aboutsummaryrefslogtreecommitdiff
path: root/googlemock/include/gmock/gmock-actions.h
diff options
context:
space:
mode:
Diffstat (limited to 'googlemock/include/gmock/gmock-actions.h')
-rw-r--r--googlemock/include/gmock/gmock-actions.h1104
1 files changed, 860 insertions, 244 deletions
diff --git a/googlemock/include/gmock/gmock-actions.h b/googlemock/include/gmock/gmock-actions.h
index f2393bd3..f20258bc 100644
--- a/googlemock/include/gmock/gmock-actions.h
+++ b/googlemock/include/gmock/gmock-actions.h
@@ -27,7 +27,6 @@
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
// Google Mock - a framework for writing C++ mock classes.
//
// The ACTION* family of macros can be used in a namespace scope to
@@ -123,15 +122,16 @@
// MORE INFORMATION:
//
// To learn more about using these macros, please search for 'ACTION' on
-// https://github.com/google/googletest/blob/master/docs/gmock_cook_book.md
+// https://github.com/google/googletest/blob/main/docs/gmock_cook_book.md
-// GOOGLETEST_CM0002 DO NOT DELETE
+// IWYU pragma: private, include "gmock/gmock.h"
+// IWYU pragma: friend gmock/.*
#ifndef GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#define GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_
#ifndef _WIN32_WCE
-# include <errno.h>
+#include <errno.h>
#endif
#include <algorithm>
@@ -146,10 +146,7 @@
#include "gmock/internal/gmock-port.h"
#include "gmock/internal/gmock-pp.h"
-#ifdef _MSC_VER
-# pragma warning(push)
-# pragma warning(disable:4100)
-#endif
+GTEST_DISABLE_MSC_WARNINGS_PUSH_(4100)
namespace testing {
@@ -178,9 +175,15 @@ struct BuiltInDefaultValueGetter<T, false> {
static T Get() {
Assert(false, __FILE__, __LINE__,
"Default action undefined for the function return type.");
- return internal::Invalid<T>();
+#if defined(__GNUC__) || defined(__clang__)
+ __builtin_unreachable();
+#elif defined(_MSC_VER)
+ __assume(0);
+#else
+ return Invalid<T>();
// The above statement will never be reached, but is required in
// order for this function to compile.
+#endif
}
};
@@ -196,9 +199,7 @@ class BuiltInDefaultValue {
public:
// This function returns true if and only if type T has a built-in default
// value.
- static bool Exists() {
- return ::std::is_default_constructible<T>::value;
- }
+ static bool Exists() { return ::std::is_default_constructible<T>::value; }
static T Get() {
return BuiltInDefaultValueGetter<
@@ -227,11 +228,11 @@ class BuiltInDefaultValue<T*> {
// The following specializations define the default values for
// specific types we care about.
#define GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(type, value) \
- template <> \
- class BuiltInDefaultValue<type> { \
- public: \
- static bool Exists() { return true; } \
- static type Get() { return value; } \
+ template <> \
+ class BuiltInDefaultValue<type> { \
+ public: \
+ static bool Exists() { return true; } \
+ static type Get() { return value; } \
}
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(void, ); // NOLINT
@@ -255,21 +256,309 @@ GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned short, 0U); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed short, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned int, 0U);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed int, 0);
-GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
-GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long, 0UL); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long, 0L); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(unsigned long long, 0); // NOLINT
-GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
+GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(signed long long, 0); // NOLINT
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(float, 0);
GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_(double, 0);
#undef GMOCK_DEFINE_DEFAULT_ACTION_FOR_RETURN_TYPE_
-// Simple two-arg form of std::disjunction.
-template <typename P, typename Q>
-using disjunction = typename ::std::conditional<P::value, P, Q>::type;
+// Partial implementations of metaprogramming types from the standard library
+// not available in C++11.
+
+template <typename P>
+struct negation
+ // NOLINTNEXTLINE
+ : std::integral_constant<bool, bool(!P::value)> {};
+
+// Base case: with zero predicates the answer is always true.
+template <typename...>
+struct conjunction : std::true_type {};
+
+// With a single predicate, the answer is that predicate.
+template <typename P1>
+struct conjunction<P1> : P1 {};
+
+// With multiple predicates the answer is the first predicate if that is false,
+// and we recurse otherwise.
+template <typename P1, typename... Ps>
+struct conjunction<P1, Ps...>
+ : std::conditional<bool(P1::value), conjunction<Ps...>, P1>::type {};
+
+template <typename...>
+struct disjunction : std::false_type {};
+
+template <typename P1>
+struct disjunction<P1> : P1 {};
+
+template <typename P1, typename... Ps>
+struct disjunction<P1, Ps...>
+ // NOLINTNEXTLINE
+ : std::conditional<!bool(P1::value), disjunction<Ps...>, P1>::type {};
+
+template <typename...>
+using void_t = void;
+
+// Detects whether an expression of type `From` can be implicitly converted to
+// `To` according to [conv]. In C++17, [conv]/3 defines this as follows:
+//
+// An expression e can be implicitly converted to a type T if and only if
+// the declaration T t=e; is well-formed, for some invented temporary
+// variable t ([dcl.init]).
+//
+// [conv]/2 implies we can use function argument passing to detect whether this
+// initialization is valid.
+//
+// Note that this is distinct from is_convertible, which requires this be valid:
+//
+// To test() {
+// return declval<From>();
+// }
+//
+// In particular, is_convertible doesn't give the correct answer when `To` and
+// `From` are the same non-moveable type since `declval<From>` will be an rvalue
+// reference, defeating the guaranteed copy elision that would otherwise make
+// this function work.
+//
+// REQUIRES: `From` is not cv void.
+template <typename From, typename To>
+struct is_implicitly_convertible {
+ private:
+ // A function that accepts a parameter of type T. This can be called with type
+ // U successfully only if U is implicitly convertible to T.
+ template <typename T>
+ static void Accept(T);
+
+ // A function that creates a value of type T.
+ template <typename T>
+ static T Make();
+
+ // An overload be selected when implicit conversion from T to To is possible.
+ template <typename T, typename = decltype(Accept<To>(Make<T>()))>
+ static std::true_type TestImplicitConversion(int);
+
+ // A fallback overload selected in all other cases.
+ template <typename T>
+ static std::false_type TestImplicitConversion(...);
+
+ public:
+ using type = decltype(TestImplicitConversion<From>(0));
+ static constexpr bool value = type::value;
+};
+
+// Like std::invoke_result_t from C++17, but works only for objects with call
+// operators (not e.g. member function pointers, which we don't need specific
+// support for in OnceAction because std::function deals with them).
+template <typename F, typename... Args>
+using call_result_t = decltype(std::declval<F>()(std::declval<Args>()...));
+
+template <typename Void, typename R, typename F, typename... Args>
+struct is_callable_r_impl : std::false_type {};
+
+// Specialize the struct for those template arguments where call_result_t is
+// well-formed. When it's not, the generic template above is chosen, resulting
+// in std::false_type.
+template <typename R, typename F, typename... Args>
+struct is_callable_r_impl<void_t<call_result_t<F, Args...>>, R, F, Args...>
+ : std::conditional<
+ std::is_void<R>::value, //
+ std::true_type, //
+ is_implicitly_convertible<call_result_t<F, Args...>, R>>::type {};
+
+// Like std::is_invocable_r from C++17, but works only for objects with call
+// operators. See the note on call_result_t.
+template <typename R, typename F, typename... Args>
+using is_callable_r = is_callable_r_impl<void, R, F, Args...>;
+
+// Like std::as_const from C++17.
+template <typename T>
+typename std::add_const<T>::type& as_const(T& t) {
+ return t;
+}
} // namespace internal
+// Specialized for function types below.
+template <typename F>
+class OnceAction;
+
+// An action that can only be used once.
+//
+// This is accepted by WillOnce, which doesn't require the underlying action to
+// be copy-constructible (only move-constructible), and promises to invoke it as
+// an rvalue reference. This allows the action to work with move-only types like
+// std::move_only_function in a type-safe manner.
+//
+// For example:
+//
+// // Assume we have some API that needs to accept a unique pointer to some
+// // non-copyable object Foo.
+// void AcceptUniquePointer(std::unique_ptr<Foo> foo);
+//
+// // We can define an action that provides a Foo to that API. Because It
+// // has to give away its unique pointer, it must not be called more than
+// // once, so its call operator is &&-qualified.
+// struct ProvideFoo {
+// std::unique_ptr<Foo> foo;
+//
+// void operator()() && {
+// AcceptUniquePointer(std::move(Foo));
+// }
+// };
+//
+// // This action can be used with WillOnce.
+// EXPECT_CALL(mock, Call)
+// .WillOnce(ProvideFoo{std::make_unique<Foo>(...)});
+//
+// // But a call to WillRepeatedly will fail to compile. This is correct,
+// // since the action cannot correctly be used repeatedly.
+// EXPECT_CALL(mock, Call)
+// .WillRepeatedly(ProvideFoo{std::make_unique<Foo>(...)});
+//
+// A less-contrived example would be an action that returns an arbitrary type,
+// whose &&-qualified call operator is capable of dealing with move-only types.
+template <typename Result, typename... Args>
+class OnceAction<Result(Args...)> final {
+ private:
+ // True iff we can use the given callable type (or lvalue reference) directly
+ // via StdFunctionAdaptor.
+ template <typename Callable>
+ using IsDirectlyCompatible = internal::conjunction<
+ // It must be possible to capture the callable in StdFunctionAdaptor.
+ std::is_constructible<typename std::decay<Callable>::type, Callable>,
+ // The callable must be compatible with our signature.
+ internal::is_callable_r<Result, typename std::decay<Callable>::type,
+ Args...>>;
+
+ // True iff we can use the given callable type via StdFunctionAdaptor once we
+ // ignore incoming arguments.
+ template <typename Callable>
+ using IsCompatibleAfterIgnoringArguments = internal::conjunction<
+ // It must be possible to capture the callable in a lambda.
+ std::is_constructible<typename std::decay<Callable>::type, Callable>,
+ // The callable must be invocable with zero arguments, returning something
+ // convertible to Result.
+ internal::is_callable_r<Result, typename std::decay<Callable>::type>>;
+
+ public:
+ // Construct from a callable that is directly compatible with our mocked
+ // signature: it accepts our function type's arguments and returns something
+ // convertible to our result type.
+ template <typename Callable,
+ typename std::enable_if<
+ internal::conjunction<
+ // Teach clang on macOS that we're not talking about a
+ // copy/move constructor here. Otherwise it gets confused
+ // when checking the is_constructible requirement of our
+ // traits above.
+ internal::negation<std::is_same<
+ OnceAction, typename std::decay<Callable>::type>>,
+ IsDirectlyCompatible<Callable>> //
+ ::value,
+ int>::type = 0>
+ OnceAction(Callable&& callable) // NOLINT
+ : function_(StdFunctionAdaptor<typename std::decay<Callable>::type>(
+ {}, std::forward<Callable>(callable))) {}
+
+ // As above, but for a callable that ignores the mocked function's arguments.
+ template <typename Callable,
+ typename std::enable_if<
+ internal::conjunction<
+ // Teach clang on macOS that we're not talking about a
+ // copy/move constructor here. Otherwise it gets confused
+ // when checking the is_constructible requirement of our
+ // traits above.
+ internal::negation<std::is_same<
+ OnceAction, typename std::decay<Callable>::type>>,
+ // Exclude callables for which the overload above works.
+ // We'd rather provide the arguments if possible.
+ internal::negation<IsDirectlyCompatible<Callable>>,
+ IsCompatibleAfterIgnoringArguments<Callable>>::value,
+ int>::type = 0>
+ OnceAction(Callable&& callable) // NOLINT
+ // Call the constructor above with a callable
+ // that ignores the input arguments.
+ : OnceAction(IgnoreIncomingArguments<typename std::decay<Callable>::type>{
+ std::forward<Callable>(callable)}) {}
+
+ // We are naturally copyable because we store only an std::function, but
+ // semantically we should not be copyable.
+ OnceAction(const OnceAction&) = delete;
+ OnceAction& operator=(const OnceAction&) = delete;
+ OnceAction(OnceAction&&) = default;
+
+ // Invoke the underlying action callable with which we were constructed,
+ // handing it the supplied arguments.
+ Result Call(Args... args) && {
+ return function_(std::forward<Args>(args)...);
+ }
+
+ private:
+ // An adaptor that wraps a callable that is compatible with our signature and
+ // being invoked as an rvalue reference so that it can be used as an
+ // StdFunctionAdaptor. This throws away type safety, but that's fine because
+ // this is only used by WillOnce, which we know calls at most once.
+ //
+ // Once we have something like std::move_only_function from C++23, we can do
+ // away with this.
+ template <typename Callable>
+ class StdFunctionAdaptor final {
+ public:
+ // A tag indicating that the (otherwise universal) constructor is accepting
+ // the callable itself, instead of e.g. stealing calls for the move
+ // constructor.
+ struct CallableTag final {};
+
+ template <typename F>
+ explicit StdFunctionAdaptor(CallableTag, F&& callable)
+ : callable_(std::make_shared<Callable>(std::forward<F>(callable))) {}
+
+ // Rather than explicitly returning Result, we return whatever the wrapped
+ // callable returns. This allows for compatibility with existing uses like
+ // the following, when the mocked function returns void:
+ //
+ // EXPECT_CALL(mock_fn_, Call)
+ // .WillOnce([&] {
+ // [...]
+ // return 0;
+ // });
+ //
+ // Such a callable can be turned into std::function<void()>. If we use an
+ // explicit return type of Result here then it *doesn't* work with
+ // std::function, because we'll get a "void function should not return a
+ // value" error.
+ //
+ // We need not worry about incompatible result types because the SFINAE on
+ // OnceAction already checks this for us. std::is_invocable_r_v itself makes
+ // the same allowance for void result types.
+ template <typename... ArgRefs>
+ internal::call_result_t<Callable, ArgRefs...> operator()(
+ ArgRefs&&... args) const {
+ return std::move(*callable_)(std::forward<ArgRefs>(args)...);
+ }
+
+ private:
+ // We must put the callable on the heap so that we are copyable, which
+ // std::function needs.
+ std::shared_ptr<Callable> callable_;
+ };
+
+ // An adaptor that makes a callable that accepts zero arguments callable with
+ // our mocked arguments.
+ template <typename Callable>
+ struct IgnoreIncomingArguments {
+ internal::call_result_t<Callable> operator()(Args&&...) {
+ return std::move(callable)();
+ }
+
+ Callable callable;
+ };
+
+ std::function<Result(Args...)> function_;
+};
+
// When an unexpected function call is encountered, Google Mock will
// let it return a default value if the user has specified one for its
// return type, or if the return type has a built-in default value;
@@ -328,7 +617,7 @@ class DefaultValue {
private:
class ValueProducer {
public:
- virtual ~ValueProducer() {}
+ virtual ~ValueProducer() = default;
virtual T Produce() = 0;
};
@@ -339,7 +628,8 @@ class DefaultValue {
private:
const T value_;
- GTEST_DISALLOW_COPY_AND_ASSIGN_(FixedValueProducer);
+ FixedValueProducer(const FixedValueProducer&) = delete;
+ FixedValueProducer& operator=(const FixedValueProducer&) = delete;
};
class FactoryValueProducer : public ValueProducer {
@@ -350,7 +640,8 @@ class DefaultValue {
private:
const FactoryFunction factory_;
- GTEST_DISALLOW_COPY_AND_ASSIGN_(FactoryValueProducer);
+ FactoryValueProducer(const FactoryValueProducer&) = delete;
+ FactoryValueProducer& operator=(const FactoryValueProducer&) = delete;
};
static ValueProducer* producer_;
@@ -414,8 +705,8 @@ class ActionInterface {
typedef typename internal::Function<F>::Result Result;
typedef typename internal::Function<F>::ArgumentTuple ArgumentTuple;
- ActionInterface() {}
- virtual ~ActionInterface() {}
+ ActionInterface() = default;
+ virtual ~ActionInterface() = default;
// Performs the action. This method is not const, as in general an
// action can have side effects and be stateful. For example, a
@@ -424,28 +715,34 @@ class ActionInterface {
virtual Result Perform(const ArgumentTuple& args) = 0;
private:
- GTEST_DISALLOW_COPY_AND_ASSIGN_(ActionInterface);
+ ActionInterface(const ActionInterface&) = delete;
+ ActionInterface& operator=(const ActionInterface&) = delete;
};
-// An Action<F> is a copyable and IMMUTABLE (except by assignment)
-// object that represents an action to be taken when a mock function
-// of type F is called. The implementation of Action<T> is just a
-// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action!
-// You can view an object implementing ActionInterface<F> as a
-// concrete action (including its current state), and an Action<F>
-// object as a handle to it.
template <typename F>
-class Action {
+class Action;
+
+// An Action<R(Args...)> is a copyable and IMMUTABLE (except by assignment)
+// object that represents an action to be taken when a mock function of type
+// R(Args...) is called. The implementation of Action<T> is just a
+// std::shared_ptr to const ActionInterface<T>. Don't inherit from Action! You
+// can view an object implementing ActionInterface<F> as a concrete action
+// (including its current state), and an Action<F> object as a handle to it.
+template <typename R, typename... Args>
+class Action<R(Args...)> {
+ private:
+ using F = R(Args...);
+
// Adapter class to allow constructing Action from a legacy ActionInterface.
// New code should create Actions from functors instead.
struct ActionAdapter {
// Adapter must be copyable to satisfy std::function requirements.
::std::shared_ptr<ActionInterface<F>> impl_;
- template <typename... Args>
- typename internal::Function<F>::Result operator()(Args&&... args) {
+ template <typename... InArgs>
+ typename internal::Function<F>::Result operator()(InArgs&&... args) {
return impl_->Perform(
- ::std::forward_as_tuple(::std::forward<Args>(args)...));
+ ::std::forward_as_tuple(::std::forward<InArgs>(args)...));
}
};
@@ -458,7 +755,7 @@ class Action {
// Constructs a null Action. Needed for storing Action objects in
// STL containers.
- Action() {}
+ Action() = default;
// Construct an Action from a specified callable.
// This cannot take std::function directly, because then Action would not be
@@ -480,7 +777,8 @@ class Action {
// Action<F>, as long as F's arguments can be implicitly converted
// to Func's and Func's return type can be implicitly converted to F's.
template <typename Func>
- explicit Action(const Action<Func>& action) : fun_(action.fun_) {}
+ Action(const Action<Func>& action) // NOLINT
+ : fun_(action.fun_) {}
// Returns true if and only if this is the DoDefault() action.
bool IsDoDefault() const { return fun_ == nullptr; }
@@ -498,6 +796,24 @@ class Action {
return internal::Apply(fun_, ::std::move(args));
}
+ // An action can be used as a OnceAction, since it's obviously safe to call it
+ // once.
+ operator OnceAction<F>() const { // NOLINT
+ // Return a OnceAction-compatible callable that calls Perform with the
+ // arguments it is provided. We could instead just return fun_, but then
+ // we'd need to handle the IsDoDefault() case separately.
+ struct OA {
+ Action<F> action;
+
+ R operator()(Args... args) && {
+ return action.Perform(
+ std::forward_as_tuple(std::forward<Args>(args)...));
+ }
+ };
+
+ return OA{*this};
+ }
+
private:
template <typename G>
friend class Action;
@@ -514,8 +830,8 @@ class Action {
template <typename FunctionImpl>
struct IgnoreArgs {
- template <typename... Args>
- Result operator()(const Args&...) const {
+ template <typename... InArgs>
+ Result operator()(const InArgs&...) const {
return function_impl();
}
@@ -606,118 +922,198 @@ struct ByMoveWrapper {
T payload;
};
-// Implements the polymorphic Return(x) action, which can be used in
-// any function that returns the type of x, regardless of the argument
-// types.
-//
-// Note: The value passed into Return must be converted into
-// Function<F>::Result when this action is cast to Action<F> rather than
-// when that action is performed. This is important in scenarios like
-//
-// MOCK_METHOD1(Method, T(U));
-// ...
-// {
-// Foo foo;
-// X x(&foo);
-// EXPECT_CALL(mock, Method(_)).WillOnce(Return(x));
-// }
-//
-// In the example above the variable x holds reference to foo which leaves
-// scope and gets destroyed. If copying X just copies a reference to foo,
-// that copy will be left with a hanging reference. If conversion to T
-// makes a copy of foo, the above code is safe. To support that scenario, we
-// need to make sure that the type conversion happens inside the EXPECT_CALL
-// statement, and conversion of the result of Return to Action<T(U)> is a
-// good place for that.
-//
-// The real life example of the above scenario happens when an invocation
-// of gtl::Container() is passed into Return.
-//
+// The general implementation of Return(R). Specializations follow below.
template <typename R>
-class ReturnAction {
+class ReturnAction final {
public:
- // Constructs a ReturnAction object from the value to be returned.
- // 'value' is passed by value instead of by const reference in order
- // to allow Return("string literal") to compile.
- explicit ReturnAction(R value) : value_(new R(std::move(value))) {}
+ explicit ReturnAction(R value) : value_(std::move(value)) {}
+
+ template <typename U, typename... Args,
+ typename = typename std::enable_if<conjunction<
+ // See the requirements documented on Return.
+ negation<std::is_same<void, U>>, //
+ negation<std::is_reference<U>>, //
+ std::is_convertible<R, U>, //
+ std::is_move_constructible<U>>::value>::type>
+ operator OnceAction<U(Args...)>() && { // NOLINT
+ return Impl<U>(std::move(value_));
+ }
- // This template type conversion operator allows Return(x) to be
- // used in ANY function that returns x's type.
- template <typename F>
- operator Action<F>() const { // NOLINT
- // Assert statement belongs here because this is the best place to verify
- // conditions on F. It produces the clearest error messages
- // in most compilers.
- // Impl really belongs in this scope as a local class but can't
- // because MSVC produces duplicate symbols in different translation units
- // in this case. Until MS fixes that bug we put Impl into the class scope
- // and put the typedef both here (for use in assert statement) and
- // in the Impl class. But both definitions must be the same.
- typedef typename Function<F>::Result Result;
- GTEST_COMPILE_ASSERT_(
- !std::is_reference<Result>::value,
- use_ReturnRef_instead_of_Return_to_return_a_reference);
- static_assert(!std::is_void<Result>::value,
- "Can't use Return() on an action expected to return `void`.");
- return Action<F>(new Impl<R, F>(value_));
+ template <typename U, typename... Args,
+ typename = typename std::enable_if<conjunction<
+ // See the requirements documented on Return.
+ negation<std::is_same<void, U>>, //
+ negation<std::is_reference<U>>, //
+ std::is_convertible<const R&, U>, //
+ std::is_copy_constructible<U>>::value>::type>
+ operator Action<U(Args...)>() const { // NOLINT
+ return Impl<U>(value_);
}
private:
- // Implements the Return(x) action for a particular function type F.
- template <typename R_, typename F>
- class Impl : public ActionInterface<F> {
+ // Implements the Return(x) action for a mock function that returns type U.
+ template <typename U>
+ class Impl final {
public:
- typedef typename Function<F>::Result Result;
- typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+ // The constructor used when the return value is allowed to move from the
+ // input value (i.e. we are converting to OnceAction).
+ explicit Impl(R&& input_value)
+ : state_(new State(std::move(input_value))) {}
- // The implicit cast is necessary when Result has more than one
- // single-argument constructor (e.g. Result is std::vector<int>) and R
- // has a type conversion operator template. In that case, value_(value)
- // won't compile as the compiler doesn't known which constructor of
- // Result to call. ImplicitCast_ forces the compiler to convert R to
- // Result without considering explicit constructors, thus resolving the
- // ambiguity. value_ is then initialized using its copy constructor.
- explicit Impl(const std::shared_ptr<R>& value)
- : value_before_cast_(*value),
- value_(ImplicitCast_<Result>(value_before_cast_)) {}
+ // The constructor used when the return value is not allowed to move from
+ // the input value (i.e. we are converting to Action).
+ explicit Impl(const R& input_value) : state_(new State(input_value)) {}
- Result Perform(const ArgumentTuple&) override { return value_; }
+ U operator()() && { return std::move(state_->value); }
+ U operator()() const& { return state_->value; }
private:
- GTEST_COMPILE_ASSERT_(!std::is_reference<Result>::value,
- Result_cannot_be_a_reference_type);
- // We save the value before casting just in case it is being cast to a
- // wrapper type.
- R value_before_cast_;
- Result value_;
-
- GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl);
+ // We put our state on the heap so that the compiler-generated copy/move
+ // constructors work correctly even when U is a reference-like type. This is
+ // necessary only because we eagerly create State::value (see the note on
+ // that symbol for details). If we instead had only the input value as a
+ // member then the default constructors would work fine.
+ //
+ // For example, when R is std::string and U is std::string_view, value is a
+ // reference to the string backed by input_value. The copy constructor would
+ // copy both, so that we wind up with a new input_value object (with the
+ // same contents) and a reference to the *old* input_value object rather
+ // than the new one.
+ struct State {
+ explicit State(const R& input_value_in)
+ : input_value(input_value_in),
+ // Make an implicit conversion to Result before initializing the U
+ // object we store, avoiding calling any explicit constructor of U
+ // from R.
+ //
+ // This simulates the language rules: a function with return type U
+ // that does `return R()` requires R to be implicitly convertible to
+ // U, and uses that path for the conversion, even U Result has an
+ // explicit constructor from R.
+ value(ImplicitCast_<U>(internal::as_const(input_value))) {}
+
+ // As above, but for the case where we're moving from the ReturnAction
+ // object because it's being used as a OnceAction.
+ explicit State(R&& input_value_in)
+ : input_value(std::move(input_value_in)),
+ // For the same reason as above we make an implicit conversion to U
+ // before initializing the value.
+ //
+ // Unlike above we provide the input value as an rvalue to the
+ // implicit conversion because this is a OnceAction: it's fine if it
+ // wants to consume the input value.
+ value(ImplicitCast_<U>(std::move(input_value))) {}
+
+ // A copy of the value originally provided by the user. We retain this in
+ // addition to the value of the mock function's result type below in case
+ // the latter is a reference-like type. See the std::string_view example
+ // in the documentation on Return.
+ R input_value;
+
+ // The value we actually return, as the type returned by the mock function
+ // itself.
+ //
+ // We eagerly initialize this here, rather than lazily doing the implicit
+ // conversion automatically each time Perform is called, for historical
+ // reasons: in 2009-11, commit a070cbd91c (Google changelist 13540126)
+ // made the Action<U()> conversion operator eagerly convert the R value to
+ // U, but without keeping the R alive. This broke the use case discussed
+ // in the documentation for Return, making reference-like types such as
+ // std::string_view not safe to use as U where the input type R is a
+ // value-like type such as std::string.
+ //
+ // The example the commit gave was not very clear, nor was the issue
+ // thread (https://github.com/google/googlemock/issues/86), but it seems
+ // the worry was about reference-like input types R that flatten to a
+ // value-like type U when being implicitly converted. An example of this
+ // is std::vector<bool>::reference, which is often a proxy type with an
+ // reference to the underlying vector:
+ //
+ // // Helper method: have the mock function return bools according
+ // // to the supplied script.
+ // void SetActions(MockFunction<bool(size_t)>& mock,
+ // const std::vector<bool>& script) {
+ // for (size_t i = 0; i < script.size(); ++i) {
+ // EXPECT_CALL(mock, Call(i)).WillOnce(Return(script[i]));
+ // }
+ // }
+ //
+ // TEST(Foo, Bar) {
+ // // Set actions using a temporary vector, whose operator[]
+ // // returns proxy objects that references that will be
+ // // dangling once the call to SetActions finishes and the
+ // // vector is destroyed.
+ // MockFunction<bool(size_t)> mock;
+ // SetActions(mock, {false, true});
+ //
+ // EXPECT_FALSE(mock.AsStdFunction()(0));
+ // EXPECT_TRUE(mock.AsStdFunction()(1));
+ // }
+ //
+ // This eager conversion helps with a simple case like this, but doesn't
+ // fully make these types work in general. For example the following still
+ // uses a dangling reference:
+ //
+ // TEST(Foo, Baz) {
+ // MockFunction<std::vector<std::string>()> mock;
+ //
+ // // Return the same vector twice, and then the empty vector
+ // // thereafter.
+ // auto action = Return(std::initializer_list<std::string>{
+ // "taco", "burrito",
+ // });
+ //
+ // EXPECT_CALL(mock, Call)
+ // .WillOnce(action)
+ // .WillOnce(action)
+ // .WillRepeatedly(Return(std::vector<std::string>{}));
+ //
+ // EXPECT_THAT(mock.AsStdFunction()(),
+ // ElementsAre("taco", "burrito"));
+ // EXPECT_THAT(mock.AsStdFunction()(),
+ // ElementsAre("taco", "burrito"));
+ // EXPECT_THAT(mock.AsStdFunction()(), IsEmpty());
+ // }
+ //
+ U value;
+ };
+
+ const std::shared_ptr<State> state_;
};
- // Partially specialize for ByMoveWrapper. This version of ReturnAction will
- // move its contents instead.
- template <typename R_, typename F>
- class Impl<ByMoveWrapper<R_>, F> : public ActionInterface<F> {
- public:
- typedef typename Function<F>::Result Result;
- typedef typename Function<F>::ArgumentTuple ArgumentTuple;
+ R value_;
+};
- explicit Impl(const std::shared_ptr<R>& wrapper)
- : performed_(false), wrapper_(wrapper) {}
+// A specialization of ReturnAction<R> when R is ByMoveWrapper<T> for some T.
+//
+// This version applies the type system-defeating hack of moving from T even in
+// the const call operator, checking at runtime that it isn't called more than
+// once, since the user has declared their intent to do so by using ByMove.
+template <typename T>
+class ReturnAction<ByMoveWrapper<T>> final {
+ public:
+ explicit ReturnAction(ByMoveWrapper<T> wrapper)
+ : state_(new State(std::move(wrapper.payload))) {}
- Result Perform(const ArgumentTuple&) override {
- GTEST_CHECK_(!performed_)
- << "A ByMove() action should only be performed once.";
- performed_ = true;
- return std::move(wrapper_->payload);
- }
+ T operator()() const {
+ GTEST_CHECK_(!state_->called)
+ << "A ByMove() action must be performed at most once.";
- private:
- bool performed_;
- const std::shared_ptr<R> wrapper_;
+ state_->called = true;
+ return std::move(state_->value);
+ }
+
+ private:
+ // We store our state on the heap so that we are copyable as required by
+ // Action, despite the fact that we are stateful and T may not be copyable.
+ struct State {
+ explicit State(T&& value_in) : value(std::move(value_in)) {}
+
+ T value;
+ bool called = false;
};
- const std::shared_ptr<R> value_;
+ const std::shared_ptr<State> state_;
};
// Implements the ReturnNull() action.
@@ -759,8 +1155,8 @@ class ReturnRefAction {
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRef(x) when Return(x)
// should be used, and generates some helpful error message.
- GTEST_COMPILE_ASSERT_(std::is_reference<Result>::value,
- use_Return_instead_of_ReturnRef_to_return_a_value);
+ static_assert(std::is_reference<Result>::value,
+ "use Return instead of ReturnRef to return a value");
return Action<F>(new Impl<F>(ref_));
}
@@ -801,9 +1197,8 @@ class ReturnRefOfCopyAction {
// Asserts that the function return type is a reference. This
// catches the user error of using ReturnRefOfCopy(x) when Return(x)
// should be used, and generates some helpful error message.
- GTEST_COMPILE_ASSERT_(
- std::is_reference<Result>::value,
- use_Return_instead_of_ReturnRefOfCopy_to_return_a_value);
+ static_assert(std::is_reference<Result>::value,
+ "use Return instead of ReturnRefOfCopy to return a value");
return Action<F>(new Impl<F>(value_));
}
@@ -839,7 +1234,7 @@ class ReturnRoundRobinAction {
template <typename... Args>
T operator()(Args&&...) const {
- return state_->Next();
+ return state_->Next();
}
private:
@@ -862,7 +1257,9 @@ class DoDefaultAction {
// This template type conversion operator allows DoDefault() to be
// used in any function.
template <typename F>
- operator Action<F>() const { return Action<F>(); } // NOLINT
+ operator Action<F>() const {
+ return Action<F>();
+ } // NOLINT
};
// Implements the Assign action to set a given pointer referent to a
@@ -882,7 +1279,7 @@ class AssignAction {
const T2 value_;
};
-#if !GTEST_OS_WINDOWS_MOBILE
+#ifndef GTEST_OS_WINDOWS_MOBILE
// Implements the SetErrnoAndReturn action to simulate return from
// various system calls and libc functions.
@@ -890,8 +1287,7 @@ template <typename T>
class SetErrnoAndReturnAction {
public:
SetErrnoAndReturnAction(int errno_value, T result)
- : errno_(errno_value),
- result_(result) {}
+ : errno_(errno_value), result_(result) {}
template <typename Result, typename ArgumentTuple>
Result Perform(const ArgumentTuple& /* args */) const {
errno = errno_;
@@ -1002,8 +1398,8 @@ class IgnoreResultAction {
private:
// Type OriginalFunction is the same as F except that its return
// type is IgnoredValue.
- typedef typename internal::Function<F>::MakeResultIgnoredValue
- OriginalFunction;
+ typedef
+ typename internal::Function<F>::MakeResultIgnoredValue OriginalFunction;
const Action<OriginalFunction> action_;
};
@@ -1013,55 +1409,243 @@ class IgnoreResultAction {
template <typename InnerAction, size_t... I>
struct WithArgsAction {
- InnerAction action;
+ InnerAction inner_action;
- // The inner action could be anything convertible to Action<X>.
- // We use the conversion operator to detect the signature of the inner Action.
+ // The signature of the function as seen by the inner action, given an out
+ // action with the given result and argument types.
template <typename R, typename... Args>
+ using InnerSignature =
+ R(typename std::tuple_element<I, std::tuple<Args...>>::type...);
+
+ // Rather than a call operator, we must define conversion operators to
+ // particular action types. This is necessary for embedded actions like
+ // DoDefault(), which rely on an action conversion operators rather than
+ // providing a call operator because even with a particular set of arguments
+ // they don't have a fixed return type.
+
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<InnerAction,
+ // Unfortunately we can't use the InnerSignature
+ // alias here; MSVC complains about the I
+ // parameter pack not being expanded (error C3520)
+ // despite it being expanded in the type alias.
+ // TupleElement is also an MSVC workaround.
+ // See its definition for details.
+ OnceAction<R(internal::TupleElement<
+ I, std::tuple<Args...>>...)>>::value,
+ int>::type = 0>
+ operator OnceAction<R(Args...)>() && { // NOLINT
+ struct OA {
+ OnceAction<InnerSignature<R, Args...>> inner_action;
+
+ R operator()(Args&&... args) && {
+ return std::move(inner_action)
+ .Call(std::get<I>(
+ std::forward_as_tuple(std::forward<Args>(args)...))...);
+ }
+ };
+
+ return OA{std::move(inner_action)};
+ }
+
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<const InnerAction&,
+ // Unfortunately we can't use the InnerSignature
+ // alias here; MSVC complains about the I
+ // parameter pack not being expanded (error C3520)
+ // despite it being expanded in the type alias.
+ // TupleElement is also an MSVC workaround.
+ // See its definition for details.
+ Action<R(internal::TupleElement<
+ I, std::tuple<Args...>>...)>>::value,
+ int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT
- using TupleType = std::tuple<Args...>;
- Action<R(typename std::tuple_element<I, TupleType>::type...)>
- converted(action);
+ Action<InnerSignature<R, Args...>> converted(inner_action);
- return [converted](Args... args) -> R {
+ return [converted](Args&&... args) -> R {
return converted.Perform(std::forward_as_tuple(
- std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
+ std::get<I>(std::forward_as_tuple(std::forward<Args>(args)...))...));
};
}
};
template <typename... Actions>
-struct DoAllAction {
- private:
+class DoAllAction;
+
+// Base case: only a single action.
+template <typename FinalAction>
+class DoAllAction<FinalAction> {
+ public:
+ struct UserConstructorTag {};
+
template <typename T>
- using NonFinalType =
- typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
+ explicit DoAllAction(UserConstructorTag, T&& action)
+ : final_action_(std::forward<T>(action)) {}
+
+ // Rather than a call operator, we must define conversion operators to
+ // particular action types. This is necessary for embedded actions like
+ // DoDefault(), which rely on an action conversion operators rather than
+ // providing a call operator because even with a particular set of arguments
+ // they don't have a fixed return type.
+
+ template <typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<FinalAction, OnceAction<R(Args...)>>::value,
+ int>::type = 0>
+ operator OnceAction<R(Args...)>() && { // NOLINT
+ return std::move(final_action_);
+ }
- template <typename ActionT, size_t... I>
- std::vector<ActionT> Convert(IndexSequence<I...>) const {
- return {ActionT(std::get<I>(actions))...};
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ std::is_convertible<const FinalAction&, Action<R(Args...)>>::value,
+ int>::type = 0>
+ operator Action<R(Args...)>() const { // NOLINT
+ return final_action_;
}
+ private:
+ FinalAction final_action_;
+};
+
+// Recursive case: support N actions by calling the initial action and then
+// calling through to the base class containing N-1 actions.
+template <typename InitialAction, typename... OtherActions>
+class DoAllAction<InitialAction, OtherActions...>
+ : private DoAllAction<OtherActions...> {
+ private:
+ using Base = DoAllAction<OtherActions...>;
+
+ // The type of reference that should be provided to an initial action for a
+ // mocked function parameter of type T.
+ //
+ // There are two quirks here:
+ //
+ // * Unlike most forwarding functions, we pass scalars through by value.
+ // This isn't strictly necessary because an lvalue reference would work
+ // fine too and be consistent with other non-reference types, but it's
+ // perhaps less surprising.
+ //
+ // For example if the mocked function has signature void(int), then it
+ // might seem surprising for the user's initial action to need to be
+ // convertible to Action<void(const int&)>. This is perhaps less
+ // surprising for a non-scalar type where there may be a performance
+ // impact, or it might even be impossible, to pass by value.
+ //
+ // * More surprisingly, `const T&` is often not a const reference type.
+ // By the reference collapsing rules in C++17 [dcl.ref]/6, if T refers to
+ // U& or U&& for some non-scalar type U, then InitialActionArgType<T> is
+ // U&. In other words, we may hand over a non-const reference.
+ //
+ // So for example, given some non-scalar type Obj we have the following
+ // mappings:
+ //
+ // T InitialActionArgType<T>
+ // ------- -----------------------
+ // Obj const Obj&
+ // Obj& Obj&
+ // Obj&& Obj&
+ // const Obj const Obj&
+ // const Obj& const Obj&
+ // const Obj&& const Obj&
+ //
+ // In other words, the initial actions get a mutable view of an non-scalar
+ // argument if and only if the mock function itself accepts a non-const
+ // reference type. They are never given an rvalue reference to an
+ // non-scalar type.
+ //
+ // This situation makes sense if you imagine use with a matcher that is
+ // designed to write through a reference. For example, if the caller wants
+ // to fill in a reference argument and then return a canned value:
+ //
+ // EXPECT_CALL(mock, Call)
+ // .WillOnce(DoAll(SetArgReferee<0>(17), Return(19)));
+ //
+ template <typename T>
+ using InitialActionArgType =
+ typename std::conditional<std::is_scalar<T>::value, T, const T&>::type;
+
public:
- std::tuple<Actions...> actions;
+ struct UserConstructorTag {};
+
+ template <typename T, typename... U>
+ explicit DoAllAction(UserConstructorTag, T&& initial_action,
+ U&&... other_actions)
+ : Base({}, std::forward<U>(other_actions)...),
+ initial_action_(std::forward<T>(initial_action)) {}
+
+ template <typename R, typename... Args,
+ typename std::enable_if<
+ conjunction<
+ // Both the initial action and the rest must support
+ // conversion to OnceAction.
+ std::is_convertible<
+ InitialAction,
+ OnceAction<void(InitialActionArgType<Args>...)>>,
+ std::is_convertible<Base, OnceAction<R(Args...)>>>::value,
+ int>::type = 0>
+ operator OnceAction<R(Args...)>() && { // NOLINT
+ // Return an action that first calls the initial action with arguments
+ // filtered through InitialActionArgType, then forwards arguments directly
+ // to the base class to deal with the remaining actions.
+ struct OA {
+ OnceAction<void(InitialActionArgType<Args>...)> initial_action;
+ OnceAction<R(Args...)> remaining_actions;
+
+ R operator()(Args... args) && {
+ std::move(initial_action)
+ .Call(static_cast<InitialActionArgType<Args>>(args)...);
+
+ return std::move(remaining_actions).Call(std::forward<Args>(args)...);
+ }
+ };
- template <typename R, typename... Args>
+ return OA{
+ std::move(initial_action_),
+ std::move(static_cast<Base&>(*this)),
+ };
+ }
+
+ template <
+ typename R, typename... Args,
+ typename std::enable_if<
+ conjunction<
+ // Both the initial action and the rest must support conversion to
+ // Action.
+ std::is_convertible<const InitialAction&,
+ Action<void(InitialActionArgType<Args>...)>>,
+ std::is_convertible<const Base&, Action<R(Args...)>>>::value,
+ int>::type = 0>
operator Action<R(Args...)>() const { // NOLINT
- struct Op {
- std::vector<Action<void(NonFinalType<Args>...)>> converted;
- Action<R(Args...)> last;
+ // Return an action that first calls the initial action with arguments
+ // filtered through InitialActionArgType, then forwards arguments directly
+ // to the base class to deal with the remaining actions.
+ struct OA {
+ Action<void(InitialActionArgType<Args>...)> initial_action;
+ Action<R(Args...)> remaining_actions;
+
R operator()(Args... args) const {
- auto tuple_args = std::forward_as_tuple(std::forward<Args>(args)...);
- for (auto& a : converted) {
- a.Perform(tuple_args);
- }
- return last.Perform(std::move(tuple_args));
+ initial_action.Perform(std::forward_as_tuple(
+ static_cast<InitialActionArgType<Args>>(args)...));
+
+ return remaining_actions.Perform(
+ std::forward_as_tuple(std::forward<Args>(args)...));
}
};
- return Op{Convert<Action<void(NonFinalType<Args>...)>>(
- MakeIndexSequence<sizeof...(Actions) - 1>()),
- std::get<sizeof...(Actions) - 1>(actions)};
+
+ return OA{
+ initial_action_,
+ static_cast<const Base&>(*this),
+ };
}
+
+ private:
+ InitialAction initial_action_;
};
template <typename T, typename... Params>
@@ -1078,10 +1662,11 @@ struct ReturnNewAction {
template <size_t k>
struct ReturnArgAction {
- template <typename... Args>
- auto operator()(const Args&... args) const ->
- typename std::tuple_element<k, std::tuple<Args...>>::type {
- return std::get<k>(std::tie(args...));
+ template <typename... Args,
+ typename = typename std::enable_if<(k < sizeof...(Args))>::type>
+ auto operator()(Args&&... args) const -> decltype(std::get<k>(
+ std::forward_as_tuple(std::forward<Args>(args)...))) {
+ return std::get<k>(std::forward_as_tuple(std::forward<Args>(args)...));
}
};
@@ -1203,7 +1788,8 @@ typedef internal::IgnoredValue Unused;
template <typename... Action>
internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
Action&&... action) {
- return {std::forward_as_tuple(std::forward<Action>(action)...)};
+ return internal::DoAllAction<typename std::decay<Action>::type...>(
+ {}, std::forward<Action>(action)...);
}
// WithArg<k>(an_action) creates an action that passes the k-th
@@ -1212,8 +1798,8 @@ internal::DoAllAction<typename std::decay<Action>::type...> DoAll(
// multiple arguments. For convenience, we also provide
// WithArgs<k>(an_action) (defined below) as a synonym.
template <size_t k, typename InnerAction>
-internal::WithArgsAction<typename std::decay<InnerAction>::type, k>
-WithArg(InnerAction&& action) {
+internal::WithArgsAction<typename std::decay<InnerAction>::type, k> WithArg(
+ InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
@@ -1232,14 +1818,35 @@ WithArgs(InnerAction&& action) {
// argument. In other words, it adapts an action accepting no
// argument to one that accepts (and ignores) arguments.
template <typename InnerAction>
-internal::WithArgsAction<typename std::decay<InnerAction>::type>
-WithoutArgs(InnerAction&& action) {
+internal::WithArgsAction<typename std::decay<InnerAction>::type> WithoutArgs(
+ InnerAction&& action) {
return {std::forward<InnerAction>(action)};
}
-// Creates an action that returns 'value'. 'value' is passed by value
-// instead of const reference - otherwise Return("string literal")
-// will trigger a compiler error about using array as initializer.
+// Creates an action that returns a value.
+//
+// The returned type can be used with a mock function returning a non-void,
+// non-reference type U as follows:
+//
+// * If R is convertible to U and U is move-constructible, then the action can
+// be used with WillOnce.
+//
+// * If const R& is convertible to U and U is copy-constructible, then the
+// action can be used with both WillOnce and WillRepeatedly.
+//
+// The mock expectation contains the R value from which the U return value is
+// constructed (a move/copy of the argument to Return). This means that the R
+// value will survive at least until the mock object's expectations are cleared
+// or the mock object is destroyed, meaning that U can safely be a
+// reference-like type such as std::string_view:
+//
+// // The mock function returns a view of a copy of the string fed to
+// // Return. The view is valid even after the action is performed.
+// MockFunction<std::string_view()> mock;
+// EXPECT_CALL(mock, Call).WillOnce(Return(std::string("taco")));
+// const std::string_view result = mock.AsStdFunction()();
+// EXPECT_EQ("taco", result);
+//
template <typename R>
internal::ReturnAction<R> Return(R value) {
return internal::ReturnAction<R>(std::move(value));
@@ -1273,6 +1880,8 @@ inline internal::ReturnRefOfCopyAction<R> ReturnRefOfCopy(const R& x) {
return internal::ReturnRefOfCopyAction<R>(x);
}
+// DEPRECATED: use Return(x) directly with WillOnce.
+//
// Modifies the parent action (a Return() action) to perform a move of the
// argument instead of a copy.
// Return(ByMove()) actions can only be executed once and will assert this
@@ -1319,16 +1928,16 @@ internal::SetArgumentPointeeAction<N, T> SetArgumentPointee(T value) {
// Creates an action that sets a pointer referent to a given value.
template <typename T1, typename T2>
-PolymorphicAction<internal::AssignAction<T1, T2> > Assign(T1* ptr, T2 val) {
+PolymorphicAction<internal::AssignAction<T1, T2>> Assign(T1* ptr, T2 val) {
return MakePolymorphicAction(internal::AssignAction<T1, T2>(ptr, val));
}
-#if !GTEST_OS_WINDOWS_MOBILE
+#ifndef GTEST_OS_WINDOWS_MOBILE
// Creates an action that sets errno and returns the appropriate error.
template <typename T>
-PolymorphicAction<internal::SetErrnoAndReturnAction<T> >
-SetErrnoAndReturn(int errval, T result) {
+PolymorphicAction<internal::SetErrnoAndReturnAction<T>> SetErrnoAndReturn(
+ int errval, T result) {
return MakePolymorphicAction(
internal::SetErrnoAndReturnAction<T>(errval, result));
}
@@ -1482,7 +2091,8 @@ struct ExcessiveArg {};
// Builds an implementation of an Action<> for some particular signature, using
// a class defined by an ACTION* macro.
-template <typename F, typename Impl> struct ActionImpl;
+template <typename F, typename Impl>
+struct ActionImpl;
template <typename Impl>
struct ImplBase {
@@ -1502,7 +2112,7 @@ struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
using args_type = std::tuple<Args...>;
ActionImpl() = default; // Only defined if appropriate for Base.
- explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} { }
+ explicit ActionImpl(std::shared_ptr<Impl> impl) : Base{std::move(impl)} {}
R operator()(Args&&... arg) const {
static constexpr size_t kMaxArgs =
@@ -1521,12 +2131,14 @@ struct ActionImpl<R(Args...), Impl> : ImplBase<Impl>::type {
// args_type get passed, followed by a dummy of unspecified type for the
// remainder up to 10 explicit args.
static constexpr ExcessiveArg kExcessArg{};
- return static_cast<const Impl&>(*this).template gmock_PerformImpl<
- /*function_type=*/function_type, /*return_type=*/R,
- /*args_type=*/args_type,
- /*argN_type=*/typename std::tuple_element<arg_id, args_type>::type...>(
- /*args=*/args, std::get<arg_id>(args)...,
- ((void)excess_id, kExcessArg)...);
+ return static_cast<const Impl&>(*this)
+ .template gmock_PerformImpl<
+ /*function_type=*/function_type, /*return_type=*/R,
+ /*args_type=*/args_type,
+ /*argN_type=*/
+ typename std::tuple_element<arg_id, args_type>::type...>(
+ /*args=*/args, std::get<arg_id>(args)...,
+ ((void)excess_id, kExcessArg)...);
}
};
@@ -1545,7 +2157,7 @@ template <typename F, typename Impl>
#define GMOCK_INTERNAL_ARG_UNUSED(i, data, el) \
, const arg##i##_type& arg##i GTEST_ATTRIBUTE_UNUSED_
-#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
+#define GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_ \
const args_type& args GTEST_ATTRIBUTE_UNUSED_ GMOCK_PP_REPEAT( \
GMOCK_INTERNAL_ARG_UNUSED, , 10)
@@ -1584,42 +2196,47 @@ template <typename F, typename Impl>
#define GMOCK_ACTION_FIELD_PARAMS_(params) \
GMOCK_PP_FOR_EACH(GMOCK_INTERNAL_FIELD_PARAM, , params)
-#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
- template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
- class full_name { \
- public: \
- explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
- : impl_(std::make_shared<gmock_Impl>( \
- GMOCK_ACTION_GVALUE_PARAMS_(params))) { } \
- full_name(const full_name&) = default; \
- full_name(full_name&&) noexcept = default; \
- template <typename F> \
- operator ::testing::Action<F>() const { \
- return ::testing::internal::MakeAction<F>(impl_); \
- } \
- private: \
- class gmock_Impl { \
- public: \
- explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
- : GMOCK_ACTION_INIT_PARAMS_(params) {} \
- template <typename function_type, typename return_type, \
- typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
- return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
- GMOCK_ACTION_FIELD_PARAMS_(params) \
- }; \
- std::shared_ptr<const gmock_Impl> impl_; \
- }; \
- template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
- inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
- GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
- return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
- GMOCK_ACTION_GVALUE_PARAMS_(params)); \
- } \
- template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
- template <typename function_type, typename return_type, typename args_type, \
- GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
- return_type full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl:: \
- gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
+#define GMOCK_INTERNAL_ACTION(name, full_name, params) \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ class full_name { \
+ public: \
+ explicit full_name(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
+ : impl_(std::make_shared<gmock_Impl>( \
+ GMOCK_ACTION_GVALUE_PARAMS_(params))) {} \
+ full_name(const full_name&) = default; \
+ full_name(full_name&&) noexcept = default; \
+ template <typename F> \
+ operator ::testing::Action<F>() const { \
+ return ::testing::internal::MakeAction<F>(impl_); \
+ } \
+ \
+ private: \
+ class gmock_Impl { \
+ public: \
+ explicit gmock_Impl(GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) \
+ : GMOCK_ACTION_INIT_PARAMS_(params) {} \
+ template <typename function_type, typename return_type, \
+ typename args_type, GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type gmock_PerformImpl(GMOCK_ACTION_ARG_TYPES_AND_NAMES_) const; \
+ GMOCK_ACTION_FIELD_PARAMS_(params) \
+ }; \
+ std::shared_ptr<const gmock_Impl> impl_; \
+ }; \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
+ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) GTEST_MUST_USE_RESULT_; \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ inline full_name<GMOCK_ACTION_TYPE_PARAMS_(params)> name( \
+ GMOCK_ACTION_TYPE_GVALUE_PARAMS_(params)) { \
+ return full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>( \
+ GMOCK_ACTION_GVALUE_PARAMS_(params)); \
+ } \
+ template <GMOCK_ACTION_TYPENAME_PARAMS_(params)> \
+ template <typename function_type, typename return_type, typename args_type, \
+ GMOCK_ACTION_TEMPLATE_ARGS_NAMES_> \
+ return_type \
+ full_name<GMOCK_ACTION_TYPE_PARAMS_(params)>::gmock_Impl::gmock_PerformImpl( \
+ GMOCK_ACTION_ARG_TYPES_AND_NAMES_UNUSED_) const
} // namespace internal
@@ -1627,12 +2244,13 @@ template <typename F, typename Impl>
#define ACTION(name) \
class name##Action { \
public: \
- explicit name##Action() noexcept {} \
- name##Action(const name##Action&) noexcept {} \
+ explicit name##Action() noexcept {} \
+ name##Action(const name##Action&) noexcept {} \
template <typename F> \
operator ::testing::Action<F>() const { \
return ::testing::internal::MakeAction<F, gmock_Impl>(); \
} \
+ \
private: \
class gmock_Impl { \
public: \
@@ -1680,8 +2298,6 @@ template <typename F, typename Impl>
} // namespace testing
-#ifdef _MSC_VER
-# pragma warning(pop)
-#endif
+GTEST_DISABLE_MSC_WARNINGS_POP_() // 4100
#endif // GOOGLEMOCK_INCLUDE_GMOCK_GMOCK_ACTIONS_H_