aboutsummaryrefslogtreecommitdiff
path: root/go/pointer/gen.go
blob: bcb7448b9b4f31dbbe8604daa66b14c5a3294012 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package pointer

// This file defines the constraint generation phase.

// TODO(adonovan): move the constraint definitions and the store() etc
// functions which add them (and are also used by the solver) into a
// new file, constraints.go.

import (
	"fmt"
	"go/token"

	"code.google.com/p/go.tools/go/callgraph"
	"code.google.com/p/go.tools/go/ssa"
	"code.google.com/p/go.tools/go/types"
)

var (
	tEface     = types.NewInterface(nil, nil)
	tInvalid   = types.Typ[types.Invalid]
	tUnsafePtr = types.Typ[types.UnsafePointer]
)

// ---------- Node creation ----------

// nextNode returns the index of the next unused node.
func (a *analysis) nextNode() nodeid {
	return nodeid(len(a.nodes))
}

// addNodes creates nodes for all scalar elements in type typ, and
// returns the id of the first one, or zero if the type was
// analytically uninteresting.
//
// comment explains the origin of the nodes, as a debugging aid.
//
func (a *analysis) addNodes(typ types.Type, comment string) nodeid {
	id := a.nextNode()
	for _, fi := range a.flatten(typ) {
		a.addOneNode(fi.typ, comment, fi)
	}
	if id == a.nextNode() {
		return 0 // type contained no pointers
	}
	return id
}

// addOneNode creates a single node with type typ, and returns its id.
//
// typ should generally be scalar (except for tagged.T nodes
// and struct/array identity nodes).  Use addNodes for non-scalar types.
//
// comment explains the origin of the nodes, as a debugging aid.
// subelement indicates the subelement, e.g. ".a.b[*].c".
//
func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid {
	id := a.nextNode()
	a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement})
	if a.log != nil {
		fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n",
			id, typ, comment, subelement.path())
	}
	return id
}

// setValueNode associates node id with the value v.
// cgn identifies the context iff v is a local variable.
//
func (a *analysis) setValueNode(v ssa.Value, id nodeid, cgn *cgnode) {
	if cgn != nil {
		a.localval[v] = id
	} else {
		a.globalval[v] = id
	}
	if a.log != nil {
		fmt.Fprintf(a.log, "\tval[%s] = n%d  (%T)\n", v.Name(), id, v)
	}

	// Due to context-sensitivity, we may encounter the same Value
	// in many contexts. We merge them to a canonical node, since
	// that's what all clients want.

	// Record the (v, id) relation if the client has queried pts(v).
	if _, ok := a.config.Queries[v]; ok {
		t := v.Type()
		ptr, ok := a.result.Queries[v]
		if !ok {
			// First time?  Create the canonical query node.
			ptr = Pointer{a, a.addNodes(t, "query")}
			a.result.Queries[v] = ptr
		}
		a.result.Queries[v] = ptr
		a.copy(ptr.n, id, a.sizeof(t))
	}

	// Record the (*v, id) relation if the client has queried pts(*v).
	if _, ok := a.config.IndirectQueries[v]; ok {
		t := v.Type()
		ptr, ok := a.result.IndirectQueries[v]
		if !ok {
			// First time? Create the canonical indirect query node.
			ptr = Pointer{a, a.addNodes(v.Type(), "query.indirect")}
			a.result.IndirectQueries[v] = ptr
		}
		a.genLoad(cgn, ptr.n, v, 0, a.sizeof(t))
	}
}

// endObject marks the end of a sequence of calls to addNodes denoting
// a single object allocation.
//
// obj is the start node of the object, from a prior call to nextNode.
// Its size, flags and optional data will be updated.
//
func (a *analysis) endObject(obj nodeid, cgn *cgnode, data interface{}) *object {
	// Ensure object is non-empty by padding;
	// the pad will be the object node.
	size := uint32(a.nextNode() - obj)
	if size == 0 {
		a.addOneNode(tInvalid, "padding", nil)
	}
	objNode := a.nodes[obj]
	o := &object{
		size: size, // excludes padding
		cgn:  cgn,
		data: data,
	}
	objNode.obj = o

	return o
}

// makeFunctionObject creates and returns a new function object
// (contour) for fn, and returns the id of its first node.  It also
// enqueues fn for subsequent constraint generation.
//
// For a context-sensitive contour, callersite identifies the sole
// callsite; for shared contours, caller is nil.
//
func (a *analysis) makeFunctionObject(fn *ssa.Function, callersite *callsite) nodeid {
	if a.log != nil {
		fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn)
	}

	// obj is the function object (identity, params, results).
	obj := a.nextNode()
	cgn := a.makeCGNode(fn, obj, callersite)
	sig := fn.Signature
	a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type)
	if recv := sig.Recv(); recv != nil {
		a.addNodes(recv.Type(), "func.recv")
	}
	a.addNodes(sig.Params(), "func.params")
	a.addNodes(sig.Results(), "func.results")
	a.endObject(obj, cgn, fn).flags |= otFunction

	if a.log != nil {
		fmt.Fprintf(a.log, "\t----\n")
	}

	// Queue it up for constraint processing.
	a.genq = append(a.genq, cgn)

	return obj
}

// makeTagged creates a tagged object of type typ.
func (a *analysis) makeTagged(typ types.Type, cgn *cgnode, data interface{}) nodeid {
	obj := a.addOneNode(typ, "tagged.T", nil) // NB: type may be non-scalar!
	a.addNodes(typ, "tagged.v")
	a.endObject(obj, cgn, data).flags |= otTagged
	return obj
}

// makeRtype returns the canonical tagged object of type *rtype whose
// payload points to the sole rtype object for T.
func (a *analysis) makeRtype(T types.Type) nodeid {
	if v := a.rtypes.At(T); v != nil {
		return v.(nodeid)
	}

	// Create the object for the reflect.rtype itself, which is
	// ordinarily a large struct but here a single node will do.
	obj := a.nextNode()
	a.addOneNode(T, "reflect.rtype", nil)
	a.endObject(obj, nil, T)

	id := a.makeTagged(a.reflectRtypePtr, nil, T)
	a.nodes[id+1].typ = T // trick (each *rtype tagged object is a singleton)
	a.addressOf(a.reflectRtypePtr, id+1, obj)

	a.rtypes.Set(T, id)
	return id
}

// rtypeValue returns the type of the *reflect.rtype-tagged object obj.
func (a *analysis) rtypeTaggedValue(obj nodeid) types.Type {
	tDyn, t, _ := a.taggedValue(obj)
	if tDyn != a.reflectRtypePtr {
		panic(fmt.Sprintf("not a *reflect.rtype-tagged object: obj=n%d tag=%v payload=n%d", obj, tDyn, t))
	}
	return a.nodes[t].typ
}

// valueNode returns the id of the value node for v, creating it (and
// the association) as needed.  It may return zero for uninteresting
// values containing no pointers.
//
func (a *analysis) valueNode(v ssa.Value) nodeid {
	// Value nodes for locals are created en masse by genFunc.
	if id, ok := a.localval[v]; ok {
		return id
	}

	// Value nodes for globals are created on demand.
	id, ok := a.globalval[v]
	if !ok {
		var comment string
		if a.log != nil {
			comment = v.String()
		}
		id = a.addOneNode(v.Type(), comment, nil)
		if obj := a.objectNode(nil, v); obj != 0 {
			a.addressOf(v.Type(), id, obj)
		}
		a.setValueNode(v, id, nil)
	}
	return id
}

// valueOffsetNode ascertains the node for tuple/struct value v,
// then returns the node for its subfield #index.
//
func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid {
	id := a.valueNode(v)
	if id == 0 {
		panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v))
	}
	return id + nodeid(a.offsetOf(v.Type(), index))
}

// isTaggedObject reports whether object obj is a tagged object.
func (a *analysis) isTaggedObject(obj nodeid) bool {
	return a.nodes[obj].obj.flags&otTagged != 0
}

// taggedValue returns the dynamic type tag, the (first node of the)
// payload, and the indirect flag of the tagged object starting at id.
// Panic ensues if !isTaggedObject(id).
//
func (a *analysis) taggedValue(obj nodeid) (tDyn types.Type, v nodeid, indirect bool) {
	n := a.nodes[obj]
	flags := n.obj.flags
	if flags&otTagged == 0 {
		panic(fmt.Sprintf("not a tagged object: n%d", obj))
	}
	return n.typ, obj + 1, flags&otIndirect != 0
}

// funcParams returns the first node of the params block of the
// function whose object node (obj.flags&otFunction) is id.
//
func (a *analysis) funcParams(id nodeid) nodeid {
	n := a.nodes[id]
	if n.obj == nil || n.obj.flags&otFunction == 0 {
		panic(fmt.Sprintf("funcParams(n%d): not a function object block", id))
	}
	return id + 1
}

// funcResults returns the first node of the results block of the
// function whose object node (obj.flags&otFunction) is id.
//
func (a *analysis) funcResults(id nodeid) nodeid {
	n := a.nodes[id]
	if n.obj == nil || n.obj.flags&otFunction == 0 {
		panic(fmt.Sprintf("funcResults(n%d): not a function object block", id))
	}
	sig := n.typ.(*types.Signature)
	id += 1 + nodeid(a.sizeof(sig.Params()))
	if sig.Recv() != nil {
		id += nodeid(a.sizeof(sig.Recv().Type()))
	}
	return id
}

// ---------- Constraint creation ----------

// copy creates a constraint of the form dst = src.
// sizeof is the width (in logical fields) of the copied type.
//
func (a *analysis) copy(dst, src nodeid, sizeof uint32) {
	if src == dst || sizeof == 0 {
		return // trivial
	}
	if src == 0 || dst == 0 {
		panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src))
	}
	for i := uint32(0); i < sizeof; i++ {
		a.addConstraint(&copyConstraint{dst, src})
		src++
		dst++
	}
}

// addressOf creates a constraint of the form id = &obj.
// T is the type of the address.
func (a *analysis) addressOf(T types.Type, id, obj nodeid) {
	if id == 0 {
		panic("addressOf: zero id")
	}
	if obj == 0 {
		panic("addressOf: zero obj")
	}
	if a.shouldTrack(T) {
		a.addConstraint(&addrConstraint{id, obj})
	}
}

// load creates a load constraint of the form dst = src[offset].
// offset is the pointer offset in logical fields.
// sizeof is the width (in logical fields) of the loaded type.
//
func (a *analysis) load(dst, src nodeid, offset, sizeof uint32) {
	if dst == 0 {
		return // load of non-pointerlike value
	}
	if src == 0 && dst == 0 {
		return // non-pointerlike operation
	}
	if src == 0 || dst == 0 {
		panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src))
	}
	for i := uint32(0); i < sizeof; i++ {
		a.addConstraint(&loadConstraint{offset, dst, src})
		offset++
		dst++
	}
}

// store creates a store constraint of the form dst[offset] = src.
// offset is the pointer offset in logical fields.
// sizeof is the width (in logical fields) of the stored type.
//
func (a *analysis) store(dst, src nodeid, offset uint32, sizeof uint32) {
	if src == 0 {
		return // store of non-pointerlike value
	}
	if src == 0 && dst == 0 {
		return // non-pointerlike operation
	}
	if src == 0 || dst == 0 {
		panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src))
	}
	for i := uint32(0); i < sizeof; i++ {
		a.addConstraint(&storeConstraint{offset, dst, src})
		offset++
		src++
	}
}

// offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset.
// offset is the field offset in logical fields.
// T is the type of the address.
//
func (a *analysis) offsetAddr(T types.Type, dst, src nodeid, offset uint32) {
	if !a.shouldTrack(T) {
		return
	}
	if offset == 0 {
		// Simplify  dst = &src->f0
		//       to  dst = src
		// (NB: this optimisation is defeated by the identity
		// field prepended to struct and array objects.)
		a.copy(dst, src, 1)
	} else {
		a.addConstraint(&offsetAddrConstraint{offset, dst, src})
	}
}

// typeAssert creates a typeFilter or untag constraint of the form dst = src.(T):
// typeFilter for an interface, untag for a concrete type.
// The exact flag is specified as for untagConstraint.
//
func (a *analysis) typeAssert(T types.Type, dst, src nodeid, exact bool) {
	if isInterface(T) {
		a.addConstraint(&typeFilterConstraint{T, dst, src})
	} else {
		a.addConstraint(&untagConstraint{T, dst, src, exact})
	}
}

// addConstraint adds c to the constraint set.
func (a *analysis) addConstraint(c constraint) {
	a.constraints = append(a.constraints, c)
	if a.log != nil {
		fmt.Fprintf(a.log, "\t%s\n", c)
	}
}

// copyElems generates load/store constraints for *dst = *src,
// where src and dst are slices or *arrays.
//
func (a *analysis) copyElems(cgn *cgnode, typ types.Type, dst, src ssa.Value) {
	tmp := a.addNodes(typ, "copy")
	sz := a.sizeof(typ)
	a.genLoad(cgn, tmp, src, 1, sz)
	a.genStore(cgn, dst, tmp, 1, sz)
}

// ---------- Constraint generation ----------

// genConv generates constraints for the conversion operation conv.
func (a *analysis) genConv(conv *ssa.Convert, cgn *cgnode) {
	res := a.valueNode(conv)
	if res == 0 {
		return // result is non-pointerlike
	}

	tSrc := conv.X.Type()
	tDst := conv.Type()

	switch utSrc := tSrc.Underlying().(type) {
	case *types.Slice:
		// []byte/[]rune -> string?
		return

	case *types.Pointer:
		// *T -> unsafe.Pointer?
		if tDst == tUnsafePtr {
			// ignore for now
			// a.copy(res, a.valueNode(conv.X), 1)
			return
		}

	case *types.Basic:
		switch utDst := tDst.Underlying().(type) {
		case *types.Pointer:
			// unsafe.Pointer -> *T?  (currently unsound)
			if utSrc == tUnsafePtr {
				// For now, suppress unsafe.Pointer conversion
				// warnings on "syscall" package.
				// TODO(adonovan): audit for soundness.
				if conv.Parent().Pkg.Object.Path() != "syscall" {
					a.warnf(conv.Pos(),
						"unsound: %s contains an unsafe.Pointer conversion (to %s)",
						conv.Parent(), tDst)
				}

				// For now, we treat unsafe.Pointer->*T
				// conversion like new(T) and create an
				// unaliased object.  In future we may handle
				// unsafe conversions soundly; see TODO file.
				obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion")
				a.endObject(obj, cgn, conv)
				a.addressOf(tDst, res, obj)
				return
			}

		case *types.Slice:
			// string -> []byte/[]rune (or named aliases)?
			if utSrc.Info()&types.IsString != 0 {
				obj := a.addNodes(sliceToArray(tDst), "convert")
				a.endObject(obj, cgn, conv)
				a.addressOf(tDst, res, obj)
				return
			}

		case *types.Basic:
			// TODO(adonovan):
			// unsafe.Pointer -> uintptr?
			// uintptr -> unsafe.Pointer
			//
			// The language doesn't adequately specify the
			// behaviour of these operations, but almost
			// all uses of these conversions (even in the
			// spec) seem to imply a non-moving garbage
			// collection strategy, or implicit "pinning"
			// semantics for unsafe.Pointer conversions.

			// TODO(adonovan): we need more work before we can handle
			// cryptopointers well.
			if utSrc == tUnsafePtr || utDst == tUnsafePtr {
				// Ignore for now.  See TODO file for ideas.
				return
			}

			return // ignore all other basic type conversions
		}
	}

	panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent()))
}

// genAppend generates constraints for a call to append.
func (a *analysis) genAppend(instr *ssa.Call, cgn *cgnode) {
	// Consider z = append(x, y).   y is optional.
	// This may allocate a new [1]T array; call its object w.
	// We get the following constraints:
	// 	z = x
	// 	z = &w
	//     *z = *y

	x := instr.Call.Args[0]

	z := instr
	a.copy(a.valueNode(z), a.valueNode(x), 1) // z = x

	if len(instr.Call.Args) == 1 {
		return // no allocation for z = append(x) or _ = append(x).
	}

	// TODO(adonovan): test append([]byte, ...string) []byte.

	y := instr.Call.Args[1]
	tArray := sliceToArray(instr.Call.Args[0].Type())

	var w nodeid
	w = a.nextNode()
	a.addNodes(tArray, "append")
	a.endObject(w, cgn, instr)

	a.copyElems(cgn, tArray.Elem(), z, y)        // *z = *y
	a.addressOf(instr.Type(), a.valueNode(z), w) //  z = &w
}

// genBuiltinCall generates contraints for a call to a built-in.
func (a *analysis) genBuiltinCall(instr ssa.CallInstruction, cgn *cgnode) {
	call := instr.Common()
	switch call.Value.(*ssa.Builtin).Name() {
	case "append":
		// Safe cast: append cannot appear in a go or defer statement.
		a.genAppend(instr.(*ssa.Call), cgn)

	case "copy":
		tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem()
		a.copyElems(cgn, tElem, call.Args[0], call.Args[1])

	case "panic":
		a.copy(a.panicNode, a.valueNode(call.Args[0]), 1)

	case "recover":
		if v := instr.Value(); v != nil {
			a.copy(a.valueNode(v), a.panicNode, 1)
		}

	case "print":
		// In the tests, the probe might be the sole reference
		// to its arg, so make sure we create nodes for it.
		a.valueNode(call.Args[0])

	case "ssa:wrapnilchk":
		a.copy(a.valueNode(instr.Value()), a.valueNode(call.Args[0]), 1)

	default:
		// No-ops: close len cap real imag complex print println delete.
	}
}

// shouldUseContext defines the context-sensitivity policy.  It
// returns true if we should analyse all static calls to fn anew.
//
// Obviously this interface rather limits how much freedom we have to
// choose a policy.  The current policy, rather arbitrarily, is true
// for intrinsics and accessor methods (actually: short, single-block,
// call-free functions).  This is just a starting point.
//
func (a *analysis) shouldUseContext(fn *ssa.Function) bool {
	if a.findIntrinsic(fn) != nil {
		return true // treat intrinsics context-sensitively
	}
	if len(fn.Blocks) != 1 {
		return false // too expensive
	}
	blk := fn.Blocks[0]
	if len(blk.Instrs) > 10 {
		return false // too expensive
	}
	if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) {
		return true // treat synthetic wrappers context-sensitively
	}
	for _, instr := range blk.Instrs {
		switch instr := instr.(type) {
		case ssa.CallInstruction:
			// Disallow function calls (except to built-ins)
			// because of the danger of unbounded recursion.
			if _, ok := instr.Common().Value.(*ssa.Builtin); !ok {
				return false
			}
		}
	}
	return true
}

// genStaticCall generates constraints for a statically dispatched function call.
func (a *analysis) genStaticCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
	fn := call.StaticCallee()

	// Special cases for inlined intrinsics.
	switch fn {
	case a.runtimeSetFinalizer:
		// Inline SetFinalizer so the call appears direct.
		site.targets = a.addOneNode(tInvalid, "SetFinalizer.targets", nil)
		a.addConstraint(&runtimeSetFinalizerConstraint{
			targets: site.targets,
			x:       a.valueNode(call.Args[0]),
			f:       a.valueNode(call.Args[1]),
		})
		return

	case a.reflectValueCall:
		// Inline (reflect.Value).Call so the call appears direct.
		dotdotdot := false
		ret := reflectCallImpl(a, caller, site, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]), dotdotdot)
		if result != 0 {
			a.addressOf(fn.Signature.Results().At(0).Type(), result, ret)
		}
		return
	}

	// Ascertain the context (contour/cgnode) for a particular call.
	var obj nodeid
	if a.shouldUseContext(fn) {
		obj = a.makeFunctionObject(fn, site) // new contour
	} else {
		obj = a.objectNode(nil, fn) // shared contour
	}
	a.callEdge(caller, site, obj)

	sig := call.Signature()

	// Copy receiver, if any.
	params := a.funcParams(obj)
	args := call.Args
	if sig.Recv() != nil {
		sz := a.sizeof(sig.Recv().Type())
		a.copy(params, a.valueNode(args[0]), sz)
		params += nodeid(sz)
		args = args[1:]
	}

	// Copy actual parameters into formal params block.
	// Must loop, since the actuals aren't contiguous.
	for i, arg := range args {
		sz := a.sizeof(sig.Params().At(i).Type())
		a.copy(params, a.valueNode(arg), sz)
		params += nodeid(sz)
	}

	// Copy formal results block to actual result.
	if result != 0 {
		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
	}
}

// genDynamicCall generates constraints for a dynamic function call.
func (a *analysis) genDynamicCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
	// pts(targets) will be the set of possible call targets.
	site.targets = a.valueNode(call.Value)

	// We add dynamic closure rules that store the arguments into,
	// and load the results from, the P/R block of each function
	// discovered in pts(targets).

	sig := call.Signature()
	var offset uint32 = 1 // P/R block starts at offset 1
	for i, arg := range call.Args {
		sz := a.sizeof(sig.Params().At(i).Type())
		a.genStore(caller, call.Value, a.valueNode(arg), offset, sz)
		offset += sz
	}
	if result != 0 {
		a.genLoad(caller, result, call.Value, offset, a.sizeof(sig.Results()))
	}
}

// genInvoke generates constraints for a dynamic method invocation.
func (a *analysis) genInvoke(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
	if call.Value.Type() == a.reflectType {
		a.genInvokeReflectType(caller, site, call, result)
		return
	}

	sig := call.Signature()

	// Allocate a contiguous targets/params/results block for this call.
	block := a.nextNode()
	// pts(targets) will be the set of possible call targets
	site.targets = a.addOneNode(sig, "invoke.targets", nil)
	p := a.addNodes(sig.Params(), "invoke.params")
	r := a.addNodes(sig.Results(), "invoke.results")

	// Copy the actual parameters into the call's params block.
	for i, n := 0, sig.Params().Len(); i < n; i++ {
		sz := a.sizeof(sig.Params().At(i).Type())
		a.copy(p, a.valueNode(call.Args[i]), sz)
		p += nodeid(sz)
	}
	// Copy the call's results block to the actual results.
	if result != 0 {
		a.copy(result, r, a.sizeof(sig.Results()))
	}

	// We add a dynamic invoke constraint that will add
	// edges from the caller's P/R block to the callee's
	// P/R block for each discovered call target.
	a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block})
}

// genInvokeReflectType is a specialization of genInvoke where the
// receiver type is a reflect.Type, under the assumption that there
// can be at most one implementation of this interface, *reflect.rtype.
//
// (Though this may appear to be an instance of a pattern---method
// calls on interfaces known to have exactly one implementation---in
// practice it occurs rarely, so we special case for reflect.Type.)
//
// In effect we treat this:
//    var rt reflect.Type = ...
//    rt.F()
// as this:
//    rt.(*reflect.rtype).F()
//
func (a *analysis) genInvokeReflectType(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) {
	// Unpack receiver into rtype
	rtype := a.addOneNode(a.reflectRtypePtr, "rtype.recv", nil)
	recv := a.valueNode(call.Value)
	a.typeAssert(a.reflectRtypePtr, rtype, recv, true)

	// Look up the concrete method.
	fn := a.prog.LookupMethod(a.reflectRtypePtr, call.Method.Pkg(), call.Method.Name())

	obj := a.makeFunctionObject(fn, site) // new contour for this call
	a.callEdge(caller, site, obj)

	// From now on, it's essentially a static call, but little is
	// gained by factoring together the code for both cases.

	sig := fn.Signature // concrete method
	targets := a.addOneNode(sig, "call.targets", nil)
	a.addressOf(sig, targets, obj) // (a singleton)

	// Copy receiver.
	params := a.funcParams(obj)
	a.copy(params, rtype, 1)
	params++

	// Copy actual parameters into formal params block.
	// Must loop, since the actuals aren't contiguous.
	for i, arg := range call.Args {
		sz := a.sizeof(sig.Params().At(i).Type())
		a.copy(params, a.valueNode(arg), sz)
		params += nodeid(sz)
	}

	// Copy formal results block to actual result.
	if result != 0 {
		a.copy(result, a.funcResults(obj), a.sizeof(sig.Results()))
	}
}

// genCall generates constraints for call instruction instr.
func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) {
	call := instr.Common()

	// Intrinsic implementations of built-in functions.
	if _, ok := call.Value.(*ssa.Builtin); ok {
		a.genBuiltinCall(instr, caller)
		return
	}

	var result nodeid
	if v := instr.Value(); v != nil {
		result = a.valueNode(v)
	}

	site := &callsite{instr: instr}
	if call.StaticCallee() != nil {
		a.genStaticCall(caller, site, call, result)
	} else if call.IsInvoke() {
		a.genInvoke(caller, site, call, result)
	} else {
		a.genDynamicCall(caller, site, call, result)
	}

	caller.sites = append(caller.sites, site)

	if a.log != nil {
		fmt.Fprintf(a.log, "\t%s to targets %s from %s\n", site, site.targets, caller)
	}
}

// objectNode returns the object to which v points, if known.
// In other words, if the points-to set of v is a singleton, it
// returns the sole label, zero otherwise.
//
// We exploit this information to make the generated constraints less
// dynamic.  For example, a complex load constraint can be replaced by
// a simple copy constraint when the sole destination is known a priori.
//
// Some SSA instructions always have singletons points-to sets:
// 	Alloc, Function, Global, MakeChan, MakeClosure,  MakeInterface,  MakeMap,  MakeSlice.
// Others may be singletons depending on their operands:
// 	FreeVar, Const, Convert, FieldAddr, IndexAddr, Slice.
//
// Idempotent.  Objects are created as needed, possibly via recursion
// down the SSA value graph, e.g IndexAddr(FieldAddr(Alloc))).
//
func (a *analysis) objectNode(cgn *cgnode, v ssa.Value) nodeid {
	switch v.(type) {
	case *ssa.Global, *ssa.Function, *ssa.Const, *ssa.FreeVar:
		// Global object.
		obj, ok := a.globalobj[v]
		if !ok {
			switch v := v.(type) {
			case *ssa.Global:
				obj = a.nextNode()
				a.addNodes(mustDeref(v.Type()), "global")
				a.endObject(obj, nil, v)

			case *ssa.Function:
				obj = a.makeFunctionObject(v, nil)

			case *ssa.Const:
				// not addressable

			case *ssa.FreeVar:
				// not addressable
			}

			if a.log != nil {
				fmt.Fprintf(a.log, "\tglobalobj[%s] = n%d\n", v, obj)
			}
			a.globalobj[v] = obj
		}
		return obj
	}

	// Local object.
	obj, ok := a.localobj[v]
	if !ok {
		switch v := v.(type) {
		case *ssa.Alloc:
			obj = a.nextNode()
			a.addNodes(mustDeref(v.Type()), "alloc")
			a.endObject(obj, cgn, v)

		case *ssa.MakeSlice:
			obj = a.nextNode()
			a.addNodes(sliceToArray(v.Type()), "makeslice")
			a.endObject(obj, cgn, v)

		case *ssa.MakeChan:
			obj = a.nextNode()
			a.addNodes(v.Type().Underlying().(*types.Chan).Elem(), "makechan")
			a.endObject(obj, cgn, v)

		case *ssa.MakeMap:
			obj = a.nextNode()
			tmap := v.Type().Underlying().(*types.Map)
			a.addNodes(tmap.Key(), "makemap.key")
			a.addNodes(tmap.Elem(), "makemap.value")
			a.endObject(obj, cgn, v)

		case *ssa.MakeInterface:
			tConc := v.X.Type()
			obj = a.makeTagged(tConc, cgn, v)

			// Copy the value into it, if nontrivial.
			if x := a.valueNode(v.X); x != 0 {
				a.copy(obj+1, x, a.sizeof(tConc))
			}

		case *ssa.FieldAddr:
			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
				obj = xobj + nodeid(a.offsetOf(mustDeref(v.X.Type()), v.Field))
			}

		case *ssa.IndexAddr:
			if xobj := a.objectNode(cgn, v.X); xobj != 0 {
				obj = xobj + 1
			}

		case *ssa.Slice:
			obj = a.objectNode(cgn, v.X)

		case *ssa.Convert:
			// TODO(adonovan): opt: handle these cases too:
			// - unsafe.Pointer->*T conversion acts like Alloc
			// - string->[]byte/[]rune conversion acts like MakeSlice
		}

		if a.log != nil {
			fmt.Fprintf(a.log, "\tlocalobj[%s] = n%d\n", v.Name(), obj)
		}
		a.localobj[v] = obj
	}
	return obj
}

// genLoad generates constraints for result = *(ptr + val).
func (a *analysis) genLoad(cgn *cgnode, result nodeid, ptr ssa.Value, offset, sizeof uint32) {
	if obj := a.objectNode(cgn, ptr); obj != 0 {
		// Pre-apply loadConstraint.solve().
		a.copy(result, obj+nodeid(offset), sizeof)
	} else {
		a.load(result, a.valueNode(ptr), offset, sizeof)
	}
}

// genOffsetAddr generates constraints for a 'v=ptr.field' (FieldAddr)
// or 'v=ptr[*]' (IndexAddr) instruction v.
func (a *analysis) genOffsetAddr(cgn *cgnode, v ssa.Value, ptr nodeid, offset uint32) {
	dst := a.valueNode(v)
	if obj := a.objectNode(cgn, v); obj != 0 {
		// Pre-apply offsetAddrConstraint.solve().
		a.addressOf(v.Type(), dst, obj)
	} else {
		a.offsetAddr(v.Type(), dst, ptr, offset)
	}
}

// genStore generates constraints for *(ptr + offset) = val.
func (a *analysis) genStore(cgn *cgnode, ptr ssa.Value, val nodeid, offset, sizeof uint32) {
	if obj := a.objectNode(cgn, ptr); obj != 0 {
		// Pre-apply storeConstraint.solve().
		a.copy(obj+nodeid(offset), val, sizeof)
	} else {
		a.store(a.valueNode(ptr), val, offset, sizeof)
	}
}

// genInstr generates constraints for instruction instr in context cgn.
func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) {
	if a.log != nil {
		var prefix string
		if val, ok := instr.(ssa.Value); ok {
			prefix = val.Name() + " = "
		}
		fmt.Fprintf(a.log, "; %s%s\n", prefix, instr)
	}

	switch instr := instr.(type) {
	case *ssa.DebugRef:
		// no-op.

	case *ssa.UnOp:
		switch instr.Op {
		case token.ARROW: // <-x
			// We can ignore instr.CommaOk because the node we're
			// altering is always at zero offset relative to instr
			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type()))

		case token.MUL: // *x
			a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type()))

		default:
			// NOT, SUB, XOR: no-op.
		}

	case *ssa.BinOp:
		// All no-ops.

	case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer
		a.genCall(cgn, instr)

	case *ssa.ChangeType:
		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)

	case *ssa.Convert:
		a.genConv(instr, cgn)

	case *ssa.Extract:
		a.copy(a.valueNode(instr),
			a.valueOffsetNode(instr.Tuple, instr.Index),
			a.sizeof(instr.Type()))

	case *ssa.FieldAddr:
		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X),
			a.offsetOf(mustDeref(instr.X.Type()), instr.Field))

	case *ssa.IndexAddr:
		a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), 1)

	case *ssa.Field:
		a.copy(a.valueNode(instr),
			a.valueOffsetNode(instr.X, instr.Field),
			a.sizeof(instr.Type()))

	case *ssa.Index:
		a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type()))

	case *ssa.Select:
		recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1)
		for _, st := range instr.States {
			elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem())
			switch st.Dir {
			case types.RecvOnly:
				a.genLoad(cgn, recv, st.Chan, 0, elemSize)
				recv += nodeid(elemSize)

			case types.SendOnly:
				a.genStore(cgn, st.Chan, a.valueNode(st.Send), 0, elemSize)
			}
		}

	case *ssa.Return:
		results := a.funcResults(cgn.obj)
		for _, r := range instr.Results {
			sz := a.sizeof(r.Type())
			a.copy(results, a.valueNode(r), sz)
			results += nodeid(sz)
		}

	case *ssa.Send:
		a.genStore(cgn, instr.Chan, a.valueNode(instr.X), 0, a.sizeof(instr.X.Type()))

	case *ssa.Store:
		a.genStore(cgn, instr.Addr, a.valueNode(instr.Val), 0, a.sizeof(instr.Val.Type()))

	case *ssa.Alloc, *ssa.MakeSlice, *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeInterface:
		v := instr.(ssa.Value)
		a.addressOf(v.Type(), a.valueNode(v), a.objectNode(cgn, v))

	case *ssa.ChangeInterface:
		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)

	case *ssa.TypeAssert:
		a.typeAssert(instr.AssertedType, a.valueNode(instr), a.valueNode(instr.X), true)

	case *ssa.Slice:
		a.copy(a.valueNode(instr), a.valueNode(instr.X), 1)

	case *ssa.If, *ssa.Jump:
		// no-op.

	case *ssa.Phi:
		sz := a.sizeof(instr.Type())
		for _, e := range instr.Edges {
			a.copy(a.valueNode(instr), a.valueNode(e), sz)
		}

	case *ssa.MakeClosure:
		fn := instr.Fn.(*ssa.Function)
		a.copy(a.valueNode(instr), a.valueNode(fn), 1)
		// Free variables are treated like global variables.
		for i, b := range instr.Bindings {
			a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type()))
		}

	case *ssa.RunDefers:
		// The analysis is flow insensitive, so we just "call"
		// defers as we encounter them.

	case *ssa.Range:
		// Do nothing.  Next{Iter: *ssa.Range} handles this case.

	case *ssa.Next:
		if !instr.IsString { // map
			// Assumes that Next is always directly applied to a Range result.
			theMap := instr.Iter.(*ssa.Range).X
			tMap := theMap.Type().Underlying().(*types.Map)
			ksize := a.sizeof(tMap.Key())
			vsize := a.sizeof(tMap.Elem())

			// Load from the map's (k,v) into the tuple's (ok, k, v).
			a.genLoad(cgn, a.valueNode(instr)+1, theMap, 0, ksize+vsize)
		}

	case *ssa.Lookup:
		if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok {
			// CommaOk can be ignored: field 0 is a no-op.
			ksize := a.sizeof(tMap.Key())
			vsize := a.sizeof(tMap.Elem())
			a.genLoad(cgn, a.valueNode(instr), instr.X, ksize, vsize)
		}

	case *ssa.MapUpdate:
		tmap := instr.Map.Type().Underlying().(*types.Map)
		ksize := a.sizeof(tmap.Key())
		vsize := a.sizeof(tmap.Elem())
		a.genStore(cgn, instr.Map, a.valueNode(instr.Key), 0, ksize)
		a.genStore(cgn, instr.Map, a.valueNode(instr.Value), ksize, vsize)

	case *ssa.Panic:
		a.copy(a.panicNode, a.valueNode(instr.X), 1)

	default:
		panic(fmt.Sprintf("unimplemented: %T", instr))
	}
}

func (a *analysis) makeCGNode(fn *ssa.Function, obj nodeid, callersite *callsite) *cgnode {
	cgn := &cgnode{fn: fn, obj: obj, callersite: callersite}
	a.cgnodes = append(a.cgnodes, cgn)
	return cgn
}

// genRootCalls generates the synthetic root of the callgraph and the
// initial calls from it to the analysis scope, such as main, a test
// or a library.
//
func (a *analysis) genRootCalls() *cgnode {
	r := a.prog.NewFunction("<root>", new(types.Signature), "root of callgraph")
	root := a.makeCGNode(r, 0, nil)

	// TODO(adonovan): make an ssa utility to construct an actual
	// root function so we don't need to special-case site-less
	// call edges.

	// For each main package, call main.init(), main.main().
	for _, mainPkg := range a.config.Mains {
		main := mainPkg.Func("main")
		if main == nil {
			panic(fmt.Sprintf("%s has no main function", mainPkg))
		}

		targets := a.addOneNode(main.Signature, "root.targets", nil)
		site := &callsite{targets: targets}
		root.sites = append(root.sites, site)
		for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} {
			if a.log != nil {
				fmt.Fprintf(a.log, "\troot call to %s:\n", fn)
			}
			a.copy(targets, a.valueNode(fn), 1)
		}
	}

	return root
}

// genFunc generates constraints for function fn.
func (a *analysis) genFunc(cgn *cgnode) {
	fn := cgn.fn

	impl := a.findIntrinsic(fn)

	if a.log != nil {
		fmt.Fprintln(a.log)
		fmt.Fprintln(a.log)

		// Hack: don't display body if intrinsic.
		if impl != nil {
			fn2 := *cgn.fn // copy
			fn2.Locals = nil
			fn2.Blocks = nil
			fn2.WriteTo(a.log)
		} else {
			cgn.fn.WriteTo(a.log)
		}
	}

	if impl != nil {
		impl(a, cgn)
		return
	}

	if fn.Blocks == nil {
		// External function with no intrinsic treatment.
		// We'll warn about calls to such functions at the end.
		return
	}

	if a.log != nil {
		fmt.Fprintln(a.log, "; Creating nodes for local values")
	}

	a.localval = make(map[ssa.Value]nodeid)
	a.localobj = make(map[ssa.Value]nodeid)

	// The value nodes for the params are in the func object block.
	params := a.funcParams(cgn.obj)
	for _, p := range fn.Params {
		a.setValueNode(p, params, cgn)
		params += nodeid(a.sizeof(p.Type()))
	}

	// Free variables have global cardinality:
	// the outer function sets them with MakeClosure;
	// the inner function accesses them with FreeVar.
	//
	// TODO(adonovan): treat free vars context-sensitively.

	// Create value nodes for all value instructions
	// since SSA may contain forward references.
	for _, b := range fn.Blocks {
		for _, instr := range b.Instrs {
			switch instr := instr.(type) {
			case *ssa.Range:
				// do nothing: it has a funky type,
				// and *ssa.Next does all the work.

			case ssa.Value:
				var comment string
				if a.log != nil {
					comment = instr.Name()
				}
				id := a.addNodes(instr.Type(), comment)
				a.setValueNode(instr, id, cgn)
			}
		}
	}

	// Generate constraints for instructions.
	for _, b := range fn.Blocks {
		for _, instr := range b.Instrs {
			a.genInstr(cgn, instr)
		}
	}

	a.localval = nil
	a.localobj = nil
}

// genMethodsOf generates nodes and constraints for all methods of type T.
func (a *analysis) genMethodsOf(T types.Type) {
	mset := a.prog.MethodSets.MethodSet(T)
	for i, n := 0, mset.Len(); i < n; i++ {
		a.valueNode(a.prog.Method(mset.At(i)))
	}
}

// generate generates offline constraints for the entire program.
func (a *analysis) generate() {
	// Create a dummy node since we use the nodeid 0 for
	// non-pointerlike variables.
	a.addNodes(tInvalid, "(zero)")

	// Create the global node for panic values.
	a.panicNode = a.addNodes(tEface, "panic")

	// Create nodes and constraints for all methods of reflect.rtype.
	// (Shared contours are used by dynamic calls to reflect.Type
	// methods---typically just String().)
	if rtype := a.reflectRtypePtr; rtype != nil {
		a.genMethodsOf(rtype)
	}

	root := a.genRootCalls()

	if a.config.BuildCallGraph {
		a.result.CallGraph = callgraph.New(root.fn)
	}

	// Create nodes and constraints for all methods of all types
	// that are dynamically accessible via reflection or interfaces.
	for _, T := range a.prog.TypesWithMethodSets() {
		a.genMethodsOf(T)
	}

	// Generate constraints for entire program.
	for len(a.genq) > 0 {
		cgn := a.genq[0]
		a.genq = a.genq[1:]
		a.genFunc(cgn)
	}

	// The runtime magically allocates os.Args; so should we.
	if os := a.prog.ImportedPackage("os"); os != nil {
		// In effect:  os.Args = new([1]string)[:]
		T := types.NewSlice(types.Typ[types.String])
		obj := a.addNodes(sliceToArray(T), "<command-line args>")
		a.endObject(obj, nil, "<command-line args>")
		a.addressOf(T, a.objectNode(nil, os.Var("Args")), obj)
	}

	// Discard generation state, to avoid confusion after node renumbering.
	a.panicNode = 0
	a.globalval = nil
	a.localval = nil
	a.localobj = nil
}