aboutsummaryrefslogtreecommitdiff
path: root/meta/multi_thread_gemm.h
blob: f69f810a9e0e57a1701826bdbe74149d95568284 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// Copyright 2016 The Gemmlowp Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#ifndef GEMMLOWP_META_MULTI_THREAD_GEMM_H_
#define GEMMLOWP_META_MULTI_THREAD_GEMM_H_

#include "multi_thread_common.h"
#include "single_thread_gemm.h"

namespace gemmlowp {
namespace meta {
namespace internal {

const std::int32_t kMinGemmTaskSize = 16000;
const std::int32_t kMinGemmTaskDimension = 4;

template <typename Executor, typename Params>
std::uint8_t* PrepareGemmTask(const Params& params, int kernel_m, int kernel_n,
                              int kernel_k, std::uint8_t* scratch, int m_start,
                              int m, int n_start, int n,
                              std::vector<Params>* tasks) {
  tasks->push_back(params);
  Params& task = tasks->back();
  task.scratch = scratch;

  task.m = m;
  task.lhs =
      StreamUtil<typename Params::InType, typename Params::LeftStream>::Offset(
          params.left_stream, params.lhs, m_start, 0);

  task.n = n;
  task.rhs =
      StreamUtil<typename Params::InType, typename Params::RightStream>::Offset(
          params.right_stream, params.rhs, n_start, 0);

  task.result =
      StreamUtil<typename Params::OutType, typename Params::OutputStream>::
          Offset(params.fused_kernel.output_stream, params.result, m_start,
                 n_start);

  return scratch + Executor::template EstimateScratchSize<Params>(
                       task, kernel_m, kernel_n, kernel_k);
}

template <typename MultiThreadingContext, typename Executor, typename Params>
bool PrepareGemmTasks(MultiThreadingContext* context, const Params& params,
                      int kernel_m, int kernel_n, int kernel_k,
                      std::vector<Params>* task_params) {
  const int max_threads = ResolveMaxThreads(context->max_num_threads());
  const int max_tasks_by_size =
      (params.m * params.n * params.k) / kMinGemmTaskSize;
  const int max_tasks_m = params.m / kMinGemmTaskDimension;
  const int max_tasks_n = params.n / kMinGemmTaskDimension;
  const int max_tasks_dimension = std::max(max_tasks_m, max_tasks_n);

  const int real_tasks = std::max(
      1,
      std::min(max_threads, std::min(max_tasks_by_size, max_tasks_dimension)));

  if (real_tasks == 1) {
    return false;
  }

  std::uint8_t* scratch = params.scratch;

  if (max_tasks_m > max_tasks_n) {
    const int m_chunk = params.m / real_tasks;
    for (int i = 0; i < real_tasks - 1; ++i) {
      scratch = PrepareGemmTask<Executor, Params>(
          params, kernel_m, kernel_n, kernel_k, scratch, i * m_chunk, m_chunk,
          0, params.n, task_params);
    }
    const int sum_m = (real_tasks - 1) * m_chunk;
    PrepareGemmTask<Executor, Params>(params, kernel_m, kernel_n, kernel_k,
                                      scratch, sum_m, params.m - sum_m, 0,
                                      params.n, task_params);
  } else {
    const int n_chunk = params.n / real_tasks;
    for (int i = 0; i < real_tasks - 1; ++i) {
      scratch = PrepareGemmTask<Executor, Params>(
          params, kernel_m, kernel_n, kernel_k, scratch, 0, params.m,
          i * n_chunk, n_chunk, task_params);
    }
    int sum_n = (real_tasks - 1) * n_chunk;
    PrepareGemmTask<Executor, Params>(params, kernel_m, kernel_n, kernel_k,
                                      scratch, 0, params.m, sum_n,
                                      params.n - sum_n, task_params);
  }

  return true;
}

template <typename Executor, typename Params, int kernel_m, int kernel_n,
          int kernel_k>
struct GemmTaskRunner : gemmlowp::Task {
  GemmTaskRunner(const Params& params) : params(params) {}

  void Run() override {
    Gemm<Executor, Params, kernel_m, kernel_n, kernel_k>(params);
  }

  Params params;
};

}  // namespace internal

template <typename MultiThreadingContext, typename Executor, typename Params,
          int kernel_m, int kernel_n, int kernel_k>
inline void MultiThreadGemm(MultiThreadingContext* context,
                            const Params& params) {
  typedef internal::GemmTaskRunner<Executor, Params, kernel_m, kernel_n,
                                   kernel_k>
      TaskRunnerType;

  std::vector<Params> task_params;
  if (!internal::PrepareGemmTasks<MultiThreadingContext, Executor, Params>(
          context, params, kernel_m, kernel_n, kernel_k, &task_params)) {
    Gemm<Executor, Params, kernel_m, kernel_n, kernel_k>(params);
    return;
  }

  auto workers_pool = context->workers_pool();
  std::vector<Task*> tasks;
  for (auto& task_param : task_params) {
    tasks.push_back(new TaskRunnerType(task_param));
  };
  workers_pool->Execute(tasks);
}

}  // namespace meta
}  // namespace gemmlowp

#endif  // GEMMLOWP_META_MULTI_THREAD_GEMM_H_