aboutsummaryrefslogtreecommitdiff
path: root/docs/gmock_cheat_sheet.md
diff options
context:
space:
mode:
Diffstat (limited to 'docs/gmock_cheat_sheet.md')
-rw-r--r--docs/gmock_cheat_sheet.md483
1 files changed, 483 insertions, 0 deletions
diff --git a/docs/gmock_cheat_sheet.md b/docs/gmock_cheat_sheet.md
new file mode 100644
index 00000000..cda9ddd5
--- /dev/null
+++ b/docs/gmock_cheat_sheet.md
@@ -0,0 +1,483 @@
+# gMock Cheat Sheet
+
+## Defining a Mock Class
+
+### Mocking a Normal Class {#MockClass}
+
+Given
+
+```cpp
+class Foo {
+ ...
+ virtual ~Foo();
+ virtual int GetSize() const = 0;
+ virtual string Describe(const char* name) = 0;
+ virtual string Describe(int type) = 0;
+ virtual bool Process(Bar elem, int count) = 0;
+};
+```
+
+(note that `~Foo()` **must** be virtual) we can define its mock as
+
+```cpp
+#include "gmock/gmock.h"
+
+class MockFoo : public Foo {
+ ...
+ MOCK_METHOD(int, GetSize, (), (const, override));
+ MOCK_METHOD(string, Describe, (const char* name), (override));
+ MOCK_METHOD(string, Describe, (int type), (override));
+ MOCK_METHOD(bool, Process, (Bar elem, int count), (override));
+};
+```
+
+To create a "nice" mock, which ignores all uninteresting calls, a "naggy" mock,
+which warns on all uninteresting calls, or a "strict" mock, which treats them as
+failures:
+
+```cpp
+using ::testing::NiceMock;
+using ::testing::NaggyMock;
+using ::testing::StrictMock;
+
+NiceMock<MockFoo> nice_foo; // The type is a subclass of MockFoo.
+NaggyMock<MockFoo> naggy_foo; // The type is a subclass of MockFoo.
+StrictMock<MockFoo> strict_foo; // The type is a subclass of MockFoo.
+```
+
+{: .callout .note}
+**Note:** A mock object is currently naggy by default. We may make it nice by
+default in the future.
+
+### Mocking a Class Template {#MockTemplate}
+
+Class templates can be mocked just like any class.
+
+To mock
+
+```cpp
+template <typename Elem>
+class StackInterface {
+ ...
+ virtual ~StackInterface();
+ virtual int GetSize() const = 0;
+ virtual void Push(const Elem& x) = 0;
+};
+```
+
+(note that all member functions that are mocked, including `~StackInterface()`
+**must** be virtual).
+
+```cpp
+template <typename Elem>
+class MockStack : public StackInterface<Elem> {
+ ...
+ MOCK_METHOD(int, GetSize, (), (const, override));
+ MOCK_METHOD(void, Push, (const Elem& x), (override));
+};
+```
+
+### Specifying Calling Conventions for Mock Functions
+
+If your mock function doesn't use the default calling convention, you can
+specify it by adding `Calltype(convention)` to `MOCK_METHOD`'s 4th parameter.
+For example,
+
+```cpp
+ MOCK_METHOD(bool, Foo, (int n), (Calltype(STDMETHODCALLTYPE)));
+ MOCK_METHOD(int, Bar, (double x, double y),
+ (const, Calltype(STDMETHODCALLTYPE)));
+```
+
+where `STDMETHODCALLTYPE` is defined by `<objbase.h>` on Windows.
+
+## Using Mocks in Tests {#UsingMocks}
+
+The typical work flow is:
+
+1. Import the gMock names you need to use. All gMock symbols are in the
+ `testing` namespace unless they are macros or otherwise noted.
+2. Create the mock objects.
+3. Optionally, set the default actions of the mock objects.
+4. Set your expectations on the mock objects (How will they be called? What
+ will they do?).
+5. Exercise code that uses the mock objects; if necessary, check the result
+ using googletest assertions.
+6. When a mock object is destructed, gMock automatically verifies that all
+ expectations on it have been satisfied.
+
+Here's an example:
+
+```cpp
+using ::testing::Return; // #1
+
+TEST(BarTest, DoesThis) {
+ MockFoo foo; // #2
+
+ ON_CALL(foo, GetSize()) // #3
+ .WillByDefault(Return(1));
+ // ... other default actions ...
+
+ EXPECT_CALL(foo, Describe(5)) // #4
+ .Times(3)
+ .WillRepeatedly(Return("Category 5"));
+ // ... other expectations ...
+
+ EXPECT_EQ(MyProductionFunction(&foo), "good"); // #5
+} // #6
+```
+
+## Setting Default Actions {#OnCall}
+
+gMock has a **built-in default action** for any function that returns `void`,
+`bool`, a numeric value, or a pointer. In C++11, it will additionally returns
+the default-constructed value, if one exists for the given type.
+
+To customize the default action for functions with return type *`T`*:
+
+```cpp
+using ::testing::DefaultValue;
+
+// Sets the default value to be returned. T must be CopyConstructible.
+DefaultValue<T>::Set(value);
+// Sets a factory. Will be invoked on demand. T must be MoveConstructible.
+// T MakeT();
+DefaultValue<T>::SetFactory(&MakeT);
+// ... use the mocks ...
+// Resets the default value.
+DefaultValue<T>::Clear();
+```
+
+Example usage:
+
+```cpp
+ // Sets the default action for return type std::unique_ptr<Buzz> to
+ // creating a new Buzz every time.
+ DefaultValue<std::unique_ptr<Buzz>>::SetFactory(
+ [] { return MakeUnique<Buzz>(AccessLevel::kInternal); });
+
+ // When this fires, the default action of MakeBuzz() will run, which
+ // will return a new Buzz object.
+ EXPECT_CALL(mock_buzzer_, MakeBuzz("hello")).Times(AnyNumber());
+
+ auto buzz1 = mock_buzzer_.MakeBuzz("hello");
+ auto buzz2 = mock_buzzer_.MakeBuzz("hello");
+ EXPECT_NE(buzz1, nullptr);
+ EXPECT_NE(buzz2, nullptr);
+ EXPECT_NE(buzz1, buzz2);
+
+ // Resets the default action for return type std::unique_ptr<Buzz>,
+ // to avoid interfere with other tests.
+ DefaultValue<std::unique_ptr<Buzz>>::Clear();
+```
+
+To customize the default action for a particular method of a specific mock
+object, use `ON_CALL()`. `ON_CALL()` has a similar syntax to `EXPECT_CALL()`,
+but it is used for setting default behaviors (when you do not require that the
+mock method is called). See [here](gmock_cook_book.md#UseOnCall) for a more
+detailed discussion.
+
+```cpp
+ON_CALL(mock-object, method(matchers))
+ .With(multi-argument-matcher) ?
+ .WillByDefault(action);
+```
+
+## Setting Expectations {#ExpectCall}
+
+`EXPECT_CALL()` sets **expectations** on a mock method (How will it be called?
+What will it do?):
+
+```cpp
+EXPECT_CALL(mock-object, method (matchers)?)
+ .With(multi-argument-matcher) ?
+ .Times(cardinality) ?
+ .InSequence(sequences) *
+ .After(expectations) *
+ .WillOnce(action) *
+ .WillRepeatedly(action) ?
+ .RetiresOnSaturation(); ?
+```
+
+For each item above, `?` means it can be used at most once, while `*` means it
+can be used any number of times.
+
+In order to pass, `EXPECT_CALL` must be used before the calls are actually made.
+
+The `(matchers)` is a comma-separated list of matchers that correspond to each
+of the arguments of `method`, and sets the expectation only for calls of
+`method` that matches all of the matchers.
+
+If `(matchers)` is omitted, the expectation is the same as if the matchers were
+set to anything matchers (for example, `(_, _, _, _)` for a four-arg method).
+
+If `Times()` is omitted, the cardinality is assumed to be:
+
+* `Times(1)` when there is neither `WillOnce()` nor `WillRepeatedly()`;
+* `Times(n)` when there are `n` `WillOnce()`s but no `WillRepeatedly()`, where
+ `n` >= 1; or
+* `Times(AtLeast(n))` when there are `n` `WillOnce()`s and a
+ `WillRepeatedly()`, where `n` >= 0.
+
+A method with no `EXPECT_CALL()` is free to be invoked *any number of times*,
+and the default action will be taken each time.
+
+## Matchers {#MatcherList}
+
+See the [Matchers Reference](reference/matchers.md).
+
+## Actions {#ActionList}
+
+**Actions** specify what a mock function should do when invoked.
+
+### Returning a Value
+
+| | |
+| :-------------------------------- | :-------------------------------------------- |
+| `Return()` | Return from a `void` mock function. |
+| `Return(value)` | Return `value`. If the type of `value` is different to the mock function's return type, `value` is converted to the latter type <i>at the time the expectation is set</i>, not when the action is executed. |
+| `ReturnArg<N>()` | Return the `N`-th (0-based) argument. |
+| `ReturnNew<T>(a1, ..., ak)` | Return `new T(a1, ..., ak)`; a different object is created each time. |
+| `ReturnNull()` | Return a null pointer. |
+| `ReturnPointee(ptr)` | Return the value pointed to by `ptr`. |
+| `ReturnRef(variable)` | Return a reference to `variable`. |
+| `ReturnRefOfCopy(value)` | Return a reference to a copy of `value`; the copy lives as long as the action. |
+| `ReturnRoundRobin({a1, ..., ak})` | Each call will return the next `ai` in the list, starting at the beginning when the end of the list is reached. |
+
+### Side Effects
+
+| | |
+| :--------------------------------- | :-------------------------------------- |
+| `Assign(&variable, value)` | Assign `value` to variable. |
+| `DeleteArg<N>()` | Delete the `N`-th (0-based) argument, which must be a pointer. |
+| `SaveArg<N>(pointer)` | Save the `N`-th (0-based) argument to `*pointer`. |
+| `SaveArgPointee<N>(pointer)` | Save the value pointed to by the `N`-th (0-based) argument to `*pointer`. |
+| `SetArgReferee<N>(value)` | Assign `value` to the variable referenced by the `N`-th (0-based) argument. |
+| `SetArgPointee<N>(value)` | Assign `value` to the variable pointed by the `N`-th (0-based) argument. |
+| `SetArgumentPointee<N>(value)` | Same as `SetArgPointee<N>(value)`. Deprecated. Will be removed in v1.7.0. |
+| `SetArrayArgument<N>(first, last)` | Copies the elements in source range [`first`, `last`) to the array pointed to by the `N`-th (0-based) argument, which can be either a pointer or an iterator. The action does not take ownership of the elements in the source range. |
+| `SetErrnoAndReturn(error, value)` | Set `errno` to `error` and return `value`. |
+| `Throw(exception)` | Throws the given exception, which can be any copyable value. Available since v1.1.0. |
+
+### Using a Function, Functor, or Lambda as an Action
+
+In the following, by "callable" we mean a free function, `std::function`,
+functor, or lambda.
+
+| | |
+| :---------------------------------- | :------------------------------------- |
+| `f` | Invoke f with the arguments passed to the mock function, where f is a callable. |
+| `Invoke(f)` | Invoke `f` with the arguments passed to the mock function, where `f` can be a global/static function or a functor. |
+| `Invoke(object_pointer, &class::method)` | Invoke the method on the object with the arguments passed to the mock function. |
+| `InvokeWithoutArgs(f)` | Invoke `f`, which can be a global/static function or a functor. `f` must take no arguments. |
+| `InvokeWithoutArgs(object_pointer, &class::method)` | Invoke the method on the object, which takes no arguments. |
+| `InvokeArgument<N>(arg1, arg2, ..., argk)` | Invoke the mock function's `N`-th (0-based) argument, which must be a function or a functor, with the `k` arguments. |
+
+The return value of the invoked function is used as the return value of the
+action.
+
+When defining a callable to be used with `Invoke*()`, you can declare any unused
+parameters as `Unused`:
+
+```cpp
+using ::testing::Invoke;
+double Distance(Unused, double x, double y) { return sqrt(x*x + y*y); }
+...
+EXPECT_CALL(mock, Foo("Hi", _, _)).WillOnce(Invoke(Distance));
+```
+
+`Invoke(callback)` and `InvokeWithoutArgs(callback)` take ownership of
+`callback`, which must be permanent. The type of `callback` must be a base
+callback type instead of a derived one, e.g.
+
+```cpp
+ BlockingClosure* done = new BlockingClosure;
+ ... Invoke(done) ...; // This won't compile!
+
+ Closure* done2 = new BlockingClosure;
+ ... Invoke(done2) ...; // This works.
+```
+
+In `InvokeArgument<N>(...)`, if an argument needs to be passed by reference,
+wrap it inside `std::ref()`. For example,
+
+```cpp
+using ::testing::InvokeArgument;
+...
+InvokeArgument<2>(5, string("Hi"), std::ref(foo))
+```
+
+calls the mock function's #2 argument, passing to it `5` and `string("Hi")` by
+value, and `foo` by reference.
+
+### Default Action
+
+| Matcher | Description |
+| :------------ | :----------------------------------------------------- |
+| `DoDefault()` | Do the default action (specified by `ON_CALL()` or the built-in one). |
+
+{: .callout .note}
+**Note:** due to technical reasons, `DoDefault()` cannot be used inside a
+composite action - trying to do so will result in a run-time error.
+
+### Composite Actions
+
+| | |
+| :----------------------------- | :------------------------------------------ |
+| `DoAll(a1, a2, ..., an)` | Do all actions `a1` to `an` and return the result of `an` in each invocation. The first `n - 1` sub-actions must return void and will receive a readonly view of the arguments. |
+| `IgnoreResult(a)` | Perform action `a` and ignore its result. `a` must not return void. |
+| `WithArg<N>(a)` | Pass the `N`-th (0-based) argument of the mock function to action `a` and perform it. |
+| `WithArgs<N1, N2, ..., Nk>(a)` | Pass the selected (0-based) arguments of the mock function to action `a` and perform it. |
+| `WithoutArgs(a)` | Perform action `a` without any arguments. |
+
+### Defining Actions
+
+| | |
+| :--------------------------------- | :-------------------------------------- |
+| `ACTION(Sum) { return arg0 + arg1; }` | Defines an action `Sum()` to return the sum of the mock function's argument #0 and #1. |
+| `ACTION_P(Plus, n) { return arg0 + n; }` | Defines an action `Plus(n)` to return the sum of the mock function's argument #0 and `n`. |
+| `ACTION_Pk(Foo, p1, ..., pk) { statements; }` | Defines a parameterized action `Foo(p1, ..., pk)` to execute the given `statements`. |
+
+The `ACTION*` macros cannot be used inside a function or class.
+
+## Cardinalities {#CardinalityList}
+
+These are used in `Times()` to specify how many times a mock function will be
+called:
+
+| | |
+| :---------------- | :----------------------------------------------------- |
+| `AnyNumber()` | The function can be called any number of times. |
+| `AtLeast(n)` | The call is expected at least `n` times. |
+| `AtMost(n)` | The call is expected at most `n` times. |
+| `Between(m, n)` | The call is expected between `m` and `n` (inclusive) times. |
+| `Exactly(n) or n` | The call is expected exactly `n` times. In particular, the call should never happen when `n` is 0. |
+
+## Expectation Order
+
+By default, the expectations can be matched in *any* order. If some or all
+expectations must be matched in a given order, there are two ways to specify it.
+They can be used either independently or together.
+
+### The After Clause {#AfterClause}
+
+```cpp
+using ::testing::Expectation;
+...
+Expectation init_x = EXPECT_CALL(foo, InitX());
+Expectation init_y = EXPECT_CALL(foo, InitY());
+EXPECT_CALL(foo, Bar())
+ .After(init_x, init_y);
+```
+
+says that `Bar()` can be called only after both `InitX()` and `InitY()` have
+been called.
+
+If you don't know how many pre-requisites an expectation has when you write it,
+you can use an `ExpectationSet` to collect them:
+
+```cpp
+using ::testing::ExpectationSet;
+...
+ExpectationSet all_inits;
+for (int i = 0; i < element_count; i++) {
+ all_inits += EXPECT_CALL(foo, InitElement(i));
+}
+EXPECT_CALL(foo, Bar())
+ .After(all_inits);
+```
+
+says that `Bar()` can be called only after all elements have been initialized
+(but we don't care about which elements get initialized before the others).
+
+Modifying an `ExpectationSet` after using it in an `.After()` doesn't affect the
+meaning of the `.After()`.
+
+### Sequences {#UsingSequences}
+
+When you have a long chain of sequential expectations, it's easier to specify
+the order using **sequences**, which don't require you to give each expectation
+in the chain a different name. *All expected calls* in the same sequence must
+occur in the order they are specified.
+
+```cpp
+using ::testing::Return;
+using ::testing::Sequence;
+Sequence s1, s2;
+...
+EXPECT_CALL(foo, Reset())
+ .InSequence(s1, s2)
+ .WillOnce(Return(true));
+EXPECT_CALL(foo, GetSize())
+ .InSequence(s1)
+ .WillOnce(Return(1));
+EXPECT_CALL(foo, Describe(A<const char*>()))
+ .InSequence(s2)
+ .WillOnce(Return("dummy"));
+```
+
+says that `Reset()` must be called before *both* `GetSize()` *and* `Describe()`,
+and the latter two can occur in any order.
+
+To put many expectations in a sequence conveniently:
+
+```cpp
+using ::testing::InSequence;
+{
+ InSequence seq;
+
+ EXPECT_CALL(...)...;
+ EXPECT_CALL(...)...;
+ ...
+ EXPECT_CALL(...)...;
+}
+```
+
+says that all expected calls in the scope of `seq` must occur in strict order.
+The name `seq` is irrelevant.
+
+## Verifying and Resetting a Mock
+
+gMock will verify the expectations on a mock object when it is destructed, or
+you can do it earlier:
+
+```cpp
+using ::testing::Mock;
+...
+// Verifies and removes the expectations on mock_obj;
+// returns true if and only if successful.
+Mock::VerifyAndClearExpectations(&mock_obj);
+...
+// Verifies and removes the expectations on mock_obj;
+// also removes the default actions set by ON_CALL();
+// returns true if and only if successful.
+Mock::VerifyAndClear(&mock_obj);
+```
+
+You can also tell gMock that a mock object can be leaked and doesn't need to be
+verified:
+
+```cpp
+Mock::AllowLeak(&mock_obj);
+```
+
+## Mock Classes
+
+gMock defines a convenient mock class template
+
+```cpp
+class MockFunction<R(A1, ..., An)> {
+ public:
+ MOCK_METHOD(R, Call, (A1, ..., An));
+};
+```
+
+See this [recipe](gmock_cook_book.md#using-check-points) for one application of
+it.
+
+## Flags
+
+| Flag | Description |
+| :----------------------------- | :---------------------------------------- |
+| `--gmock_catch_leaked_mocks=0` | Don't report leaked mock objects as failures. |
+| `--gmock_verbose=LEVEL` | Sets the default verbosity level (`info`, `warning`, or `error`) of Google Mock messages. |