aboutsummaryrefslogtreecommitdiff
path: root/unsupported/test/EulerAngles.cpp
blob: a8cb5286409bf9186f79b66671a6d43b78836f5c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "main.h"

#include <unsupported/Eigen/EulerAngles>

using namespace Eigen;

template<typename EulerSystem, typename Scalar>
void verify_euler_ranged(const Matrix<Scalar,3,1>& ea,
  bool positiveRangeAlpha, bool positiveRangeBeta, bool positiveRangeGamma)
{
  typedef EulerAngles<Scalar, EulerSystem> EulerAnglesType;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> QuaternionType;
  typedef AngleAxis<Scalar> AngleAxisType;
  using std::abs;
  
  Scalar alphaRangeStart, alphaRangeEnd;
  Scalar betaRangeStart, betaRangeEnd;
  Scalar gammaRangeStart, gammaRangeEnd;
  
  if (positiveRangeAlpha)
  {
    alphaRangeStart = Scalar(0);
    alphaRangeEnd = Scalar(2 * EIGEN_PI);
  }
  else
  {
    alphaRangeStart = -Scalar(EIGEN_PI);
    alphaRangeEnd = Scalar(EIGEN_PI);
  }
  
  if (positiveRangeBeta)
  {
    betaRangeStart = Scalar(0);
    betaRangeEnd = Scalar(2 * EIGEN_PI);
  }
  else
  {
    betaRangeStart = -Scalar(EIGEN_PI);
    betaRangeEnd = Scalar(EIGEN_PI);
  }
  
  if (positiveRangeGamma)
  {
    gammaRangeStart = Scalar(0);
    gammaRangeEnd = Scalar(2 * EIGEN_PI);
  }
  else
  {
    gammaRangeStart = -Scalar(EIGEN_PI);
    gammaRangeEnd = Scalar(EIGEN_PI);
  }
  
  const int i = EulerSystem::AlphaAxisAbs - 1;
  const int j = EulerSystem::BetaAxisAbs - 1;
  const int k = EulerSystem::GammaAxisAbs - 1;
  
  const int iFactor = EulerSystem::IsAlphaOpposite ? -1 : 1;
  const int jFactor = EulerSystem::IsBetaOpposite ? -1 : 1;
  const int kFactor = EulerSystem::IsGammaOpposite ? -1 : 1;
  
  const Vector3 I = EulerAnglesType::AlphaAxisVector();
  const Vector3 J = EulerAnglesType::BetaAxisVector();
  const Vector3 K = EulerAnglesType::GammaAxisVector();
  
  EulerAnglesType e(ea[0], ea[1], ea[2]);
  
  Matrix3 m(e);
  Vector3 eabis = EulerAnglesType(m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
  
  // Check that eabis in range
  VERIFY(alphaRangeStart <= eabis[0] && eabis[0] <= alphaRangeEnd);
  VERIFY(betaRangeStart <= eabis[1] && eabis[1] <= betaRangeEnd);
  VERIFY(gammaRangeStart <= eabis[2] && eabis[2] <= gammaRangeEnd);
  
  Vector3 eabis2 = m.eulerAngles(i, j, k);
  
  // Invert the relevant axes
  eabis2[0] *= iFactor;
  eabis2[1] *= jFactor;
  eabis2[2] *= kFactor;
  
  // Saturate the angles to the correct range
  if (positiveRangeAlpha && (eabis2[0] < 0))
    eabis2[0] += Scalar(2 * EIGEN_PI);
  if (positiveRangeBeta && (eabis2[1] < 0))
    eabis2[1] += Scalar(2 * EIGEN_PI);
  if (positiveRangeGamma && (eabis2[2] < 0))
    eabis2[2] += Scalar(2 * EIGEN_PI);
  
  VERIFY_IS_APPROX(eabis, eabis2);// Verify that our estimation is the same as m.eulerAngles() is
  
  Matrix3 mbis(AngleAxisType(eabis[0], I) * AngleAxisType(eabis[1], J) * AngleAxisType(eabis[2], K));
  VERIFY_IS_APPROX(m,  mbis);
  
  // Tests that are only relevant for no possitive range
  if (!(positiveRangeAlpha || positiveRangeBeta || positiveRangeGamma))
  {
    /* If I==K, and ea[1]==0, then there no unique solution. */ 
    /* The remark apply in the case where I!=K, and |ea[1]| is close to pi/2. */ 
    if( (i!=k || ea[1]!=0) && (i==k || !internal::isApprox(abs(ea[1]),Scalar(EIGEN_PI/2),test_precision<Scalar>())) ) 
      VERIFY((ea-eabis).norm() <= test_precision<Scalar>());
    
    // approx_or_less_than does not work for 0
    VERIFY(0 < eabis[0] || test_isMuchSmallerThan(eabis[0], Scalar(1)));
  }
  
  // Quaternions
  QuaternionType q(e);
  eabis = EulerAnglesType(q, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma).angles();
  VERIFY_IS_APPROX(eabis, eabis2);// Verify that the euler angles are still the same
}

template<typename EulerSystem, typename Scalar>
void verify_euler(const Matrix<Scalar,3,1>& ea)
{
  verify_euler_ranged<EulerSystem>(ea, false, false, false);
  verify_euler_ranged<EulerSystem>(ea, false, false, true);
  verify_euler_ranged<EulerSystem>(ea, false, true, false);
  verify_euler_ranged<EulerSystem>(ea, false, true, true);
  verify_euler_ranged<EulerSystem>(ea, true, false, false);
  verify_euler_ranged<EulerSystem>(ea, true, false, true);
  verify_euler_ranged<EulerSystem>(ea, true, true, false);
  verify_euler_ranged<EulerSystem>(ea, true, true, true);
}

template<typename Scalar> void check_all_var(const Matrix<Scalar,3,1>& ea)
{
  verify_euler<EulerSystemXYZ>(ea);
  verify_euler<EulerSystemXYX>(ea);
  verify_euler<EulerSystemXZY>(ea);
  verify_euler<EulerSystemXZX>(ea);
  
  verify_euler<EulerSystemYZX>(ea);
  verify_euler<EulerSystemYZY>(ea);
  verify_euler<EulerSystemYXZ>(ea);
  verify_euler<EulerSystemYXY>(ea);
  
  verify_euler<EulerSystemZXY>(ea);
  verify_euler<EulerSystemZXZ>(ea);
  verify_euler<EulerSystemZYX>(ea);
  verify_euler<EulerSystemZYZ>(ea);
}

template<typename Scalar> void eulerangles()
{
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Array<Scalar,3,1> Array3;
  typedef Quaternion<Scalar> Quaternionx;
  typedef AngleAxis<Scalar> AngleAxisType;

  Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
  Quaternionx q1;
  q1 = AngleAxisType(a, Vector3::Random().normalized());
  Matrix3 m;
  m = q1;
  
  Vector3 ea = m.eulerAngles(0,1,2);
  check_all_var(ea);
  ea = m.eulerAngles(0,1,0);
  check_all_var(ea);
  
  // Check with purely random Quaternion:
  q1.coeffs() = Quaternionx::Coefficients::Random().normalized();
  m = q1;
  ea = m.eulerAngles(0,1,2);
  check_all_var(ea);
  ea = m.eulerAngles(0,1,0);
  check_all_var(ea);
  
  // Check with random angles in range [0:pi]x[-pi:pi]x[-pi:pi].
  ea = (Array3::Random() + Array3(1,0,0))*Scalar(EIGEN_PI)*Array3(0.5,1,1);
  check_all_var(ea);
  
  ea[2] = ea[0] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
  check_all_var(ea);
  
  ea[0] = ea[1] = internal::random<Scalar>(0,Scalar(EIGEN_PI));
  check_all_var(ea);
  
  ea[1] = 0;
  check_all_var(ea);
  
  ea.head(2).setZero();
  check_all_var(ea);
  
  ea.setZero();
  check_all_var(ea);
}

void test_EulerAngles()
{
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( eulerangles<float>() );
    CALL_SUBTEST_2( eulerangles<double>() );
  }
}