aboutsummaryrefslogtreecommitdiff
path: root/unsupported/Eigen/src/Polynomials/PolynomialUtils.h
blob: 40ba65b7e06d058b55ecbc321e4216d8bab62ac7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Manuel Yguel <manuel.yguel@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_POLYNOMIAL_UTILS_H
#define EIGEN_POLYNOMIAL_UTILS_H

namespace Eigen { 

/** \ingroup Polynomials_Module
 * \returns the evaluation of the polynomial at x using Horner algorithm.
 *
 * \param[in] poly : the vector of coefficients of the polynomial ordered
 *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
 *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
 * \param[in] x : the value to evaluate the polynomial at.
 *
 * <i><b>Note for stability:</b></i>
 *  <dd> \f$ |x| \le 1 \f$ </dd>
 */
template <typename Polynomials, typename T>
inline
T poly_eval_horner( const Polynomials& poly, const T& x )
{
  T val=poly[poly.size()-1];
  for(DenseIndex i=poly.size()-2; i>=0; --i ){
    val = val*x + poly[i]; }
  return val;
}

/** \ingroup Polynomials_Module
 * \returns the evaluation of the polynomial at x using stabilized Horner algorithm.
 *
 * \param[in] poly : the vector of coefficients of the polynomial ordered
 *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
 *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
 * \param[in] x : the value to evaluate the polynomial at.
 */
template <typename Polynomials, typename T>
inline
T poly_eval( const Polynomials& poly, const T& x )
{
  typedef typename NumTraits<T>::Real Real;

  if( numext::abs2( x ) <= Real(1) ){
    return poly_eval_horner( poly, x ); }
  else
  {
    T val=poly[0];
    T inv_x = T(1)/x;
    for( DenseIndex i=1; i<poly.size(); ++i ){
      val = val*inv_x + poly[i]; }

    return numext::pow(x,(T)(poly.size()-1)) * val;
  }
}

/** \ingroup Polynomials_Module
 * \returns a maximum bound for the absolute value of any root of the polynomial.
 *
 * \param[in] poly : the vector of coefficients of the polynomial ordered
 *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
 *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
 *
 *  <i><b>Precondition:</b></i>
 *  <dd> the leading coefficient of the input polynomial poly must be non zero </dd>
 */
template <typename Polynomial>
inline
typename NumTraits<typename Polynomial::Scalar>::Real cauchy_max_bound( const Polynomial& poly )
{
  using std::abs;
  typedef typename Polynomial::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real Real;

  eigen_assert( Scalar(0) != poly[poly.size()-1] );
  const Scalar inv_leading_coeff = Scalar(1)/poly[poly.size()-1];
  Real cb(0);

  for( DenseIndex i=0; i<poly.size()-1; ++i ){
    cb += abs(poly[i]*inv_leading_coeff); }
  return cb + Real(1);
}

/** \ingroup Polynomials_Module
 * \returns a minimum bound for the absolute value of any non zero root of the polynomial.
 * \param[in] poly : the vector of coefficients of the polynomial ordered
 *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
 *  e.g. \f$ 1 + 3x^2 \f$ is stored as a vector \f$ [ 1, 0, 3 ] \f$.
 */
template <typename Polynomial>
inline
typename NumTraits<typename Polynomial::Scalar>::Real cauchy_min_bound( const Polynomial& poly )
{
  using std::abs;
  typedef typename Polynomial::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real Real;

  DenseIndex i=0;
  while( i<poly.size()-1 && Scalar(0) == poly(i) ){ ++i; }
  if( poly.size()-1 == i ){
    return Real(1); }

  const Scalar inv_min_coeff = Scalar(1)/poly[i];
  Real cb(1);
  for( DenseIndex j=i+1; j<poly.size(); ++j ){
    cb += abs(poly[j]*inv_min_coeff); }
  return Real(1)/cb;
}

/** \ingroup Polynomials_Module
 * Given the roots of a polynomial compute the coefficients in the
 * monomial basis of the monic polynomial with same roots and minimal degree.
 * If RootVector is a vector of complexes, Polynomial should also be a vector
 * of complexes.
 * \param[in] rv : a vector containing the roots of a polynomial.
 * \param[out] poly : the vector of coefficients of the polynomial ordered
 *  by degrees i.e. poly[i] is the coefficient of degree i of the polynomial
 *  e.g. \f$ 3 + x^2 \f$ is stored as a vector \f$ [ 3, 0, 1 ] \f$.
 */
template <typename RootVector, typename Polynomial>
void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
{

  typedef typename Polynomial::Scalar Scalar;

  poly.setZero( rv.size()+1 );
  poly[0] = -rv[0]; poly[1] = Scalar(1);
  for( DenseIndex i=1; i< rv.size(); ++i )
  {
    for( DenseIndex j=i+1; j>0; --j ){ poly[j] = poly[j-1] - rv[i]*poly[j]; }
    poly[0] = -rv[i]*poly[0];
  }
}

} // end namespace Eigen

#endif // EIGEN_POLYNOMIAL_UTILS_H