aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/cxx11_tensor_reverse_sycl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'unsupported/test/cxx11_tensor_reverse_sycl.cpp')
-rw-r--r--unsupported/test/cxx11_tensor_reverse_sycl.cpp253
1 files changed, 253 insertions, 0 deletions
diff --git a/unsupported/test/cxx11_tensor_reverse_sycl.cpp b/unsupported/test/cxx11_tensor_reverse_sycl.cpp
new file mode 100644
index 000000000..dd30c235d
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_reverse_sycl.cpp
@@ -0,0 +1,253 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
+#define EIGEN_USE_SYCL
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_simple_reverse(const Eigen::SyclDevice& sycl_device) {
+ IndexType dim1 = 2;
+ IndexType dim2 = 3;
+ IndexType dim3 = 5;
+ IndexType dim4 = 7;
+
+ array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}};
+ Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
+ Tensor<DataType, 4, DataLayout, IndexType> reversed_tensor(tensorRange);
+ tensor.setRandom();
+
+ array<bool, 4> dim_rev;
+ dim_rev[0] = false;
+ dim_rev[1] = true;
+ dim_rev[2] = true;
+ dim_rev[3] = false;
+
+ DataType* gpu_in_data = static_cast<DataType*>(
+ sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType)));
+ DataType* gpu_out_data = static_cast<DataType*>(sycl_device.allocate(
+ reversed_tensor.dimensions().TotalSize() * sizeof(DataType)));
+
+ TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data,
+ tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu(gpu_out_data,
+ tensorRange);
+
+ sycl_device.memcpyHostToDevice(
+ gpu_in_data, tensor.data(),
+ (tensor.dimensions().TotalSize()) * sizeof(DataType));
+ out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev);
+ sycl_device.memcpyDeviceToHost(
+ reversed_tensor.data(), gpu_out_data,
+ reversed_tensor.dimensions().TotalSize() * sizeof(DataType));
+ // Check that the CPU and GPU reductions return the same result.
+ for (IndexType i = 0; i < 2; ++i) {
+ for (IndexType j = 0; j < 3; ++j) {
+ for (IndexType k = 0; k < 5; ++k) {
+ for (IndexType l = 0; l < 7; ++l) {
+ VERIFY_IS_EQUAL(tensor(i, j, k, l),
+ reversed_tensor(i, 2 - j, 4 - k, l));
+ }
+ }
+ }
+ }
+ dim_rev[0] = true;
+ dim_rev[1] = false;
+ dim_rev[2] = false;
+ dim_rev[3] = false;
+
+ out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev);
+ sycl_device.memcpyDeviceToHost(
+ reversed_tensor.data(), gpu_out_data,
+ reversed_tensor.dimensions().TotalSize() * sizeof(DataType));
+
+ for (IndexType i = 0; i < 2; ++i) {
+ for (IndexType j = 0; j < 3; ++j) {
+ for (IndexType k = 0; k < 5; ++k) {
+ for (IndexType l = 0; l < 7; ++l) {
+ VERIFY_IS_EQUAL(tensor(i, j, k, l), reversed_tensor(1 - i, j, k, l));
+ }
+ }
+ }
+ }
+
+ dim_rev[0] = true;
+ dim_rev[1] = false;
+ dim_rev[2] = false;
+ dim_rev[3] = true;
+ out_gpu.device(sycl_device) = in_gpu.reverse(dim_rev);
+ sycl_device.memcpyDeviceToHost(
+ reversed_tensor.data(), gpu_out_data,
+ reversed_tensor.dimensions().TotalSize() * sizeof(DataType));
+
+ for (IndexType i = 0; i < 2; ++i) {
+ for (IndexType j = 0; j < 3; ++j) {
+ for (IndexType k = 0; k < 5; ++k) {
+ for (IndexType l = 0; l < 7; ++l) {
+ VERIFY_IS_EQUAL(tensor(i, j, k, l),
+ reversed_tensor(1 - i, j, k, 6 - l));
+ }
+ }
+ }
+ }
+
+ sycl_device.deallocate(gpu_in_data);
+ sycl_device.deallocate(gpu_out_data);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_expr_reverse(const Eigen::SyclDevice& sycl_device,
+ bool LValue) {
+ IndexType dim1 = 2;
+ IndexType dim2 = 3;
+ IndexType dim3 = 5;
+ IndexType dim4 = 7;
+
+ array<IndexType, 4> tensorRange = {{dim1, dim2, dim3, dim4}};
+ Tensor<DataType, 4, DataLayout, IndexType> tensor(tensorRange);
+ Tensor<DataType, 4, DataLayout, IndexType> expected(tensorRange);
+ Tensor<DataType, 4, DataLayout, IndexType> result(tensorRange);
+ tensor.setRandom();
+
+ array<bool, 4> dim_rev;
+ dim_rev[0] = false;
+ dim_rev[1] = true;
+ dim_rev[2] = false;
+ dim_rev[3] = true;
+
+ DataType* gpu_in_data = static_cast<DataType*>(
+ sycl_device.allocate(tensor.dimensions().TotalSize() * sizeof(DataType)));
+ DataType* gpu_out_data_expected = static_cast<DataType*>(sycl_device.allocate(
+ expected.dimensions().TotalSize() * sizeof(DataType)));
+ DataType* gpu_out_data_result = static_cast<DataType*>(
+ sycl_device.allocate(result.dimensions().TotalSize() * sizeof(DataType)));
+
+ TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > in_gpu(gpu_in_data,
+ tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_expected(
+ gpu_out_data_expected, tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout, IndexType> > out_gpu_result(
+ gpu_out_data_result, tensorRange);
+
+ sycl_device.memcpyHostToDevice(
+ gpu_in_data, tensor.data(),
+ (tensor.dimensions().TotalSize()) * sizeof(DataType));
+
+ if (LValue) {
+ out_gpu_expected.reverse(dim_rev).device(sycl_device) = in_gpu;
+ } else {
+ out_gpu_expected.device(sycl_device) = in_gpu.reverse(dim_rev);
+ }
+ sycl_device.memcpyDeviceToHost(
+ expected.data(), gpu_out_data_expected,
+ expected.dimensions().TotalSize() * sizeof(DataType));
+
+ array<IndexType, 4> src_slice_dim;
+ src_slice_dim[0] = 2;
+ src_slice_dim[1] = 3;
+ src_slice_dim[2] = 1;
+ src_slice_dim[3] = 7;
+ array<IndexType, 4> src_slice_start;
+ src_slice_start[0] = 0;
+ src_slice_start[1] = 0;
+ src_slice_start[2] = 0;
+ src_slice_start[3] = 0;
+ array<IndexType, 4> dst_slice_dim = src_slice_dim;
+ array<IndexType, 4> dst_slice_start = src_slice_start;
+
+ for (IndexType i = 0; i < 5; ++i) {
+ if (LValue) {
+ out_gpu_result.slice(dst_slice_start, dst_slice_dim)
+ .reverse(dim_rev)
+ .device(sycl_device) = in_gpu.slice(src_slice_start, src_slice_dim);
+ } else {
+ out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) =
+ in_gpu.slice(src_slice_start, src_slice_dim).reverse(dim_rev);
+ }
+ src_slice_start[2] += 1;
+ dst_slice_start[2] += 1;
+ }
+ sycl_device.memcpyDeviceToHost(
+ result.data(), gpu_out_data_result,
+ result.dimensions().TotalSize() * sizeof(DataType));
+
+ for (IndexType i = 0; i < expected.dimension(0); ++i) {
+ for (IndexType j = 0; j < expected.dimension(1); ++j) {
+ for (IndexType k = 0; k < expected.dimension(2); ++k) {
+ for (IndexType l = 0; l < expected.dimension(3); ++l) {
+ VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l));
+ }
+ }
+ }
+ }
+
+ dst_slice_start[2] = 0;
+ result.setRandom();
+ sycl_device.memcpyHostToDevice(
+ gpu_out_data_result, result.data(),
+ (result.dimensions().TotalSize()) * sizeof(DataType));
+ for (IndexType i = 0; i < 5; ++i) {
+ if (LValue) {
+ out_gpu_result.slice(dst_slice_start, dst_slice_dim)
+ .reverse(dim_rev)
+ .device(sycl_device) = in_gpu.slice(dst_slice_start, dst_slice_dim);
+ } else {
+ out_gpu_result.slice(dst_slice_start, dst_slice_dim).device(sycl_device) =
+ in_gpu.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim);
+ }
+ dst_slice_start[2] += 1;
+ }
+ sycl_device.memcpyDeviceToHost(
+ result.data(), gpu_out_data_result,
+ result.dimensions().TotalSize() * sizeof(DataType));
+
+ for (IndexType i = 0; i < expected.dimension(0); ++i) {
+ for (IndexType j = 0; j < expected.dimension(1); ++j) {
+ for (IndexType k = 0; k < expected.dimension(2); ++k) {
+ for (IndexType l = 0; l < expected.dimension(3); ++l) {
+ VERIFY_IS_EQUAL(result(i, j, k, l), expected(i, j, k, l));
+ }
+ }
+ }
+ }
+}
+
+template <typename DataType>
+void sycl_reverse_test_per_device(const cl::sycl::device& d) {
+ QueueInterface queueInterface(d);
+ auto sycl_device = Eigen::SyclDevice(&queueInterface);
+ test_simple_reverse<DataType, RowMajor, int64_t>(sycl_device);
+ test_simple_reverse<DataType, ColMajor, int64_t>(sycl_device);
+ test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, false);
+ test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, false);
+ test_expr_reverse<DataType, RowMajor, int64_t>(sycl_device, true);
+ test_expr_reverse<DataType, ColMajor, int64_t>(sycl_device, true);
+}
+EIGEN_DECLARE_TEST(cxx11_tensor_reverse_sycl) {
+ for (const auto& device : Eigen::get_sycl_supported_devices()) {
+ std::cout << "Running on "
+ << device.get_info<cl::sycl::info::device::name>() << std::endl;
+ CALL_SUBTEST_1(sycl_reverse_test_per_device<short>(device));
+ CALL_SUBTEST_2(sycl_reverse_test_per_device<int>(device));
+ CALL_SUBTEST_3(sycl_reverse_test_per_device<unsigned int>(device));
+#ifdef EIGEN_SYCL_DOUBLE_SUPPORT
+ CALL_SUBTEST_4(sycl_reverse_test_per_device<double>(device));
+#endif
+ CALL_SUBTEST_5(sycl_reverse_test_per_device<float>(device));
+ }
+}