aboutsummaryrefslogtreecommitdiff
path: root/go/pointer/solve.go
blob: 0fdd098b0127ab600f5504343aef87f788e99933 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package pointer

// This file defines a naive Andersen-style solver for the inclusion
// constraint system.

import (
	"fmt"
	"go/types"
)

type solverState struct {
	complex []constraint // complex constraints attached to this node
	copyTo  nodeset      // simple copy constraint edges
	pts     nodeset      // points-to set of this node
	prevPTS nodeset      // pts(n) in previous iteration (for difference propagation)
}

func (a *analysis) solve() {
	start("Solving")
	if a.log != nil {
		fmt.Fprintf(a.log, "\n\n==== Solving constraints\n\n")
	}

	// Solver main loop.
	var delta nodeset
	for {
		// Add new constraints to the graph:
		// static constraints from SSA on round 1,
		// dynamic constraints from reflection thereafter.
		a.processNewConstraints()

		var x int
		if !a.work.TakeMin(&x) {
			break // empty
		}
		id := nodeid(x)
		if a.log != nil {
			fmt.Fprintf(a.log, "\tnode n%d\n", id)
		}

		n := a.nodes[id]

		// Difference propagation.
		delta.Difference(&n.solve.pts.Sparse, &n.solve.prevPTS.Sparse)
		if delta.IsEmpty() {
			continue
		}
		if a.log != nil {
			fmt.Fprintf(a.log, "\t\tpts(n%d : %s) = %s + %s\n",
				id, n.typ, &delta, &n.solve.prevPTS)
		}
		n.solve.prevPTS.Copy(&n.solve.pts.Sparse)

		// Apply all resolution rules attached to n.
		a.solveConstraints(n, &delta)

		if a.log != nil {
			fmt.Fprintf(a.log, "\t\tpts(n%d) = %s\n", id, &n.solve.pts)
		}
	}

	if !a.nodes[0].solve.pts.IsEmpty() {
		panic(fmt.Sprintf("pts(0) is nonempty: %s", &a.nodes[0].solve.pts))
	}

	// Release working state (but keep final PTS).
	for _, n := range a.nodes {
		n.solve.complex = nil
		n.solve.copyTo.Clear()
		n.solve.prevPTS.Clear()
	}

	if a.log != nil {
		fmt.Fprintf(a.log, "Solver done\n")

		// Dump solution.
		for i, n := range a.nodes {
			if !n.solve.pts.IsEmpty() {
				fmt.Fprintf(a.log, "pts(n%d) = %s : %s\n", i, &n.solve.pts, n.typ)
			}
		}
	}
	stop("Solving")
}

// processNewConstraints takes the new constraints from a.constraints
// and adds them to the graph, ensuring
// that new constraints are applied to pre-existing labels and
// that pre-existing constraints are applied to new labels.
//
func (a *analysis) processNewConstraints() {
	// Take the slice of new constraints.
	// (May grow during call to solveConstraints.)
	constraints := a.constraints
	a.constraints = nil

	// Initialize points-to sets from addr-of (base) constraints.
	for _, c := range constraints {
		if c, ok := c.(*addrConstraint); ok {
			dst := a.nodes[c.dst]
			dst.solve.pts.add(c.src)

			// Populate the worklist with nodes that point to
			// something initially (due to addrConstraints) and
			// have other constraints attached.
			// (A no-op in round 1.)
			if !dst.solve.copyTo.IsEmpty() || len(dst.solve.complex) > 0 {
				a.addWork(c.dst)
			}
		}
	}

	// Attach simple (copy) and complex constraints to nodes.
	var stale nodeset
	for _, c := range constraints {
		var id nodeid
		switch c := c.(type) {
		case *addrConstraint:
			// base constraints handled in previous loop
			continue
		case *copyConstraint:
			// simple (copy) constraint
			id = c.src
			a.nodes[id].solve.copyTo.add(c.dst)
		default:
			// complex constraint
			id = c.ptr()
			solve := a.nodes[id].solve
			solve.complex = append(solve.complex, c)
		}

		if n := a.nodes[id]; !n.solve.pts.IsEmpty() {
			if !n.solve.prevPTS.IsEmpty() {
				stale.add(id)
			}
			a.addWork(id)
		}
	}
	// Apply new constraints to pre-existing PTS labels.
	var space [50]int
	for _, id := range stale.AppendTo(space[:0]) {
		n := a.nodes[nodeid(id)]
		a.solveConstraints(n, &n.solve.prevPTS)
	}
}

// solveConstraints applies each resolution rule attached to node n to
// the set of labels delta.  It may generate new constraints in
// a.constraints.
//
func (a *analysis) solveConstraints(n *node, delta *nodeset) {
	if delta.IsEmpty() {
		return
	}

	// Process complex constraints dependent on n.
	for _, c := range n.solve.complex {
		if a.log != nil {
			fmt.Fprintf(a.log, "\t\tconstraint %s\n", c)
		}
		c.solve(a, delta)
	}

	// Process copy constraints.
	var copySeen nodeset
	for _, x := range n.solve.copyTo.AppendTo(a.deltaSpace) {
		mid := nodeid(x)
		if copySeen.add(mid) {
			if a.nodes[mid].solve.pts.addAll(delta) {
				a.addWork(mid)
			}
		}
	}
}

// addLabel adds label to the points-to set of ptr and reports whether the set grew.
func (a *analysis) addLabel(ptr, label nodeid) bool {
	b := a.nodes[ptr].solve.pts.add(label)
	if b && a.log != nil {
		fmt.Fprintf(a.log, "\t\tpts(n%d) += n%d\n", ptr, label)
	}
	return b
}

func (a *analysis) addWork(id nodeid) {
	a.work.Insert(int(id))
	if a.log != nil {
		fmt.Fprintf(a.log, "\t\twork: n%d\n", id)
	}
}

// onlineCopy adds a copy edge.  It is called online, i.e. during
// solving, so it adds edges and pts members directly rather than by
// instantiating a 'constraint'.
//
// The size of the copy is implicitly 1.
// It returns true if pts(dst) changed.
//
func (a *analysis) onlineCopy(dst, src nodeid) bool {
	if dst != src {
		if nsrc := a.nodes[src]; nsrc.solve.copyTo.add(dst) {
			if a.log != nil {
				fmt.Fprintf(a.log, "\t\t\tdynamic copy n%d <- n%d\n", dst, src)
			}
			// TODO(adonovan): most calls to onlineCopy
			// are followed by addWork, possibly batched
			// via a 'changed' flag; see if there's a
			// noticeable penalty to calling addWork here.
			return a.nodes[dst].solve.pts.addAll(&nsrc.solve.pts)
		}
	}
	return false
}

// Returns sizeof.
// Implicitly adds nodes to worklist.
//
// TODO(adonovan): now that we support a.copy() during solving, we
// could eliminate onlineCopyN, but it's much slower.  Investigate.
//
func (a *analysis) onlineCopyN(dst, src nodeid, sizeof uint32) uint32 {
	for i := uint32(0); i < sizeof; i++ {
		if a.onlineCopy(dst, src) {
			a.addWork(dst)
		}
		src++
		dst++
	}
	return sizeof
}

func (c *loadConstraint) solve(a *analysis, delta *nodeset) {
	var changed bool
	for _, x := range delta.AppendTo(a.deltaSpace) {
		k := nodeid(x)
		koff := k + nodeid(c.offset)
		if a.onlineCopy(c.dst, koff) {
			changed = true
		}
	}
	if changed {
		a.addWork(c.dst)
	}
}

func (c *storeConstraint) solve(a *analysis, delta *nodeset) {
	for _, x := range delta.AppendTo(a.deltaSpace) {
		k := nodeid(x)
		koff := k + nodeid(c.offset)
		if a.onlineCopy(koff, c.src) {
			a.addWork(koff)
		}
	}
}

func (c *offsetAddrConstraint) solve(a *analysis, delta *nodeset) {
	dst := a.nodes[c.dst]
	for _, x := range delta.AppendTo(a.deltaSpace) {
		k := nodeid(x)
		if dst.solve.pts.add(k + nodeid(c.offset)) {
			a.addWork(c.dst)
		}
	}
}

func (c *typeFilterConstraint) solve(a *analysis, delta *nodeset) {
	for _, x := range delta.AppendTo(a.deltaSpace) {
		ifaceObj := nodeid(x)
		tDyn, _, indirect := a.taggedValue(ifaceObj)
		if indirect {
			// TODO(adonovan): we'll need to implement this
			// when we start creating indirect tagged objects.
			panic("indirect tagged object")
		}

		if types.AssignableTo(tDyn, c.typ) {
			if a.addLabel(c.dst, ifaceObj) {
				a.addWork(c.dst)
			}
		}
	}
}

func (c *untagConstraint) solve(a *analysis, delta *nodeset) {
	predicate := types.AssignableTo
	if c.exact {
		predicate = types.Identical
	}
	for _, x := range delta.AppendTo(a.deltaSpace) {
		ifaceObj := nodeid(x)
		tDyn, v, indirect := a.taggedValue(ifaceObj)
		if indirect {
			// TODO(adonovan): we'll need to implement this
			// when we start creating indirect tagged objects.
			panic("indirect tagged object")
		}

		if predicate(tDyn, c.typ) {
			// Copy payload sans tag to dst.
			//
			// TODO(adonovan): opt: if tDyn is
			// nonpointerlike we can skip this entire
			// constraint, perhaps.  We only care about
			// pointers among the fields.
			a.onlineCopyN(c.dst, v, a.sizeof(tDyn))
		}
	}
}

func (c *invokeConstraint) solve(a *analysis, delta *nodeset) {
	for _, x := range delta.AppendTo(a.deltaSpace) {
		ifaceObj := nodeid(x)
		tDyn, v, indirect := a.taggedValue(ifaceObj)
		if indirect {
			// TODO(adonovan): we may need to implement this if
			// we ever apply invokeConstraints to reflect.Value PTSs,
			// e.g. for (reflect.Value).Call.
			panic("indirect tagged object")
		}

		// Look up the concrete method.
		fn := a.prog.LookupMethod(tDyn, c.method.Pkg(), c.method.Name())
		if fn == nil {
			panic(fmt.Sprintf("n%d: no ssa.Function for %s", c.iface, c.method))
		}
		sig := fn.Signature

		fnObj := a.globalobj[fn] // dynamic calls use shared contour
		if fnObj == 0 {
			// a.objectNode(fn) was not called during gen phase.
			panic(fmt.Sprintf("a.globalobj[%s]==nil", fn))
		}

		// Make callsite's fn variable point to identity of
		// concrete method.  (There's no need to add it to
		// worklist since it never has attached constraints.)
		a.addLabel(c.params, fnObj)

		// Extract value and connect to method's receiver.
		// Copy payload to method's receiver param (arg0).
		arg0 := a.funcParams(fnObj)
		recvSize := a.sizeof(sig.Recv().Type())
		a.onlineCopyN(arg0, v, recvSize)

		src := c.params + 1 // skip past identity
		dst := arg0 + nodeid(recvSize)

		// Copy caller's argument block to method formal parameters.
		paramsSize := a.sizeof(sig.Params())
		a.onlineCopyN(dst, src, paramsSize)
		src += nodeid(paramsSize)
		dst += nodeid(paramsSize)

		// Copy method results to caller's result block.
		resultsSize := a.sizeof(sig.Results())
		a.onlineCopyN(src, dst, resultsSize)
	}
}

func (c *addrConstraint) solve(a *analysis, delta *nodeset) {
	panic("addr is not a complex constraint")
}

func (c *copyConstraint) solve(a *analysis, delta *nodeset) {
	panic("copy is not a complex constraint")
}