aboutsummaryrefslogtreecommitdiff
path: root/Eigen/src/Core/functors/UnaryFunctors.h
blob: 581a3c93abd867f8bd599876237e941fc4d7ffd3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_UNARY_FUNCTORS_H
#define EIGEN_UNARY_FUNCTORS_H

namespace Eigen {

namespace internal {

// Copied from unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
// TODO: remove or update after upstream
/** \internal
  * \brief Template functor to compute the sigmoid of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::sigmoid()
  */
template <typename T>
struct scalar_sigmoid_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sigmoid_op)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T operator()(const T& x) const {
    const T one = T(1);
    return one / (one + numext::exp(-x));
  }

  template <typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
  Packet packetOp(const Packet& x) const {
    const Packet one = pset1<Packet>(T(1));
    return pdiv(one, padd(one, pexp(pnegate(x))));
  }
};

template <typename T>
struct functor_traits<scalar_sigmoid_op<T> > {
  enum {
    Cost = NumTraits<T>::AddCost * 2 + NumTraits<T>::MulCost * 6,
    PacketAccess = packet_traits<T>::HasAdd && packet_traits<T>::HasDiv &&
                   packet_traits<T>::HasNegate && packet_traits<T>::HasExp
  };
};


/** \internal
  * \brief Template functor to compute the opposite of a scalar
  *
  * \sa class CwiseUnaryOp, MatrixBase::operator-
  */
template<typename Scalar> struct scalar_opposite_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
  template<typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pnegate(a); }
};
template<typename Scalar>
struct functor_traits<scalar_opposite_op<Scalar> >
{ enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasNegate };
};

/** \internal
  * \brief Template functor to compute the absolute value of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::abs
  */
template<typename Scalar> struct scalar_abs_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); }
  template<typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pabs(a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasAbs
  };
};

/** \internal
  * \brief Template functor to compute the score of a scalar, to chose a pivot
  *
  * \sa class CwiseUnaryOp
  */
template<typename Scalar> struct scalar_score_coeff_op : scalar_abs_op<Scalar>
{
  typedef void Score_is_abs;
};
template<typename Scalar>
struct functor_traits<scalar_score_coeff_op<Scalar> > : functor_traits<scalar_abs_op<Scalar> > {};

/* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor.  */
template<typename Scalar, typename=void> struct abs_knowing_score
{
  EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
  typedef typename NumTraits<Scalar>::Real result_type;
  template<typename Score>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); }
};
template<typename Scalar> struct abs_knowing_score<Scalar, typename scalar_score_coeff_op<Scalar>::Score_is_abs>
{
  EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score)
  typedef typename NumTraits<Scalar>::Real result_type;
  template<typename Scal>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; }
};

/** \internal
  * \brief Template functor to compute the squared absolute value of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::abs2
  */
template<typename Scalar> struct scalar_abs2_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); }
  template<typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_abs2_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };

/** \internal
  * \brief Template functor to compute the conjugate of a complex value
  *
  * \sa class CwiseUnaryOp, MatrixBase::conjugate()
  */
template<typename Scalar> struct scalar_conjugate_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); }
  template<typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
};
template<typename Scalar>
struct functor_traits<scalar_conjugate_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
    PacketAccess = packet_traits<Scalar>::HasConj
  };
};

/** \internal
  * \brief Template functor to compute the phase angle of a complex
  *
  * \sa class CwiseUnaryOp, Cwise::arg
  */
template<typename Scalar> struct scalar_arg_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_arg_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using numext::arg; return arg(a); }
  template<typename Packet>
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
  { return internal::parg(a); }
};
template<typename Scalar>
struct functor_traits<scalar_arg_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::IsComplex ? 5 * NumTraits<Scalar>::MulCost : NumTraits<Scalar>::AddCost,
    PacketAccess = packet_traits<Scalar>::HasArg
  };
};
/** \internal
  * \brief Template functor to cast a scalar to another type
  *
  * \sa class CwiseUnaryOp, MatrixBase::cast()
  */
template<typename Scalar, typename NewType>
struct scalar_cast_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
  typedef NewType result_type;
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
};
template<typename Scalar, typename NewType>
struct functor_traits<scalar_cast_op<Scalar,NewType> >
{ enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the real part of a complex
  *
  * \sa class CwiseUnaryOp, MatrixBase::real()
  */
template<typename Scalar>
struct scalar_real_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); }
};
template<typename Scalar>
struct functor_traits<scalar_real_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the imaginary part of a complex
  *
  * \sa class CwiseUnaryOp, MatrixBase::imag()
  */
template<typename Scalar>
struct scalar_imag_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the real part of a complex as a reference
  *
  * \sa class CwiseUnaryOp, MatrixBase::real()
  */
template<typename Scalar>
struct scalar_real_ref_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_real_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  * \brief Template functor to extract the imaginary part of a complex as a reference
  *
  * \sa class CwiseUnaryOp, MatrixBase::imag()
  */
template<typename Scalar>
struct scalar_imag_ref_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
  typedef typename NumTraits<Scalar>::Real result_type;
  EIGEN_DEVICE_FUNC
  EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast<Scalar*>(&a)); }
};
template<typename Scalar>
struct functor_traits<scalar_imag_ref_op<Scalar> >
{ enum { Cost = 0, PacketAccess = false }; };

/** \internal
  *
  * \brief Template functor to compute the exponential of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::exp()
  */
template<typename Scalar> struct scalar_exp_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
};
template <typename Scalar>
struct functor_traits<scalar_exp_op<Scalar> > {
  enum {
    PacketAccess = packet_traits<Scalar>::HasExp,
    // The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
    // Haswell can issue 2 add/mul/madd per cycle.
    Cost =
    (sizeof(Scalar) == 4
     // float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other
     ? (8 * NumTraits<Scalar>::AddCost + 6 * NumTraits<Scalar>::MulCost)
     // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div,  13 other
     : (14 * NumTraits<Scalar>::AddCost +
        6 * NumTraits<Scalar>::MulCost +
        scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
#else
    Cost =
    (sizeof(Scalar) == 4
     // float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other
     ? (21 * NumTraits<Scalar>::AddCost + 13 * NumTraits<Scalar>::MulCost)
     // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div,  13 other
     : (23 * NumTraits<Scalar>::AddCost +
        12 * NumTraits<Scalar>::MulCost +
        scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value))
#endif
  };
};

/** \internal
  *
  * \brief Template functor to compute the logarithm of a scalar
  *
  * \sa class CwiseUnaryOp, ArrayBase::log()
  */
template<typename Scalar> struct scalar_log_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
};
template <typename Scalar>
struct functor_traits<scalar_log_op<Scalar> > {
  enum {
    PacketAccess = packet_traits<Scalar>::HasLog,
    Cost =
    (PacketAccess
     // The following numbers are based on the AVX implementation.
#ifdef EIGEN_VECTORIZE_FMA
     // 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle.
     ? (20 * NumTraits<Scalar>::AddCost + 7 * NumTraits<Scalar>::MulCost)
#else
     // 8 pmadd, 6 pmul, 8 padd/psub, 20 other
     ? (36 * NumTraits<Scalar>::AddCost + 14 * NumTraits<Scalar>::MulCost)
#endif
     // Measured cost of std::log.
     : sizeof(Scalar)==4 ? 40 : 85)
  };
};

/** \internal
  *
  * \brief Template functor to compute the logarithm of 1 plus a scalar value
  *
  * \sa class CwiseUnaryOp, ArrayBase::log1p()
  */
template<typename Scalar> struct scalar_log1p_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); }
};
template <typename Scalar>
struct functor_traits<scalar_log1p_op<Scalar> > {
  enum {
    PacketAccess = packet_traits<Scalar>::HasLog1p,
    Cost = functor_traits<scalar_log_op<Scalar> >::Cost // TODO measure cost of log1p
  };
};

/** \internal
  *
  * \brief Template functor to compute the base-10 logarithm of a scalar
  *
  * \sa class CwiseUnaryOp, Cwise::log10()
  */
template<typename Scalar> struct scalar_log10_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_log10_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD_MATH(log10) return log10(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); }
};
template<typename Scalar>
struct functor_traits<scalar_log10_op<Scalar> >
{ enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog10 }; };

/** \internal
  * \brief Template functor to compute the square root of a scalar
  * \sa class CwiseUnaryOp, Cwise::sqrt()
  */
template<typename Scalar> struct scalar_sqrt_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
};
template <typename Scalar>
struct functor_traits<scalar_sqrt_op<Scalar> > {
  enum {
#if EIGEN_FAST_MATH
    // The following numbers are based on the AVX implementation.
    Cost = (sizeof(Scalar) == 8 ? 28
                                // 4 pmul, 1 pmadd, 3 other
                                : (3 * NumTraits<Scalar>::AddCost +
                                   5 * NumTraits<Scalar>::MulCost)),
#else
    // The following numbers are based on min VSQRT throughput on Haswell.
    Cost = (sizeof(Scalar) == 8 ? 28 : 14),
#endif
    PacketAccess = packet_traits<Scalar>::HasSqrt
  };
};

/** \internal
  * \brief Template functor to compute the reciprocal square root of a scalar
  * \sa class CwiseUnaryOp, Cwise::rsqrt()
  */
template<typename Scalar> struct scalar_rsqrt_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); }
};

template<typename Scalar>
struct functor_traits<scalar_rsqrt_op<Scalar> >
{ enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasRsqrt
  };
};

/** \internal
  * \brief Template functor to compute the cosine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::cos()
  */
template<typename Scalar> struct scalar_cos_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
  EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cos_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasCos
  };
};

/** \internal
  * \brief Template functor to compute the sine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::sin()
  */
template<typename Scalar> struct scalar_sin_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sin_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasSin
  };
};


/** \internal
  * \brief Template functor to compute the tan of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::tan()
  */
template<typename Scalar> struct scalar_tan_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_tan_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasTan
  };
};

/** \internal
  * \brief Template functor to compute the arc cosine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::acos()
  */
template<typename Scalar> struct scalar_acos_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
};
template<typename Scalar>
struct functor_traits<scalar_acos_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasACos
  };
};

/** \internal
  * \brief Template functor to compute the arc sine of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::asin()
  */
template<typename Scalar> struct scalar_asin_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
};
template<typename Scalar>
struct functor_traits<scalar_asin_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasASin
  };
};


/** \internal
  * \brief Template functor to compute the atan of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::atan()
  */
template<typename Scalar> struct scalar_atan_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); }
};
template<typename Scalar>
struct functor_traits<scalar_atan_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasATan
  };
};

/** \internal
  * \brief Template functor to compute the tanh of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::tanh()
  */
template <typename Scalar>
struct scalar_tanh_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); }
};

template <typename Scalar>
struct functor_traits<scalar_tanh_op<Scalar> > {
  enum {
    PacketAccess = packet_traits<Scalar>::HasTanh,
    Cost = ( (EIGEN_FAST_MATH && is_same<Scalar,float>::value)
// The following numbers are based on the AVX implementation,
#ifdef EIGEN_VECTORIZE_FMA
                // Haswell can issue 2 add/mul/madd per cycle.
                // 9 pmadd, 2 pmul, 1 div, 2 other
                ? (2 * NumTraits<Scalar>::AddCost +
                   6 * NumTraits<Scalar>::MulCost +
                   scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
#else
                ? (11 * NumTraits<Scalar>::AddCost +
                   11 * NumTraits<Scalar>::MulCost +
                   scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value)
#endif
                // This number assumes a naive implementation of tanh
                : (6 * NumTraits<Scalar>::AddCost +
                   3 * NumTraits<Scalar>::MulCost +
                   2 * scalar_div_cost<Scalar,packet_traits<Scalar>::HasDiv>::value +
                   functor_traits<scalar_exp_op<Scalar> >::Cost))
  };
};

/** \internal
  * \brief Template functor to compute the sinh of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::sinh()
  */
template<typename Scalar> struct scalar_sinh_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sinh_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sinh_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasSinh
  };
};

/** \internal
  * \brief Template functor to compute the cosh of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::cosh()
  */
template<typename Scalar> struct scalar_cosh_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_cosh_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); }
};
template<typename Scalar>
struct functor_traits<scalar_cosh_op<Scalar> >
{
  enum {
    Cost = 5 * NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasCosh
  };
};

/** \internal
  * \brief Template functor to compute the inverse of a scalar
  * \sa class CwiseUnaryOp, Cwise::inverse()
  */
template<typename Scalar>
struct scalar_inverse_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
  EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
  template<typename Packet>
  EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
  { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
};
template<typename Scalar>
struct functor_traits<scalar_inverse_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };

/** \internal
  * \brief Template functor to compute the square of a scalar
  * \sa class CwiseUnaryOp, Cwise::square()
  */
template<typename Scalar>
struct scalar_square_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
  EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; }
  template<typename Packet>
  EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
  { return internal::pmul(a,a); }
};
template<typename Scalar>
struct functor_traits<scalar_square_op<Scalar> >
{ enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };

/** \internal
  * \brief Template functor to compute the cube of a scalar
  * \sa class CwiseUnaryOp, Cwise::cube()
  */
template<typename Scalar>
struct scalar_cube_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
  EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; }
  template<typename Packet>
  EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const
  { return internal::pmul(a,pmul(a,a)); }
};
template<typename Scalar>
struct functor_traits<scalar_cube_op<Scalar> >
{ enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };

/** \internal
  * \brief Template functor to compute the rounded value of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::round()
  */
template<typename Scalar> struct scalar_round_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); }
};
template<typename Scalar>
struct functor_traits<scalar_round_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasRound
  };
};

/** \internal
  * \brief Template functor to compute the floor of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::floor()
  */
template<typename Scalar> struct scalar_floor_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); }
};
template<typename Scalar>
struct functor_traits<scalar_floor_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasFloor
  };
};

/** \internal
  * \brief Template functor to compute the ceil of a scalar
  * \sa class CwiseUnaryOp, ArrayBase::ceil()
  */
template<typename Scalar> struct scalar_ceil_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); }
  template <typename Packet>
  EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); }
};
template<typename Scalar>
struct functor_traits<scalar_ceil_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::MulCost,
    PacketAccess = packet_traits<Scalar>::HasCeil
  };
};

/** \internal
  * \brief Template functor to compute whether a scalar is NaN
  * \sa class CwiseUnaryOp, ArrayBase::isnan()
  */
template<typename Scalar> struct scalar_isnan_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op)
  typedef bool result_type;
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isnan)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isnan_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::MulCost,
    PacketAccess = false
  };
};

/** \internal
  * \brief Template functor to check whether a scalar is +/-inf
  * \sa class CwiseUnaryOp, ArrayBase::isinf()
  */
template<typename Scalar> struct scalar_isinf_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op)
  typedef bool result_type;
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isinf)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isinf_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::MulCost,
    PacketAccess = false
  };
};

/** \internal
  * \brief Template functor to check whether a scalar has a finite value
  * \sa class CwiseUnaryOp, ArrayBase::isfinite()
  */
template<typename Scalar> struct scalar_isfinite_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op)
  typedef bool result_type;
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return (numext::isfinite)(a); }
};
template<typename Scalar>
struct functor_traits<scalar_isfinite_op<Scalar> >
{
  enum {
    Cost = NumTraits<Scalar>::MulCost,
    PacketAccess = false
  };
};

/** \internal
  * \brief Template functor to compute the logical not of a boolean
  *
  * \sa class CwiseUnaryOp, ArrayBase::operator!
  */
template<typename Scalar> struct scalar_boolean_not_op {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op)
  EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a) const { return !a; }
};
template<typename Scalar>
struct functor_traits<scalar_boolean_not_op<Scalar> > {
  enum {
    Cost = NumTraits<bool>::AddCost,
    PacketAccess = false
  };
};

/** \internal
  * \brief Template functor to compute the signum of a scalar
  * \sa class CwiseUnaryOp, Cwise::sign()
  */
template<typename Scalar,bool iscpx=(NumTraits<Scalar>::IsComplex!=0) > struct scalar_sign_op;
template<typename Scalar>
struct scalar_sign_op<Scalar,false> {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
  {
      return Scalar( (a>Scalar(0)) - (a<Scalar(0)) );
  }
  //TODO
  //template <typename Packet>
  //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
};
template<typename Scalar>
struct scalar_sign_op<Scalar,true> {
  EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op)
  EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const
  {
    typedef typename NumTraits<Scalar>::Real real_type;
    real_type aa = numext::abs(a);
    if (aa==real_type(0))
      return Scalar(0);
    aa = real_type(1)/aa;
    return Scalar(real(a)*aa, imag(a)*aa );
  }
  //TODO
  //template <typename Packet>
  //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); }
};
template<typename Scalar>
struct functor_traits<scalar_sign_op<Scalar> >
{ enum {
    Cost = 
        NumTraits<Scalar>::IsComplex
        ? ( 8*NumTraits<Scalar>::MulCost  ) // roughly
        : ( 3*NumTraits<Scalar>::AddCost),
    PacketAccess = packet_traits<Scalar>::HasSign
  };
};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_FUNCTORS_H