aboutsummaryrefslogtreecommitdiff
path: root/gopls/internal/lsp/source/completion/literal.go
blob: 6777f7333ed13f3bae1c7719d65da16c5c7cfd2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package completion

import (
	"context"
	"fmt"
	"go/types"
	"strings"
	"unicode"

	"golang.org/x/tools/gopls/internal/lsp/protocol"
	"golang.org/x/tools/gopls/internal/lsp/snippet"
	"golang.org/x/tools/gopls/internal/lsp/source"
	"golang.org/x/tools/internal/event"
	"golang.org/x/tools/internal/typeparams"
)

// literal generates composite literal, function literal, and make()
// completion items.
func (c *completer) literal(ctx context.Context, literalType types.Type, imp *importInfo) {
	if !c.opts.literal {
		return
	}

	expType := c.inference.objType

	if c.inference.matchesVariadic(literalType) {
		// Don't offer literal slice candidates for variadic arguments.
		// For example, don't offer "[]interface{}{}" in "fmt.Print(<>)".
		return
	}

	// Avoid literal candidates if the expected type is an empty
	// interface. It isn't very useful to suggest a literal candidate of
	// every possible type.
	if expType != nil && isEmptyInterface(expType) {
		return
	}

	// We handle unnamed literal completions explicitly before searching
	// for candidates. Avoid named-type literal completions for
	// unnamed-type expected type since that results in duplicate
	// candidates. For example, in
	//
	// type mySlice []int
	// var []int = <>
	//
	// don't offer "mySlice{}" since we have already added a candidate
	// of "[]int{}".
	if _, named := literalType.(*types.Named); named && expType != nil {
		if _, named := source.Deref(expType).(*types.Named); !named {
			return
		}
	}

	// Check if an object of type literalType would match our expected type.
	cand := candidate{
		obj: c.fakeObj(literalType),
	}

	switch literalType.Underlying().(type) {
	// These literal types are addressable (e.g. "&[]int{}"), others are
	// not (e.g. can't do "&(func(){})").
	case *types.Struct, *types.Array, *types.Slice, *types.Map:
		cand.addressable = true
	}

	if !c.matchingCandidate(&cand) || cand.convertTo != nil {
		return
	}

	var (
		qf  = c.qf
		sel = enclosingSelector(c.path, c.pos)
	)

	// Don't qualify the type name if we are in a selector expression
	// since the package name is already present.
	if sel != nil {
		qf = func(_ *types.Package) string { return "" }
	}

	snip, typeName := c.typeNameSnippet(literalType, qf)

	// A type name of "[]int" doesn't work very will with the matcher
	// since "[" isn't a valid identifier prefix. Here we strip off the
	// slice (and array) prefix yielding just "int".
	matchName := typeName
	switch t := literalType.(type) {
	case *types.Slice:
		matchName = types.TypeString(t.Elem(), qf)
	case *types.Array:
		matchName = types.TypeString(t.Elem(), qf)
	}

	addlEdits, err := c.importEdits(imp)
	if err != nil {
		event.Error(ctx, "error adding import for literal candidate", err)
		return
	}

	// If prefix matches the type name, client may want a composite literal.
	if score := c.matcher.Score(matchName); score > 0 {
		if cand.hasMod(reference) {
			if sel != nil {
				// If we are in a selector we must place the "&" before the selector.
				// For example, "foo.B<>" must complete to "&foo.Bar{}", not
				// "foo.&Bar{}".
				edits, err := c.editText(sel.Pos(), sel.Pos(), "&")
				if err != nil {
					event.Error(ctx, "error making edit for literal pointer completion", err)
					return
				}
				addlEdits = append(addlEdits, edits...)
			} else {
				// Otherwise we can stick the "&" directly before the type name.
				typeName = "&" + typeName
				snip.PrependText("&")
			}
		}

		switch t := literalType.Underlying().(type) {
		case *types.Struct, *types.Array, *types.Slice, *types.Map:
			c.compositeLiteral(t, snip.Clone(), typeName, float64(score), addlEdits)
		case *types.Signature:
			// Add a literal completion for a signature type that implements
			// an interface. For example, offer "http.HandlerFunc()" when
			// expected type is "http.Handler".
			if expType != nil && types.IsInterface(expType) {
				c.basicLiteral(t, snip.Clone(), typeName, float64(score), addlEdits)
			}
		case *types.Basic:
			// Add a literal completion for basic types that implement our
			// expected interface (e.g. named string type http.Dir
			// implements http.FileSystem), or are identical to our expected
			// type (i.e. yielding a type conversion such as "float64()").
			if expType != nil && (types.IsInterface(expType) || types.Identical(expType, literalType)) {
				c.basicLiteral(t, snip.Clone(), typeName, float64(score), addlEdits)
			}
		}
	}

	// If prefix matches "make", client may want a "make()"
	// invocation. We also include the type name to allow for more
	// flexible fuzzy matching.
	if score := c.matcher.Score("make." + matchName); !cand.hasMod(reference) && score > 0 {
		switch literalType.Underlying().(type) {
		case *types.Slice:
			// The second argument to "make()" for slices is required, so default to "0".
			c.makeCall(snip.Clone(), typeName, "0", float64(score), addlEdits)
		case *types.Map, *types.Chan:
			// Maps and channels don't require the second argument, so omit
			// to keep things simple for now.
			c.makeCall(snip.Clone(), typeName, "", float64(score), addlEdits)
		}
	}

	// If prefix matches "func", client may want a function literal.
	if score := c.matcher.Score("func"); !cand.hasMod(reference) && score > 0 && (expType == nil || !types.IsInterface(expType)) {
		switch t := literalType.Underlying().(type) {
		case *types.Signature:
			c.functionLiteral(ctx, t, float64(score))
		}
	}
}

// literalCandidateScore is the base score for literal candidates.
// Literal candidates match the expected type so they should be high
// scoring, but we want them ranked below lexical objects of the
// correct type, so scale down highScore.
const literalCandidateScore = highScore / 2

// functionLiteral adds a function literal completion item for the
// given signature.
func (c *completer) functionLiteral(ctx context.Context, sig *types.Signature, matchScore float64) {
	snip := &snippet.Builder{}
	snip.WriteText("func(")

	// First we generate names for each param and keep a seen count so
	// we know if we need to uniquify param names. For example,
	// "func(int)" will become "func(i int)", but "func(int, int64)"
	// will become "func(i1 int, i2 int64)".
	var (
		paramNames     = make([]string, sig.Params().Len())
		paramNameCount = make(map[string]int)
		hasTypeParams  bool
	)
	for i := 0; i < sig.Params().Len(); i++ {
		var (
			p    = sig.Params().At(i)
			name = p.Name()
		)

		if tp, _ := p.Type().(*typeparams.TypeParam); tp != nil && !c.typeParamInScope(tp) {
			hasTypeParams = true
		}

		if name == "" {
			// If the param has no name in the signature, guess a name based
			// on the type. Use an empty qualifier to ignore the package.
			// For example, we want to name "http.Request" "r", not "hr".
			typeName, err := source.FormatVarType(ctx, c.snapshot, c.pkg, c.file, p,
				func(p *types.Package) string { return "" },
				func(source.PackageName, source.ImportPath, source.PackagePath) string { return "" })
			if err != nil {
				// In general, the only error we should encounter while formatting is
				// context cancellation.
				if ctx.Err() == nil {
					event.Error(ctx, "formatting var type", err)
				}
				return
			}
			name = abbreviateTypeName(typeName)
		}
		paramNames[i] = name
		if name != "_" {
			paramNameCount[name]++
		}
	}

	for n, c := range paramNameCount {
		// Any names we saw more than once will need a unique suffix added
		// on. Reset the count to 1 to act as the suffix for the first
		// name.
		if c >= 2 {
			paramNameCount[n] = 1
		} else {
			delete(paramNameCount, n)
		}
	}

	for i := 0; i < sig.Params().Len(); i++ {
		if hasTypeParams && !c.opts.placeholders {
			// If there are type params in the args then the user must
			// choose the concrete types. If placeholders are disabled just
			// drop them between the parens and let them fill things in.
			snip.WritePlaceholder(nil)
			break
		}

		if i > 0 {
			snip.WriteText(", ")
		}

		var (
			p    = sig.Params().At(i)
			name = paramNames[i]
		)

		// Uniquify names by adding on an incrementing numeric suffix.
		if idx, found := paramNameCount[name]; found {
			paramNameCount[name]++
			name = fmt.Sprintf("%s%d", name, idx)
		}

		if name != p.Name() && c.opts.placeholders {
			// If we didn't use the signature's param name verbatim then we
			// may have chosen a poor name. Give the user a placeholder so
			// they can easily fix the name.
			snip.WritePlaceholder(func(b *snippet.Builder) {
				b.WriteText(name)
			})
		} else {
			snip.WriteText(name)
		}

		// If the following param's type is identical to this one, omit
		// this param's type string. For example, emit "i, j int" instead
		// of "i int, j int".
		if i == sig.Params().Len()-1 || !types.Identical(p.Type(), sig.Params().At(i+1).Type()) {
			snip.WriteText(" ")
			typeStr, err := source.FormatVarType(ctx, c.snapshot, c.pkg, c.file, p, c.qf, c.mq)
			if err != nil {
				// In general, the only error we should encounter while formatting is
				// context cancellation.
				if ctx.Err() == nil {
					event.Error(ctx, "formatting var type", err)
				}
				return
			}
			if sig.Variadic() && i == sig.Params().Len()-1 {
				typeStr = strings.Replace(typeStr, "[]", "...", 1)
			}

			if tp, _ := p.Type().(*typeparams.TypeParam); tp != nil && !c.typeParamInScope(tp) {
				snip.WritePlaceholder(func(snip *snippet.Builder) {
					snip.WriteText(typeStr)
				})
			} else {
				snip.WriteText(typeStr)
			}
		}
	}
	snip.WriteText(")")

	results := sig.Results()
	if results.Len() > 0 {
		snip.WriteText(" ")
	}

	resultsNeedParens := results.Len() > 1 ||
		results.Len() == 1 && results.At(0).Name() != ""

	var resultHasTypeParams bool
	for i := 0; i < results.Len(); i++ {
		if tp, _ := results.At(i).Type().(*typeparams.TypeParam); tp != nil && !c.typeParamInScope(tp) {
			resultHasTypeParams = true
		}
	}

	if resultsNeedParens {
		snip.WriteText("(")
	}
	for i := 0; i < results.Len(); i++ {
		if resultHasTypeParams && !c.opts.placeholders {
			// Leave an empty tabstop if placeholders are disabled and there
			// are type args that need specificying.
			snip.WritePlaceholder(nil)
			break
		}

		if i > 0 {
			snip.WriteText(", ")
		}
		r := results.At(i)
		if name := r.Name(); name != "" {
			snip.WriteText(name + " ")
		}

		text, err := source.FormatVarType(ctx, c.snapshot, c.pkg, c.file, r, c.qf, c.mq)
		if err != nil {
			// In general, the only error we should encounter while formatting is
			// context cancellation.
			if ctx.Err() == nil {
				event.Error(ctx, "formatting var type", err)
			}
			return
		}
		if tp, _ := r.Type().(*typeparams.TypeParam); tp != nil && !c.typeParamInScope(tp) {
			snip.WritePlaceholder(func(snip *snippet.Builder) {
				snip.WriteText(text)
			})
		} else {
			snip.WriteText(text)
		}
	}
	if resultsNeedParens {
		snip.WriteText(")")
	}

	snip.WriteText(" {")
	snip.WriteFinalTabstop()
	snip.WriteText("}")

	c.items = append(c.items, CompletionItem{
		Label:   "func(...) {}",
		Score:   matchScore * literalCandidateScore,
		Kind:    protocol.VariableCompletion,
		snippet: snip,
	})
}

// conventionalAcronyms contains conventional acronyms for type names
// in lower case. For example, "ctx" for "context" and "err" for "error".
var conventionalAcronyms = map[string]string{
	"context":        "ctx",
	"error":          "err",
	"tx":             "tx",
	"responsewriter": "w",
}

// abbreviateTypeName abbreviates type names into acronyms. For
// example, "fooBar" is abbreviated "fb". Care is taken to ignore
// non-identifier runes. For example, "[]int" becomes "i", and
// "struct { i int }" becomes "s".
func abbreviateTypeName(s string) string {
	var (
		b            strings.Builder
		useNextUpper bool
	)

	// Trim off leading non-letters. We trim everything between "[" and
	// "]" to handle array types like "[someConst]int".
	var inBracket bool
	s = strings.TrimFunc(s, func(r rune) bool {
		if inBracket {
			inBracket = r != ']'
			return true
		}

		if r == '[' {
			inBracket = true
		}

		return !unicode.IsLetter(r)
	})

	if acr, ok := conventionalAcronyms[strings.ToLower(s)]; ok {
		return acr
	}

	for i, r := range s {
		// Stop if we encounter a non-identifier rune.
		if !unicode.IsLetter(r) && !unicode.IsNumber(r) {
			break
		}

		if i == 0 {
			b.WriteRune(unicode.ToLower(r))
		}

		if unicode.IsUpper(r) {
			if useNextUpper {
				b.WriteRune(unicode.ToLower(r))
				useNextUpper = false
			}
		} else {
			useNextUpper = true
		}
	}

	return b.String()
}

// compositeLiteral adds a composite literal completion item for the given typeName.
func (c *completer) compositeLiteral(T types.Type, snip *snippet.Builder, typeName string, matchScore float64, edits []protocol.TextEdit) {
	snip.WriteText("{")
	// Don't put the tab stop inside the composite literal curlies "{}"
	// for structs that have no accessible fields.
	if strct, ok := T.(*types.Struct); !ok || fieldsAccessible(strct, c.pkg.GetTypes()) {
		snip.WriteFinalTabstop()
	}
	snip.WriteText("}")

	nonSnippet := typeName + "{}"

	c.items = append(c.items, CompletionItem{
		Label:               nonSnippet,
		InsertText:          nonSnippet,
		Score:               matchScore * literalCandidateScore,
		Kind:                protocol.VariableCompletion,
		AdditionalTextEdits: edits,
		snippet:             snip,
	})
}

// basicLiteral adds a literal completion item for the given basic
// type name typeName.
func (c *completer) basicLiteral(T types.Type, snip *snippet.Builder, typeName string, matchScore float64, edits []protocol.TextEdit) {
	// Never give type conversions like "untyped int()".
	if isUntyped(T) {
		return
	}

	snip.WriteText("(")
	snip.WriteFinalTabstop()
	snip.WriteText(")")

	nonSnippet := typeName + "()"

	c.items = append(c.items, CompletionItem{
		Label:               nonSnippet,
		InsertText:          nonSnippet,
		Detail:              T.String(),
		Score:               matchScore * literalCandidateScore,
		Kind:                protocol.VariableCompletion,
		AdditionalTextEdits: edits,
		snippet:             snip,
	})
}

// makeCall adds a completion item for a "make()" call given a specific type.
func (c *completer) makeCall(snip *snippet.Builder, typeName string, secondArg string, matchScore float64, edits []protocol.TextEdit) {
	// Keep it simple and don't add any placeholders for optional "make()" arguments.

	snip.PrependText("make(")
	if secondArg != "" {
		snip.WriteText(", ")
		snip.WritePlaceholder(func(b *snippet.Builder) {
			if c.opts.placeholders {
				b.WriteText(secondArg)
			}
		})
	}
	snip.WriteText(")")

	var nonSnippet strings.Builder
	nonSnippet.WriteString("make(" + typeName)
	if secondArg != "" {
		nonSnippet.WriteString(", ")
		nonSnippet.WriteString(secondArg)
	}
	nonSnippet.WriteByte(')')

	c.items = append(c.items, CompletionItem{
		Label:               nonSnippet.String(),
		InsertText:          nonSnippet.String(),
		Score:               matchScore * literalCandidateScore,
		Kind:                protocol.FunctionCompletion,
		AdditionalTextEdits: edits,
		snippet:             snip,
	})
}

// Create a snippet for a type name where type params become placeholders.
func (c *completer) typeNameSnippet(literalType types.Type, qf types.Qualifier) (*snippet.Builder, string) {
	var (
		snip     snippet.Builder
		typeName string
		named, _ = literalType.(*types.Named)
	)

	if named != nil && named.Obj() != nil && typeparams.ForNamed(named).Len() > 0 && !c.fullyInstantiated(named) {
		// We are not "fully instantiated" meaning we have type params that must be specified.
		if pkg := qf(named.Obj().Pkg()); pkg != "" {
			typeName = pkg + "."
		}

		// We do this to get "someType" instead of "someType[T]".
		typeName += named.Obj().Name()
		snip.WriteText(typeName + "[")

		if c.opts.placeholders {
			for i := 0; i < typeparams.ForNamed(named).Len(); i++ {
				if i > 0 {
					snip.WriteText(", ")
				}
				snip.WritePlaceholder(func(snip *snippet.Builder) {
					snip.WriteText(types.TypeString(typeparams.ForNamed(named).At(i), qf))
				})
			}
		} else {
			snip.WritePlaceholder(nil)
		}
		snip.WriteText("]")
		typeName += "[...]"
	} else {
		// We don't have unspecified type params so use default type formatting.
		typeName = types.TypeString(literalType, qf)
		snip.WriteText(typeName)
	}

	return &snip, typeName
}

// fullyInstantiated reports whether all of t's type params have
// specified type args.
func (c *completer) fullyInstantiated(t *types.Named) bool {
	tps := typeparams.ForNamed(t)
	tas := typeparams.NamedTypeArgs(t)

	if tps.Len() != tas.Len() {
		return false
	}

	for i := 0; i < tas.Len(); i++ {
		switch ta := tas.At(i).(type) {
		case *typeparams.TypeParam:
			// A *TypeParam only counts as specified if it is currently in
			// scope (i.e. we are in a generic definition).
			if !c.typeParamInScope(ta) {
				return false
			}
		case *types.Named:
			if !c.fullyInstantiated(ta) {
				return false
			}
		}
	}
	return true
}

// typeParamInScope returns whether tp's object is in scope at c.pos.
// This tells you whether you are in a generic definition and can
// assume tp has been specified.
func (c *completer) typeParamInScope(tp *typeparams.TypeParam) bool {
	obj := tp.Obj()
	if obj == nil {
		return false
	}

	scope := c.innermostScope()
	if scope == nil {
		return false
	}

	_, foundObj := scope.LookupParent(obj.Name(), c.pos)
	return obj == foundObj
}