aboutsummaryrefslogtreecommitdiff
path: root/test/cpp/microbenchmarks/bm_threadpool.cc
blob: b65efae0a399a43eb7e083021dadb42f0d86fefd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*
 *
 * Copyright 2019 gRPC authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 */

#include <condition_variable>
#include <mutex>

#include <benchmark/benchmark.h>

#include <grpc/grpc.h>

#include "src/core/lib/iomgr/executor/threadpool.h"
#include "test/core/util/test_config.h"
#include "test/cpp/microbenchmarks/helpers.h"
#include "test/cpp/util/test_config.h"

namespace grpc {
namespace testing {

// This helper class allows a thread to block for a pre-specified number of
// actions. BlockingCounter has an initial non-negative count on initialization.
// Each call to DecrementCount will decrease the count by 1. When making a call
// to Wait, if the count is greater than 0, the thread will be blocked, until
// the count reaches 0.
class BlockingCounter {
 public:
  explicit BlockingCounter(int count) : count_(count) {}
  void DecrementCount() {
    std::lock_guard<std::mutex> l(mu_);
    count_--;
    if (count_ == 0) cv_.notify_all();
  }

  void Wait() {
    std::unique_lock<std::mutex> l(mu_);
    while (count_ > 0) {
      cv_.wait(l);
    }
  }

 private:
  int count_;
  std::mutex mu_;
  std::condition_variable cv_;
};

// This is a functor/closure class for threadpool microbenchmark.
// This functor (closure) class will add another functor into pool if the
// number passed in (num_add) is greater than 0. Otherwise, it will decrement
// the counter to indicate that task is finished. This functor will suicide at
// the end, therefore, no need for caller to do clean-ups.
class AddAnotherFunctor : public grpc_completion_queue_functor {
 public:
  AddAnotherFunctor(grpc_core::ThreadPool* pool, BlockingCounter* counter,
                    int num_add)
      : pool_(pool), counter_(counter), num_add_(num_add) {
    functor_run = &AddAnotherFunctor::Run;
    inlineable = false;
    internal_next = this;
    internal_success = 0;
  }
  // When the functor gets to run in thread pool, it will take itself as first
  // argument and internal_success as second one.
  static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
    auto* callback = static_cast<AddAnotherFunctor*>(cb);
    if (--callback->num_add_ > 0) {
      callback->pool_->Add(new AddAnotherFunctor(
          callback->pool_, callback->counter_, callback->num_add_));
    } else {
      callback->counter_->DecrementCount();
    }
    // Suicides.
    delete callback;
  }

 private:
  grpc_core::ThreadPool* pool_;
  BlockingCounter* counter_;
  int num_add_;
};

template <int kConcurrentFunctor>
static void ThreadPoolAddAnother(benchmark::State& state) {
  const int num_iterations = state.range(0);
  const int num_threads = state.range(1);
  // Number of adds done by each closure.
  const int num_add = num_iterations / kConcurrentFunctor;
  grpc_core::ThreadPool pool(num_threads);
  while (state.KeepRunningBatch(num_iterations)) {
    BlockingCounter counter(kConcurrentFunctor);
    for (int i = 0; i < kConcurrentFunctor; ++i) {
      pool.Add(new AddAnotherFunctor(&pool, &counter, num_add));
    }
    counter.Wait();
  }
  state.SetItemsProcessed(state.iterations());
}

// First pair of arguments is range for number of iterations (num_iterations).
// Second pair of arguments is range for thread pool size (num_threads).
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 1)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 4)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 8)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 16)
    ->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 32)
    ->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 64)
    ->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 128)
    ->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 512)
    ->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddAnother, 2048)
    ->RangePair(524288, 524288, 1, 1024);

// A functor class that will delete self on end of running.
class SuicideFunctorForAdd : public grpc_completion_queue_functor {
 public:
  explicit SuicideFunctorForAdd(BlockingCounter* counter) : counter_(counter) {
    functor_run = &SuicideFunctorForAdd::Run;
    inlineable = false;
    internal_next = this;
    internal_success = 0;
  }

  static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
    // On running, the first argument would be itself.
    auto* callback = static_cast<SuicideFunctorForAdd*>(cb);
    callback->counter_->DecrementCount();
    delete callback;
  }

 private:
  BlockingCounter* counter_;
};

// Performs the scenario of external thread(s) adding closures into pool.
static void BM_ThreadPoolExternalAdd(benchmark::State& state) {
  static grpc_core::ThreadPool* external_add_pool = nullptr;
  int thread_idx = state.thread_index();
  // Setup for each run of test.
  if (thread_idx == 0) {
    const int num_threads = state.range(1);
    external_add_pool = new grpc_core::ThreadPool(num_threads);
  }
  const int num_iterations = state.range(0) / state.threads();
  while (state.KeepRunningBatch(num_iterations)) {
    BlockingCounter counter(num_iterations);
    for (int i = 0; i < num_iterations; ++i) {
      external_add_pool->Add(new SuicideFunctorForAdd(&counter));
    }
    counter.Wait();
  }

  // Teardown at the end of each test run.
  if (thread_idx == 0) {
    state.SetItemsProcessed(state.range(0));
    delete external_add_pool;
  }
}
BENCHMARK(BM_ThreadPoolExternalAdd)
    // First pair is range for number of iterations (num_iterations).
    // Second pair is range for thread pool size (num_threads).
    ->RangePair(524288, 524288, 1, 1024)
    ->ThreadRange(1, 256);  // Concurrent external thread(s) up to 256

// Functor (closure) that adds itself into pool repeatedly. By adding self, the
// overhead would be low and can measure the time of add more accurately.
class AddSelfFunctor : public grpc_completion_queue_functor {
 public:
  AddSelfFunctor(grpc_core::ThreadPool* pool, BlockingCounter* counter,
                 int num_add)
      : pool_(pool), counter_(counter), num_add_(num_add) {
    functor_run = &AddSelfFunctor::Run;
    inlineable = false;
    internal_next = this;
    internal_success = 0;
  }
  // When the functor gets to run in thread pool, it will take itself as first
  // argument and internal_success as second one.
  static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
    auto* callback = static_cast<AddSelfFunctor*>(cb);
    if (--callback->num_add_ > 0) {
      callback->pool_->Add(cb);
    } else {
      callback->counter_->DecrementCount();
      // Suicides.
      delete callback;
    }
  }

 private:
  grpc_core::ThreadPool* pool_;
  BlockingCounter* counter_;
  int num_add_;
};

template <int kConcurrentFunctor>
static void ThreadPoolAddSelf(benchmark::State& state) {
  const int num_iterations = state.range(0);
  const int num_threads = state.range(1);
  // Number of adds done by each closure.
  const int num_add = num_iterations / kConcurrentFunctor;
  grpc_core::ThreadPool pool(num_threads);
  while (state.KeepRunningBatch(num_iterations)) {
    BlockingCounter counter(kConcurrentFunctor);
    for (int i = 0; i < kConcurrentFunctor; ++i) {
      pool.Add(new AddSelfFunctor(&pool, &counter, num_add));
    }
    counter.Wait();
  }
  state.SetItemsProcessed(state.iterations());
}

// First pair of arguments is range for number of iterations (num_iterations).
// Second pair of arguments is range for thread pool size (num_threads).
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 1)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 4)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 8)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 16)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 32)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 64)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 128)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 512)->RangePair(524288, 524288, 1, 1024);
BENCHMARK_TEMPLATE(ThreadPoolAddSelf, 2048)->RangePair(524288, 524288, 1, 1024);

#if defined(__GNUC__) && !defined(SWIG)
#if defined(__i386__) || defined(__x86_64__)
#define CACHELINE_SIZE 64
#elif defined(__powerpc64__)
#define CACHELINE_SIZE 128
#elif defined(__aarch64__)
#define CACHELINE_SIZE 64
#elif defined(__arm__)
#if defined(__ARM_ARCH_5T__)
#define CACHELINE_SIZE 32
#elif defined(__ARM_ARCH_7A__)
#define CACHELINE_SIZE 64
#endif
#endif
#ifndef CACHELINE_SIZE
#define CACHELINE_SIZE 64
#endif
#endif

// A functor (closure) that simulates closures with small but non-trivial amount
// of work.
class ShortWorkFunctorForAdd : public grpc_completion_queue_functor {
 public:
  BlockingCounter* counter_;

  ShortWorkFunctorForAdd() {
    functor_run = &ShortWorkFunctorForAdd::Run;
    inlineable = false;
    internal_next = this;
    internal_success = 0;
    val_ = 0;
  }
  static void Run(grpc_completion_queue_functor* cb, int /*ok*/) {
    auto* callback = static_cast<ShortWorkFunctorForAdd*>(cb);
    // Uses pad to avoid compiler complaining unused variable error.
    callback->pad[0] = 0;
    for (int i = 0; i < 1000; ++i) {
      callback->val_++;
    }
    callback->counter_->DecrementCount();
  }

 private:
  char pad[CACHELINE_SIZE];
  volatile int val_;
};

// Simulates workloads where many short running callbacks are added to the
// threadpool. The callbacks are not enough to keep all the workers busy
// continuously so the number of workers running changes overtime.
//
// In effect this tests how well the threadpool avoids spurious wakeups.
static void BM_SpikyLoad(benchmark::State& state) {
  const int num_threads = state.range(0);

  const int kNumSpikes = 1000;
  const int batch_size = 3 * num_threads;
  std::vector<ShortWorkFunctorForAdd> work_vector(batch_size);
  grpc_core::ThreadPool pool(num_threads);
  while (state.KeepRunningBatch(kNumSpikes * batch_size)) {
    for (int i = 0; i != kNumSpikes; ++i) {
      BlockingCounter counter(batch_size);
      for (auto& w : work_vector) {
        w.counter_ = &counter;
        pool.Add(&w);
      }
      counter.Wait();
    }
  }
  state.SetItemsProcessed(state.iterations() * batch_size);
}
BENCHMARK(BM_SpikyLoad)->Arg(1)->Arg(2)->Arg(4)->Arg(8)->Arg(16);

}  // namespace testing
}  // namespace grpc

// Some distros have RunSpecifiedBenchmarks under the benchmark namespace,
// and others do not. This allows us to support both modes.
namespace benchmark {
void RunTheBenchmarksNamespaced() { RunSpecifiedBenchmarks(); }
}  // namespace benchmark

int main(int argc, char* argv[]) {
  grpc::testing::TestEnvironment env(argc, argv);
  LibraryInitializer libInit;
  ::benchmark::Initialize(&argc, argv);
  ::grpc::testing::InitTest(&argc, &argv, false);
  benchmark::RunTheBenchmarksNamespaced();
  return 0;
}