gpu.data(), To32BitDims<ConvertedIndexType>(sub_gpu.dimensions()));
+
+ out_gpu_32.slice(slice_offset_32, slice_range_32).device(sycl_device) = sub_gpu_32;
+
+ out_cpu_32.slice(slice_offset_32, slice_range_32) = sub_cpu_32;
+
+ sycl_device.memcpyDeviceToHost(out_tensor_gpu.data(), out_gpu_data, out_tensor_cpu.size() * sizeof(DataType));
+ int has_err = 0;
+ for (IndexType i = 0; i < out_tensor_cpu.size(); ++i) {
+ auto exp = out_tensor_cpu(i);
+ auto val = out_tensor_gpu(i);
+ if (val != exp) {
+ std::cout << "#" << i << " got " << val << " but expected " << exp << std::endl;
+ has_err = 1;
+ }
+ }
+ sycl_device.deallocate(out_gpu_data);
+ sycl_device.deallocate(sub_gpu_data);
+ return has_err;
+}
+
+template<typename DataType, typename dev_Selector> void sycl_morphing_test_per_device(dev_Selector s){
+ QueueInterface queueInterface(s);
+ auto sycl_device = Eigen::SyclDevice(&queueInterface);
+ test_simple_slice<DataType, RowMajor, int64_t>(sycl_device);
+ test_simple_slice<DataType, ColMajor, int64_t>(sycl_device);
+ test_simple_reshape<DataType, RowMajor, int64_t>(sycl_device);
+ test_simple_reshape<DataType, ColMajor, int64_t>(sycl_device);
+ test_reshape_as_lvalue<DataType, RowMajor, int64_t>(sycl_device);
+ test_reshape_as_lvalue<DataType, ColMajor, int64_t>(sycl_device);
+ test_strided_slice_write_sycl<DataType, ColMajor, int64_t>(sycl_device);
+ test_strided_slice_write_sycl<DataType, RowMajor, int64_t>(sycl_device);
+ test_strided_slice_as_rhs_sycl<DataType, ColMajor, int64_t>(sycl_device);
+ test_strided_slice_as_rhs_sycl<DataType, RowMajor, int64_t>(sycl_device);
+ run_eigen<float, RowMajor, long, int>(sycl_device);
+}
+EIGEN_DECLARE_TEST(cxx11_tensor_morphing_sycl)
+{
+ for (const auto& device :Eigen::get_sycl_supported_devices()) {
+ CALL_SUBTEST(sycl_morphing_test_per_device<float>(device));
+ }
+}