aboutsummaryrefslogtreecommitdiff
path: root/cmd/digraph/digraph.go
blob: 88eb05bf11749b3a9ecd62dd276ea785b9db43c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

/*
The digraph command performs queries over unlabelled directed graphs
represented in text form.  It is intended to integrate nicely with
typical UNIX command pipelines.

Usage:

	your-application | digraph [command]

The support commands are:

	nodes
		the set of all nodes
	degree
		the in-degree and out-degree of each node
	transpose
		the reverse of the input edges
	preds <node> ...
		the set of immediate predecessors of the specified nodes
	succs <node> ...
		the set of immediate successors of the specified nodes
	forward <node> ...
		the set of nodes transitively reachable from the specified nodes
	reverse <node> ...
		the set of nodes that transitively reach the specified nodes
	somepath <node> <node>
		the list of nodes on some arbitrary path from the first node to the second
	allpaths <node> <node>
		the set of nodes on all paths from the first node to the second
	sccs
		all strongly connected components (one per line)
	scc <node>
		the set of nodes nodes strongly connected to the specified one
	focus <node>
		the subgraph containing all directed paths that pass through the specified node

Input format:

Each line contains zero or more words. Words are separated by unquoted
whitespace; words may contain Go-style double-quoted portions, allowing spaces
and other characters to be expressed.

Each word declares a node, and if there are more than one, an edge from the
first to each subsequent one. The graph is provided on the standard input.

For instance, the following (acyclic) graph specifies a partial order among the
subtasks of getting dressed:

	$ cat clothes.txt
	socks shoes
	"boxer shorts" pants
	pants belt shoes
	shirt tie sweater
	sweater jacket
	hat

The line "shirt tie sweater" indicates the two edges shirt -> tie and
shirt -> sweater, not shirt -> tie -> sweater.

Example usage:

Using digraph with existing Go tools:

	$ go mod graph | digraph nodes # Operate on the Go module graph.
	$ go list -m all | digraph nodes # Operate on the Go package graph.

Show the transitive closure of imports of the digraph tool itself:
	$ go list -f '{{.ImportPath}} {{join .Imports " "}}' ... | digraph forward golang.org/x/tools/cmd/digraph

Show which clothes (see above) must be donned before a jacket:
	$ digraph reverse jacket

*/
package main // import "golang.org/x/tools/cmd/digraph"

// TODO(adonovan):
// - support input files other than stdin
// - support alternative formats (AT&T GraphViz, CSV, etc),
//   a comment syntax, etc.
// - allow queries to nest, like Blaze query language.

import (
	"bufio"
	"bytes"
	"errors"
	"flag"
	"fmt"
	"io"
	"os"
	"sort"
	"strconv"
	"strings"
	"unicode"
	"unicode/utf8"
)

func usage() {
	fmt.Fprintf(os.Stderr, `Usage: your-application | digraph [command]

The support commands are:
	nodes
		the set of all nodes
	degree
		the in-degree and out-degree of each node
	transpose
		the reverse of the input edges
	preds <node> ...
		the set of immediate predecessors of the specified nodes
	succs <node> ...
		the set of immediate successors of the specified nodes
	forward <node> ...
		the set of nodes transitively reachable from the specified nodes
	reverse <node> ...
		the set of nodes that transitively reach the specified nodes
	somepath <node> <node>
		the list of nodes on some arbitrary path from the first node to the second
	allpaths <node> <node>
		the set of nodes on all paths from the first node to the second
	sccs
		all strongly connected components (one per line)
	scc <node>
		the set of nodes nodes strongly connected to the specified one
	focus <node>
		the subgraph containing all directed paths that pass through the specified node
`)
	os.Exit(2)
}

func main() {
	flag.Usage = usage
	flag.Parse()

	args := flag.Args()
	if len(args) == 0 {
		usage()
	}

	if err := digraph(args[0], args[1:]); err != nil {
		fmt.Fprintf(os.Stderr, "digraph: %s\n", err)
		os.Exit(1)
	}
}

type nodelist []string

func (l nodelist) println(sep string) {
	for i, node := range l {
		if i > 0 {
			fmt.Fprint(stdout, sep)
		}
		fmt.Fprint(stdout, node)
	}
	fmt.Fprintln(stdout)
}

type nodeset map[string]bool // TODO(deklerk): change bool to struct to reduce memory footprint

func (s nodeset) sort() nodelist {
	nodes := make(nodelist, len(s))
	var i int
	for node := range s {
		nodes[i] = node
		i++
	}
	sort.Strings(nodes)
	return nodes
}

func (s nodeset) addAll(x nodeset) {
	for node := range x {
		s[node] = true
	}
}

// A graph maps nodes to the non-nil set of their immediate successors.
type graph map[string]nodeset

func (g graph) addNode(node string) nodeset {
	edges := g[node]
	if edges == nil {
		edges = make(nodeset)
		g[node] = edges
	}
	return edges
}

func (g graph) addEdges(from string, to ...string) {
	edges := g.addNode(from)
	for _, to := range to {
		g.addNode(to)
		edges[to] = true
	}
}

func (g graph) reachableFrom(roots nodeset) nodeset {
	seen := make(nodeset)
	var visit func(node string)
	visit = func(node string) {
		if !seen[node] {
			seen[node] = true
			for e := range g[node] {
				visit(e)
			}
		}
	}
	for root := range roots {
		visit(root)
	}
	return seen
}

func (g graph) transpose() graph {
	rev := make(graph)
	for node, edges := range g {
		rev.addNode(node)
		for succ := range edges {
			rev.addEdges(succ, node)
		}
	}
	return rev
}

func (g graph) sccs() []nodeset {
	// Kosaraju's algorithm---Tarjan is overkill here.

	// Forward pass.
	S := make(nodelist, 0, len(g)) // postorder stack
	seen := make(nodeset)
	var visit func(node string)
	visit = func(node string) {
		if !seen[node] {
			seen[node] = true
			for e := range g[node] {
				visit(e)
			}
			S = append(S, node)
		}
	}
	for node := range g {
		visit(node)
	}

	// Reverse pass.
	rev := g.transpose()
	var scc nodeset
	seen = make(nodeset)
	var rvisit func(node string)
	rvisit = func(node string) {
		if !seen[node] {
			seen[node] = true
			scc[node] = true
			for e := range rev[node] {
				rvisit(e)
			}
		}
	}
	var sccs []nodeset
	for len(S) > 0 {
		top := S[len(S)-1]
		S = S[:len(S)-1] // pop
		if !seen[top] {
			scc = make(nodeset)
			rvisit(top)
			sccs = append(sccs, scc)
		}
	}
	return sccs
}

func (g graph) allpaths(from, to string) error {
	// Mark all nodes to "to".
	seen := make(nodeset) // value of seen[x] indicates whether x is on some path to "to"
	var visit func(node string) bool
	visit = func(node string) bool {
		reachesTo, ok := seen[node]
		if !ok {
			reachesTo = node == to
			seen[node] = reachesTo
			for e := range g[node] {
				if visit(e) {
					reachesTo = true
				}
			}
			if reachesTo && node != to {
				seen[node] = true
			}
		}
		return reachesTo
	}
	visit(from)

	// For each marked node, collect its marked successors.
	var edges []string
	for n := range seen {
		for succ := range g[n] {
			if seen[succ] {
				edges = append(edges, n+" "+succ)
			}
		}
	}

	// Sort (so that this method is deterministic) and print edges.
	sort.Strings(edges)
	for _, e := range edges {
		fmt.Fprintln(stdout, e)
	}

	return nil
}

func (g graph) somepath(from, to string) error {
	type edge struct{ from, to string }
	seen := make(nodeset)
	var dfs func(path []edge, from string) bool
	dfs = func(path []edge, from string) bool {
		if !seen[from] {
			seen[from] = true
			if from == to {
				// fmt.Println(path, len(path), cap(path))
				// Print and unwind.
				for _, e := range path {
					fmt.Fprintln(stdout, e.from+" "+e.to)
				}
				return true
			}
			for e := range g[from] {
				if dfs(append(path, edge{from: from, to: e}), e) {
					return true
				}
			}
		}
		return false
	}
	maxEdgesInGraph := len(g) * (len(g) - 1)
	if !dfs(make([]edge, 0, maxEdgesInGraph), from) {
		return fmt.Errorf("no path from %q to %q", from, to)
	}
	return nil
}

func parse(rd io.Reader) (graph, error) {
	g := make(graph)

	var linenum int
	in := bufio.NewScanner(rd)
	for in.Scan() {
		linenum++
		// Split into words, honoring double-quotes per Go spec.
		words, err := split(in.Text())
		if err != nil {
			return nil, fmt.Errorf("at line %d: %v", linenum, err)
		}
		if len(words) > 0 {
			g.addEdges(words[0], words[1:]...)
		}
	}
	if err := in.Err(); err != nil {
		return nil, err
	}
	return g, nil
}

// Overridable for testing purposes.
var stdin io.Reader = os.Stdin
var stdout io.Writer = os.Stdout

func digraph(cmd string, args []string) error {
	// Parse the input graph.
	g, err := parse(stdin)
	if err != nil {
		return err
	}

	// Parse the command line.
	switch cmd {
	case "nodes":
		if len(args) != 0 {
			return fmt.Errorf("usage: digraph nodes")
		}
		nodes := make(nodeset)
		for node := range g {
			nodes[node] = true
		}
		nodes.sort().println("\n")

	case "degree":
		if len(args) != 0 {
			return fmt.Errorf("usage: digraph degree")
		}
		nodes := make(nodeset)
		for node := range g {
			nodes[node] = true
		}
		rev := g.transpose()
		for _, node := range nodes.sort() {
			fmt.Fprintf(stdout, "%d\t%d\t%s\n", len(rev[node]), len(g[node]), node)
		}

	case "transpose":
		if len(args) != 0 {
			return fmt.Errorf("usage: digraph transpose")
		}
		var revEdges []string
		for node, succs := range g.transpose() {
			for succ := range succs {
				revEdges = append(revEdges, fmt.Sprintf("%s %s", node, succ))
			}
		}
		sort.Strings(revEdges) // make output deterministic
		for _, e := range revEdges {
			fmt.Fprintln(stdout, e)
		}

	case "succs", "preds":
		if len(args) == 0 {
			return fmt.Errorf("usage: digraph %s <node> ... ", cmd)
		}
		g := g
		if cmd == "preds" {
			g = g.transpose()
		}
		result := make(nodeset)
		for _, root := range args {
			edges := g[root]
			if edges == nil {
				return fmt.Errorf("no such node %q", root)
			}
			result.addAll(edges)
		}
		result.sort().println("\n")

	case "forward", "reverse":
		if len(args) == 0 {
			return fmt.Errorf("usage: digraph %s <node> ... ", cmd)
		}
		roots := make(nodeset)
		for _, root := range args {
			if g[root] == nil {
				return fmt.Errorf("no such node %q", root)
			}
			roots[root] = true
		}
		g := g
		if cmd == "reverse" {
			g = g.transpose()
		}
		g.reachableFrom(roots).sort().println("\n")

	case "somepath":
		if len(args) != 2 {
			return fmt.Errorf("usage: digraph somepath <from> <to>")
		}
		from, to := args[0], args[1]
		if g[from] == nil {
			return fmt.Errorf("no such 'from' node %q", from)
		}
		if g[to] == nil {
			return fmt.Errorf("no such 'to' node %q", to)
		}
		if err := g.somepath(from, to); err != nil {
			return err
		}

	case "allpaths":
		if len(args) != 2 {
			return fmt.Errorf("usage: digraph allpaths <from> <to>")
		}
		from, to := args[0], args[1]
		if g[from] == nil {
			return fmt.Errorf("no such 'from' node %q", from)
		}
		if g[to] == nil {
			return fmt.Errorf("no such 'to' node %q", to)
		}
		if err := g.allpaths(from, to); err != nil {
			return err
		}

	case "sccs":
		if len(args) != 0 {
			return fmt.Errorf("usage: digraph sccs")
		}
		for _, scc := range g.sccs() {
			scc.sort().println(" ")
		}

	case "scc":
		if len(args) != 1 {
			return fmt.Errorf("usage: digraph scc <node>")
		}
		node := args[0]
		if g[node] == nil {
			return fmt.Errorf("no such node %q", node)
		}
		for _, scc := range g.sccs() {
			if scc[node] {
				scc.sort().println("\n")
				break
			}
		}

	case "focus":
		if len(args) != 1 {
			return fmt.Errorf("usage: digraph focus <node>")
		}
		node := args[0]
		if g[node] == nil {
			return fmt.Errorf("no such node %q", node)
		}

		edges := make(map[string]struct{})
		for from := range g.reachableFrom(nodeset{node: true}) {
			for to := range g[from] {
				edges[fmt.Sprintf("%s %s", from, to)] = struct{}{}
			}
		}

		gtrans := g.transpose()
		for from := range gtrans.reachableFrom(nodeset{node: true}) {
			for to := range gtrans[from] {
				edges[fmt.Sprintf("%s %s", to, from)] = struct{}{}
			}
		}

		edgesSorted := make([]string, 0, len(edges))
		for e := range edges {
			edgesSorted = append(edgesSorted, e)
		}
		sort.Strings(edgesSorted)
		fmt.Fprintln(stdout, strings.Join(edgesSorted, "\n"))

	default:
		return fmt.Errorf("no such command %q", cmd)
	}

	return nil
}

// -- Utilities --------------------------------------------------------

// split splits a line into words, which are generally separated by
// spaces, but Go-style double-quoted string literals are also supported.
// (This approximates the behaviour of the Bourne shell.)
//
//   `one "two three"` -> ["one" "two three"]
//   `a"\n"b` -> ["a\nb"]
//
func split(line string) ([]string, error) {
	var (
		words   []string
		inWord  bool
		current bytes.Buffer
	)

	for len(line) > 0 {
		r, size := utf8.DecodeRuneInString(line)
		if unicode.IsSpace(r) {
			if inWord {
				words = append(words, current.String())
				current.Reset()
				inWord = false
			}
		} else if r == '"' {
			var ok bool
			size, ok = quotedLength(line)
			if !ok {
				return nil, errors.New("invalid quotation")
			}
			s, err := strconv.Unquote(line[:size])
			if err != nil {
				return nil, err
			}
			current.WriteString(s)
			inWord = true
		} else {
			current.WriteRune(r)
			inWord = true
		}
		line = line[size:]
	}
	if inWord {
		words = append(words, current.String())
	}
	return words, nil
}

// quotedLength returns the length in bytes of the prefix of input that
// contain a possibly-valid double-quoted Go string literal.
//
// On success, n is at least two (""); input[:n] may be passed to
// strconv.Unquote to interpret its value, and input[n:] contains the
// rest of the input.
//
// On failure, quotedLength returns false, and the entire input can be
// passed to strconv.Unquote if an informative error message is desired.
//
// quotedLength does not and need not detect all errors, such as
// invalid hex or octal escape sequences, since it assumes
// strconv.Unquote will be applied to the prefix.  It guarantees only
// that if there is a prefix of input containing a valid string literal,
// its length is returned.
//
// TODO(adonovan): move this into a strconv-like utility package.
//
func quotedLength(input string) (n int, ok bool) {
	var offset int

	// next returns the rune at offset, or -1 on EOF.
	// offset advances to just after that rune.
	next := func() rune {
		if offset < len(input) {
			r, size := utf8.DecodeRuneInString(input[offset:])
			offset += size
			return r
		}
		return -1
	}

	if next() != '"' {
		return // error: not a quotation
	}

	for {
		r := next()
		if r == '\n' || r < 0 {
			return // error: string literal not terminated
		}
		if r == '"' {
			return offset, true // success
		}
		if r == '\\' {
			var skip int
			switch next() {
			case 'a', 'b', 'f', 'n', 'r', 't', 'v', '\\', '"':
				skip = 0
			case '0', '1', '2', '3', '4', '5', '6', '7':
				skip = 2
			case 'x':
				skip = 2
			case 'u':
				skip = 4
			case 'U':
				skip = 8
			default:
				return // error: invalid escape
			}

			for i := 0; i < skip; i++ {
				next()
			}
		}
	}
}