aboutsummaryrefslogtreecommitdiff
path: root/docs/reference/assertions.md
diff options
context:
space:
mode:
Diffstat (limited to 'docs/reference/assertions.md')
-rw-r--r--docs/reference/assertions.md633
1 files changed, 633 insertions, 0 deletions
diff --git a/docs/reference/assertions.md b/docs/reference/assertions.md
new file mode 100644
index 00000000..492ff5ef
--- /dev/null
+++ b/docs/reference/assertions.md
@@ -0,0 +1,633 @@
+# Assertions Reference
+
+This page lists the assertion macros provided by GoogleTest for verifying code
+behavior. To use them, add `#include <gtest/gtest.h>`.
+
+The majority of the macros listed below come as a pair with an `EXPECT_` variant
+and an `ASSERT_` variant. Upon failure, `EXPECT_` macros generate nonfatal
+failures and allow the current function to continue running, while `ASSERT_`
+macros generate fatal failures and abort the current function.
+
+All assertion macros support streaming a custom failure message into them with
+the `<<` operator, for example:
+
+```cpp
+EXPECT_TRUE(my_condition) << "My condition is not true";
+```
+
+Anything that can be streamed to an `ostream` can be streamed to an assertion
+macro—in particular, C strings and string objects. If a wide string (`wchar_t*`,
+`TCHAR*` in `UNICODE` mode on Windows, or `std::wstring`) is streamed to an
+assertion, it will be translated to UTF-8 when printed.
+
+## Explicit Success and Failure {#success-failure}
+
+The assertions in this section generate a success or failure directly instead of
+testing a value or expression. These are useful when control flow, rather than a
+Boolean expression, determines the test's success or failure, as shown by the
+following example:
+
+```c++
+switch(expression) {
+ case 1:
+ ... some checks ...
+ case 2:
+ ... some other checks ...
+ default:
+ FAIL() << "We shouldn't get here.";
+}
+```
+
+### SUCCEED {#SUCCEED}
+
+`SUCCEED()`
+
+Generates a success. This *does not* make the overall test succeed. A test is
+considered successful only if none of its assertions fail during its execution.
+
+The `SUCCEED` assertion is purely documentary and currently doesn't generate any
+user-visible output. However, we may add `SUCCEED` messages to GoogleTest output
+in the future.
+
+### FAIL {#FAIL}
+
+`FAIL()`
+
+Generates a fatal failure, which returns from the current function.
+
+Can only be used in functions that return `void`. See
+[Assertion Placement](../advanced.md#assertion-placement) for more information.
+
+### ADD_FAILURE {#ADD_FAILURE}
+
+`ADD_FAILURE()`
+
+Generates a nonfatal failure, which allows the current function to continue
+running.
+
+### ADD_FAILURE_AT {#ADD_FAILURE_AT}
+
+`ADD_FAILURE_AT(`*`file_path`*`,`*`line_number`*`)`
+
+Generates a nonfatal failure at the file and line number specified.
+
+## Generalized Assertion {#generalized}
+
+The following assertion allows [matchers](matchers.md) to be used to verify
+values.
+
+### EXPECT_THAT {#EXPECT_THAT}
+
+`EXPECT_THAT(`*`value`*`,`*`matcher`*`)` \
+`ASSERT_THAT(`*`value`*`,`*`matcher`*`)`
+
+Verifies that *`value`* matches the [matcher](matchers.md) *`matcher`*.
+
+For example, the following code verifies that the string `value1` starts with
+`"Hello"`, `value2` matches a regular expression, and `value3` is between 5 and
+10:
+
+```cpp
+#include <gmock/gmock.h>
+
+using ::testing::AllOf;
+using ::testing::Gt;
+using ::testing::Lt;
+using ::testing::MatchesRegex;
+using ::testing::StartsWith;
+
+...
+EXPECT_THAT(value1, StartsWith("Hello"));
+EXPECT_THAT(value2, MatchesRegex("Line \\d+"));
+ASSERT_THAT(value3, AllOf(Gt(5), Lt(10)));
+```
+
+Matchers enable assertions of this form to read like English and generate
+informative failure messages. For example, if the above assertion on `value1`
+fails, the resulting message will be similar to the following:
+
+```
+Value of: value1
+ Actual: "Hi, world!"
+Expected: starts with "Hello"
+```
+
+GoogleTest provides a built-in library of matchers—see the
+[Matchers Reference](matchers.md). It is also possible to write your own
+matchers—see [Writing New Matchers Quickly](../gmock_cook_book.md#NewMatchers).
+The use of matchers makes `EXPECT_THAT` a powerful, extensible assertion.
+
+*The idea for this assertion was borrowed from Joe Walnes' Hamcrest project,
+which adds `assertThat()` to JUnit.*
+
+## Boolean Conditions {#boolean}
+
+The following assertions test Boolean conditions.
+
+### EXPECT_TRUE {#EXPECT_TRUE}
+
+`EXPECT_TRUE(`*`condition`*`)` \
+`ASSERT_TRUE(`*`condition`*`)`
+
+Verifies that *`condition`* is true.
+
+### EXPECT_FALSE {#EXPECT_FALSE}
+
+`EXPECT_FALSE(`*`condition`*`)` \
+`ASSERT_FALSE(`*`condition`*`)`
+
+Verifies that *`condition`* is false.
+
+## Binary Comparison {#binary-comparison}
+
+The following assertions compare two values. The value arguments must be
+comparable by the assertion's comparison operator, otherwise a compiler error
+will result.
+
+If an argument supports the `<<` operator, it will be called to print the
+argument when the assertion fails. Otherwise, GoogleTest will attempt to print
+them in the best way it can—see
+[Teaching GoogleTest How to Print Your Values](../advanced.md#teaching-googletest-how-to-print-your-values).
+
+Arguments are always evaluated exactly once, so it's OK for the arguments to
+have side effects. However, the argument evaluation order is undefined and
+programs should not depend on any particular argument evaluation order.
+
+These assertions work with both narrow and wide string objects (`string` and
+`wstring`).
+
+See also the [Floating-Point Comparison](#floating-point) assertions to compare
+floating-point numbers and avoid problems caused by rounding.
+
+### EXPECT_EQ {#EXPECT_EQ}
+
+`EXPECT_EQ(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_EQ(`*`val1`*`,`*`val2`*`)`
+
+Verifies that *`val1`*`==`*`val2`*.
+
+Does pointer equality on pointers. If used on two C strings, it tests if they
+are in the same memory location, not if they have the same value. Use
+[`EXPECT_STREQ`](#EXPECT_STREQ) to compare C strings (e.g. `const char*`) by
+value.
+
+When comparing a pointer to `NULL`, use `EXPECT_EQ(`*`ptr`*`, nullptr)` instead
+of `EXPECT_EQ(`*`ptr`*`, NULL)`.
+
+### EXPECT_NE {#EXPECT_NE}
+
+`EXPECT_NE(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_NE(`*`val1`*`,`*`val2`*`)`
+
+Verifies that *`val1`*`!=`*`val2`*.
+
+Does pointer equality on pointers. If used on two C strings, it tests if they
+are in different memory locations, not if they have different values. Use
+[`EXPECT_STRNE`](#EXPECT_STRNE) to compare C strings (e.g. `const char*`) by
+value.
+
+When comparing a pointer to `NULL`, use `EXPECT_NE(`*`ptr`*`, nullptr)` instead
+of `EXPECT_NE(`*`ptr`*`, NULL)`.
+
+### EXPECT_LT {#EXPECT_LT}
+
+`EXPECT_LT(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_LT(`*`val1`*`,`*`val2`*`)`
+
+Verifies that *`val1`*`<`*`val2`*.
+
+### EXPECT_LE {#EXPECT_LE}
+
+`EXPECT_LE(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_LE(`*`val1`*`,`*`val2`*`)`
+
+Verifies that *`val1`*`<=`*`val2`*.
+
+### EXPECT_GT {#EXPECT_GT}
+
+`EXPECT_GT(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_GT(`*`val1`*`,`*`val2`*`)`
+
+Verifies that *`val1`*`>`*`val2`*.
+
+### EXPECT_GE {#EXPECT_GE}
+
+`EXPECT_GE(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_GE(`*`val1`*`,`*`val2`*`)`
+
+Verifies that *`val1`*`>=`*`val2`*.
+
+## String Comparison {#c-strings}
+
+The following assertions compare two **C strings**. To compare two `string`
+objects, use [`EXPECT_EQ`](#EXPECT_EQ) or [`EXPECT_NE`](#EXPECT_NE) instead.
+
+These assertions also accept wide C strings (`wchar_t*`). If a comparison of two
+wide strings fails, their values will be printed as UTF-8 narrow strings.
+
+To compare a C string with `NULL`, use `EXPECT_EQ(`*`c_string`*`, nullptr)` or
+`EXPECT_NE(`*`c_string`*`, nullptr)`.
+
+### EXPECT_STREQ {#EXPECT_STREQ}
+
+`EXPECT_STREQ(`*`str1`*`,`*`str2`*`)` \
+`ASSERT_STREQ(`*`str1`*`,`*`str2`*`)`
+
+Verifies that the two C strings *`str1`* and *`str2`* have the same contents.
+
+### EXPECT_STRNE {#EXPECT_STRNE}
+
+`EXPECT_STRNE(`*`str1`*`,`*`str2`*`)` \
+`ASSERT_STRNE(`*`str1`*`,`*`str2`*`)`
+
+Verifies that the two C strings *`str1`* and *`str2`* have different contents.
+
+### EXPECT_STRCASEEQ {#EXPECT_STRCASEEQ}
+
+`EXPECT_STRCASEEQ(`*`str1`*`,`*`str2`*`)` \
+`ASSERT_STRCASEEQ(`*`str1`*`,`*`str2`*`)`
+
+Verifies that the two C strings *`str1`* and *`str2`* have the same contents,
+ignoring case.
+
+### EXPECT_STRCASENE {#EXPECT_STRCASENE}
+
+`EXPECT_STRCASENE(`*`str1`*`,`*`str2`*`)` \
+`ASSERT_STRCASENE(`*`str1`*`,`*`str2`*`)`
+
+Verifies that the two C strings *`str1`* and *`str2`* have different contents,
+ignoring case.
+
+## Floating-Point Comparison {#floating-point}
+
+The following assertions compare two floating-point values.
+
+Due to rounding errors, it is very unlikely that two floating-point values will
+match exactly, so `EXPECT_EQ` is not suitable. In general, for floating-point
+comparison to make sense, the user needs to carefully choose the error bound.
+
+GoogleTest also provides assertions that use a default error bound based on
+Units in the Last Place (ULPs). To learn more about ULPs, see the article
+[Comparing Floating Point Numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
+
+### EXPECT_FLOAT_EQ {#EXPECT_FLOAT_EQ}
+
+`EXPECT_FLOAT_EQ(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_FLOAT_EQ(`*`val1`*`,`*`val2`*`)`
+
+Verifies that the two `float` values *`val1`* and *`val2`* are approximately
+equal, to within 4 ULPs from each other.
+
+### EXPECT_DOUBLE_EQ {#EXPECT_DOUBLE_EQ}
+
+`EXPECT_DOUBLE_EQ(`*`val1`*`,`*`val2`*`)` \
+`ASSERT_DOUBLE_EQ(`*`val1`*`,`*`val2`*`)`
+
+Verifies that the two `double` values *`val1`* and *`val2`* are approximately
+equal, to within 4 ULPs from each other.
+
+### EXPECT_NEAR {#EXPECT_NEAR}
+
+`EXPECT_NEAR(`*`val1`*`,`*`val2`*`,`*`abs_error`*`)` \
+`ASSERT_NEAR(`*`val1`*`,`*`val2`*`,`*`abs_error`*`)`
+
+Verifies that the difference between *`val1`* and *`val2`* does not exceed the
+absolute error bound *`abs_error`*.
+
+## Exception Assertions {#exceptions}
+
+The following assertions verify that a piece of code throws, or does not throw,
+an exception. Usage requires exceptions to be enabled in the build environment.
+
+Note that the piece of code under test can be a compound statement, for example:
+
+```cpp
+EXPECT_NO_THROW({
+ int n = 5;
+ DoSomething(&n);
+});
+```
+
+### EXPECT_THROW {#EXPECT_THROW}
+
+`EXPECT_THROW(`*`statement`*`,`*`exception_type`*`)` \
+`ASSERT_THROW(`*`statement`*`,`*`exception_type`*`)`
+
+Verifies that *`statement`* throws an exception of type *`exception_type`*.
+
+### EXPECT_ANY_THROW {#EXPECT_ANY_THROW}
+
+`EXPECT_ANY_THROW(`*`statement`*`)` \
+`ASSERT_ANY_THROW(`*`statement`*`)`
+
+Verifies that *`statement`* throws an exception of any type.
+
+### EXPECT_NO_THROW {#EXPECT_NO_THROW}
+
+`EXPECT_NO_THROW(`*`statement`*`)` \
+`ASSERT_NO_THROW(`*`statement`*`)`
+
+Verifies that *`statement`* does not throw any exception.
+
+## Predicate Assertions {#predicates}
+
+The following assertions enable more complex predicates to be verified while
+printing a more clear failure message than if `EXPECT_TRUE` were used alone.
+
+### EXPECT_PRED* {#EXPECT_PRED}
+
+`EXPECT_PRED1(`*`pred`*`,`*`val1`*`)` \
+`EXPECT_PRED2(`*`pred`*`,`*`val1`*`,`*`val2`*`)` \
+`EXPECT_PRED3(`*`pred`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`)` \
+`EXPECT_PRED4(`*`pred`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`)` \
+`EXPECT_PRED5(`*`pred`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`,`*`val5`*`)`
+
+`ASSERT_PRED1(`*`pred`*`,`*`val1`*`)` \
+`ASSERT_PRED2(`*`pred`*`,`*`val1`*`,`*`val2`*`)` \
+`ASSERT_PRED3(`*`pred`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`)` \
+`ASSERT_PRED4(`*`pred`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`)` \
+`ASSERT_PRED5(`*`pred`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`,`*`val5`*`)`
+
+Verifies that the predicate *`pred`* returns `true` when passed the given values
+as arguments.
+
+The parameter *`pred`* is a function or functor that accepts as many arguments
+as the corresponding macro accepts values. If *`pred`* returns `true` for the
+given arguments, the assertion succeeds, otherwise the assertion fails.
+
+When the assertion fails, it prints the value of each argument. Arguments are
+always evaluated exactly once.
+
+As an example, see the following code:
+
+```cpp
+// Returns true if m and n have no common divisors except 1.
+bool MutuallyPrime(int m, int n) { ... }
+...
+const int a = 3;
+const int b = 4;
+const int c = 10;
+...
+EXPECT_PRED2(MutuallyPrime, a, b); // Succeeds
+EXPECT_PRED2(MutuallyPrime, b, c); // Fails
+```
+
+In the above example, the first assertion succeeds, and the second fails with
+the following message:
+
+```
+MutuallyPrime(b, c) is false, where
+b is 4
+c is 10
+```
+
+Note that if the given predicate is an overloaded function or a function
+template, the assertion macro might not be able to determine which version to
+use, and it might be necessary to explicitly specify the type of the function.
+For example, for a Boolean function `IsPositive()` overloaded to take either a
+single `int` or `double` argument, it would be necessary to write one of the
+following:
+
+```cpp
+EXPECT_PRED1(static_cast<bool (*)(int)>(IsPositive), 5);
+EXPECT_PRED1(static_cast<bool (*)(double)>(IsPositive), 3.14);
+```
+
+Writing simply `EXPECT_PRED1(IsPositive, 5);` would result in a compiler error.
+Similarly, to use a template function, specify the template arguments:
+
+```cpp
+template <typename T>
+bool IsNegative(T x) {
+ return x < 0;
+}
+...
+EXPECT_PRED1(IsNegative<int>, -5); // Must specify type for IsNegative
+```
+
+If a template has multiple parameters, wrap the predicate in parentheses so the
+macro arguments are parsed correctly:
+
+```cpp
+ASSERT_PRED2((MyPredicate<int, int>), 5, 0);
+```
+
+### EXPECT_PRED_FORMAT* {#EXPECT_PRED_FORMAT}
+
+`EXPECT_PRED_FORMAT1(`*`pred_formatter`*`,`*`val1`*`)` \
+`EXPECT_PRED_FORMAT2(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`)` \
+`EXPECT_PRED_FORMAT3(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`)` \
+`EXPECT_PRED_FORMAT4(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`)`
+\
+`EXPECT_PRED_FORMAT5(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`,`*`val5`*`)`
+
+`ASSERT_PRED_FORMAT1(`*`pred_formatter`*`,`*`val1`*`)` \
+`ASSERT_PRED_FORMAT2(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`)` \
+`ASSERT_PRED_FORMAT3(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`)` \
+`ASSERT_PRED_FORMAT4(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`)`
+\
+`ASSERT_PRED_FORMAT5(`*`pred_formatter`*`,`*`val1`*`,`*`val2`*`,`*`val3`*`,`*`val4`*`,`*`val5`*`)`
+
+Verifies that the predicate *`pred_formatter`* succeeds when passed the given
+values as arguments.
+
+The parameter *`pred_formatter`* is a *predicate-formatter*, which is a function
+or functor with the signature:
+
+```cpp
+testing::AssertionResult PredicateFormatter(const char* expr1,
+ const char* expr2,
+ ...
+ const char* exprn,
+ T1 val1,
+ T2 val2,
+ ...
+ Tn valn);
+```
+
+where *`val1`*, *`val2`*, ..., *`valn`* are the values of the predicate
+arguments, and *`expr1`*, *`expr2`*, ..., *`exprn`* are the corresponding
+expressions as they appear in the source code. The types `T1`, `T2`, ..., `Tn`
+can be either value types or reference types; if an argument has type `T`, it
+can be declared as either `T` or `const T&`, whichever is appropriate. For more
+about the return type `testing::AssertionResult`, see
+[Using a Function That Returns an AssertionResult](../advanced.md#using-a-function-that-returns-an-assertionresult).
+
+As an example, see the following code:
+
+```cpp
+// Returns the smallest prime common divisor of m and n,
+// or 1 when m and n are mutually prime.
+int SmallestPrimeCommonDivisor(int m, int n) { ... }
+
+// Returns true if m and n have no common divisors except 1.
+bool MutuallyPrime(int m, int n) { ... }
+
+// A predicate-formatter for asserting that two integers are mutually prime.
+testing::AssertionResult AssertMutuallyPrime(const char* m_expr,
+ const char* n_expr,
+ int m,
+ int n) {
+ if (MutuallyPrime(m, n)) return testing::AssertionSuccess();
+
+ return testing::AssertionFailure() << m_expr << " and " << n_expr
+ << " (" << m << " and " << n << ") are not mutually prime, "
+ << "as they have a common divisor " << SmallestPrimeCommonDivisor(m, n);
+}
+
+...
+const int a = 3;
+const int b = 4;
+const int c = 10;
+...
+EXPECT_PRED_FORMAT2(AssertMutuallyPrime, a, b); // Succeeds
+EXPECT_PRED_FORMAT2(AssertMutuallyPrime, b, c); // Fails
+```
+
+In the above example, the final assertion fails and the predicate-formatter
+produces the following failure message:
+
+```
+b and c (4 and 10) are not mutually prime, as they have a common divisor 2
+```
+
+## Windows HRESULT Assertions {#HRESULT}
+
+The following assertions test for `HRESULT` success or failure. For example:
+
+```cpp
+CComPtr<IShellDispatch2> shell;
+ASSERT_HRESULT_SUCCEEDED(shell.CoCreateInstance(L"Shell.Application"));
+CComVariant empty;
+ASSERT_HRESULT_SUCCEEDED(shell->ShellExecute(CComBSTR(url), empty, empty, empty, empty));
+```
+
+The generated output contains the human-readable error message associated with
+the returned `HRESULT` code.
+
+### EXPECT_HRESULT_SUCCEEDED {#EXPECT_HRESULT_SUCCEEDED}
+
+`EXPECT_HRESULT_SUCCEEDED(`*`expression`*`)` \
+`ASSERT_HRESULT_SUCCEEDED(`*`expression`*`)`
+
+Verifies that *`expression`* is a success `HRESULT`.
+
+### EXPECT_HRESULT_FAILED {#EXPECT_HRESULT_FAILED}
+
+`EXPECT_HRESULT_FAILED(`*`expression`*`)` \
+`ASSERT_HRESULT_FAILED(`*`expression`*`)`
+
+Verifies that *`expression`* is a failure `HRESULT`.
+
+## Death Assertions {#death}
+
+The following assertions verify that a piece of code causes the process to
+terminate. For context, see [Death Tests](../advanced.md#death-tests).
+
+These assertions spawn a new process and execute the code under test in that
+process. How that happens depends on the platform and the variable
+`::testing::GTEST_FLAG(death_test_style)`, which is initialized from the
+command-line flag `--gtest_death_test_style`.
+
+* On POSIX systems, `fork()` (or `clone()` on Linux) is used to spawn the
+ child, after which:
+ * If the variable's value is `"fast"`, the death test statement is
+ immediately executed.
+ * If the variable's value is `"threadsafe"`, the child process re-executes
+ the unit test binary just as it was originally invoked, but with some
+ extra flags to cause just the single death test under consideration to
+ be run.
+* On Windows, the child is spawned using the `CreateProcess()` API, and
+ re-executes the binary to cause just the single death test under
+ consideration to be run - much like the `"threadsafe"` mode on POSIX.
+
+Other values for the variable are illegal and will cause the death test to fail.
+Currently, the flag's default value is
+**`"fast"`**.
+
+If the death test statement runs to completion without dying, the child process
+will nonetheless terminate, and the assertion fails.
+
+Note that the piece of code under test can be a compound statement, for example:
+
+```cpp
+EXPECT_DEATH({
+ int n = 5;
+ DoSomething(&n);
+}, "Error on line .* of DoSomething()");
+```
+
+### EXPECT_DEATH {#EXPECT_DEATH}
+
+`EXPECT_DEATH(`*`statement`*`,`*`matcher`*`)` \
+`ASSERT_DEATH(`*`statement`*`,`*`matcher`*`)`
+
+Verifies that *`statement`* causes the process to terminate with a nonzero exit
+status and produces `stderr` output that matches *`matcher`*.
+
+The parameter *`matcher`* is either a [matcher](matchers.md) for a `const
+std::string&`, or a regular expression (see
+[Regular Expression Syntax](../advanced.md#regular-expression-syntax))—a bare
+string *`s`* (with no matcher) is treated as
+[`ContainsRegex(s)`](matchers.md#string-matchers), **not**
+[`Eq(s)`](matchers.md#generic-comparison).
+
+For example, the following code verifies that calling `DoSomething(42)` causes
+the process to die with an error message that contains the text `My error`:
+
+```cpp
+EXPECT_DEATH(DoSomething(42), "My error");
+```
+
+### EXPECT_DEATH_IF_SUPPORTED {#EXPECT_DEATH_IF_SUPPORTED}
+
+`EXPECT_DEATH_IF_SUPPORTED(`*`statement`*`,`*`matcher`*`)` \
+`ASSERT_DEATH_IF_SUPPORTED(`*`statement`*`,`*`matcher`*`)`
+
+If death tests are supported, behaves the same as
+[`EXPECT_DEATH`](#EXPECT_DEATH). Otherwise, verifies nothing.
+
+### EXPECT_DEBUG_DEATH {#EXPECT_DEBUG_DEATH}
+
+`EXPECT_DEBUG_DEATH(`*`statement`*`,`*`matcher`*`)` \
+`ASSERT_DEBUG_DEATH(`*`statement`*`,`*`matcher`*`)`
+
+In debug mode, behaves the same as [`EXPECT_DEATH`](#EXPECT_DEATH). When not in
+debug mode (i.e. `NDEBUG` is defined), just executes *`statement`*.
+
+### EXPECT_EXIT {#EXPECT_EXIT}
+
+`EXPECT_EXIT(`*`statement`*`,`*`predicate`*`,`*`matcher`*`)` \
+`ASSERT_EXIT(`*`statement`*`,`*`predicate`*`,`*`matcher`*`)`
+
+Verifies that *`statement`* causes the process to terminate with an exit status
+that satisfies *`predicate`*, and produces `stderr` output that matches
+*`matcher`*.
+
+The parameter *`predicate`* is a function or functor that accepts an `int` exit
+status and returns a `bool`. GoogleTest provides two predicates to handle common
+cases:
+
+```cpp
+// Returns true if the program exited normally with the given exit status code.
+::testing::ExitedWithCode(exit_code);
+
+// Returns true if the program was killed by the given signal.
+// Not available on Windows.
+::testing::KilledBySignal(signal_number);
+```
+
+The parameter *`matcher`* is either a [matcher](matchers.md) for a `const
+std::string&`, or a regular expression (see
+[Regular Expression Syntax](../advanced.md#regular-expression-syntax))—a bare
+string *`s`* (with no matcher) is treated as
+[`ContainsRegex(s)`](matchers.md#string-matchers), **not**
+[`Eq(s)`](matchers.md#generic-comparison).
+
+For example, the following code verifies that calling `NormalExit()` causes the
+process to print a message containing the text `Success` to `stderr` and exit
+with exit status code 0:
+
+```cpp
+EXPECT_EXIT(NormalExit(), testing::ExitedWithCode(0), "Success");
+```