aboutsummaryrefslogtreecommitdiff
path: root/src/share/vm/opto/callnode.hpp
blob: fa775de846c89ea7a0d8a96602afa19b263bc567 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/*
 * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
 * CA 95054 USA or visit www.sun.com if you need additional information or
 * have any questions.
 *
 */

// Portions of code courtesy of Clifford Click

// Optimization - Graph Style

class Chaitin;
class NamedCounter;
class MultiNode;
class  SafePointNode;
class   CallNode;
class     CallJavaNode;
class       CallStaticJavaNode;
class       CallDynamicJavaNode;
class     CallRuntimeNode;
class       CallLeafNode;
class         CallLeafNoFPNode;
class     AllocateNode;
class       AllocateArrayNode;
class     LockNode;
class     UnlockNode;
class JVMState;
class OopMap;
class State;
class StartNode;
class MachCallNode;
class FastLockNode;

//------------------------------StartNode--------------------------------------
// The method start node
class StartNode : public MultiNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  const TypeTuple *_domain;
  StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
    init_class_id(Class_Start);
    init_flags(Flag_is_block_start);
    init_req(0,this);
    init_req(1,root);
  }
  virtual int Opcode() const;
  virtual bool pinned() const { return true; };
  virtual const Type *bottom_type() const;
  virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  virtual const RegMask &in_RegMask(uint) const;
  virtual Node *match( const ProjNode *proj, const Matcher *m );
  virtual uint ideal_reg() const { return 0; }
#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------StartOSRNode-----------------------------------
// The method start node for on stack replacement code
class StartOSRNode : public StartNode {
public:
  StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  virtual int   Opcode() const;
  static  const TypeTuple *osr_domain();
};


//------------------------------ParmNode---------------------------------------
// Incoming parameters
class ParmNode : public ProjNode {
  static const char * const names[TypeFunc::Parms+1];
public:
  ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
    init_class_id(Class_Parm);
  }
  virtual int Opcode() const;
  virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
  virtual uint ideal_reg() const;
#ifndef PRODUCT
  virtual void dump_spec(outputStream *st) const;
#endif
};


//------------------------------ReturnNode-------------------------------------
// Return from subroutine node
class ReturnNode : public Node {
public:
  ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
  virtual int Opcode() const;
  virtual bool  is_CFG() const { return true; }
  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
  virtual bool depends_only_on_test() const { return false; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
  virtual uint match_edge(uint idx) const;
#ifndef PRODUCT
  virtual void dump_req() const;
#endif
};


//------------------------------RethrowNode------------------------------------
// Rethrow of exception at call site.  Ends a procedure before rethrowing;
// ends the current basic block like a ReturnNode.  Restores registers and
// unwinds stack.  Rethrow happens in the caller's method.
class RethrowNode : public Node {
 public:
  RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
  virtual int Opcode() const;
  virtual bool  is_CFG() const { return true; }
  virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
  virtual bool depends_only_on_test() const { return false; }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual uint match_edge(uint idx) const;
  virtual uint ideal_reg() const { return NotAMachineReg; }
#ifndef PRODUCT
  virtual void dump_req() const;
#endif
};


//------------------------------TailCallNode-----------------------------------
// Pop stack frame and jump indirect
class TailCallNode : public ReturnNode {
public:
  TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
    : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
    init_req(TypeFunc::Parms, target);
    init_req(TypeFunc::Parms+1, moop);
  }

  virtual int Opcode() const;
  virtual uint match_edge(uint idx) const;
};

//------------------------------TailJumpNode-----------------------------------
// Pop stack frame and jump indirect
class TailJumpNode : public ReturnNode {
public:
  TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
    : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
    init_req(TypeFunc::Parms, target);
    init_req(TypeFunc::Parms+1, ex_oop);
  }

  virtual int Opcode() const;
  virtual uint match_edge(uint idx) const;
};

//-------------------------------JVMState-------------------------------------
// A linked list of JVMState nodes captures the whole interpreter state,
// plus GC roots, for all active calls at some call site in this compilation
// unit.  (If there is no inlining, then the list has exactly one link.)
// This provides a way to map the optimized program back into the interpreter,
// or to let the GC mark the stack.
class JVMState : public ResourceObj {
private:
  JVMState*         _caller;    // List pointer for forming scope chains
  uint              _depth;     // One mroe than caller depth, or one.
  uint              _locoff;    // Offset to locals in input edge mapping
  uint              _stkoff;    // Offset to stack in input edge mapping
  uint              _monoff;    // Offset to monitors in input edge mapping
  uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
  uint              _endoff;    // Offset to end of input edge mapping
  uint              _sp;        // Jave Expression Stack Pointer for this state
  int               _bci;       // Byte Code Index of this JVM point
  ciMethod*         _method;    // Method Pointer
  SafePointNode*    _map;       // Map node associated with this scope
public:
  friend class Compile;

  // Because JVMState objects live over the entire lifetime of the
  // Compile object, they are allocated into the comp_arena, which
  // does not get resource marked or reset during the compile process
  void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
  void operator delete( void * ) { } // fast deallocation

  // Create a new JVMState, ready for abstract interpretation.
  JVMState(ciMethod* method, JVMState* caller);
  JVMState(int stack_size);  // root state; has a null method

  // Access functions for the JVM
  uint              locoff() const { return _locoff; }
  uint              stkoff() const { return _stkoff; }
  uint              argoff() const { return _stkoff + _sp; }
  uint              monoff() const { return _monoff; }
  uint              scloff() const { return _scloff; }
  uint              endoff() const { return _endoff; }
  uint              oopoff() const { return debug_end(); }

  int            loc_size() const { return _stkoff - _locoff; }
  int            stk_size() const { return _monoff - _stkoff; }
  int            mon_size() const { return _scloff - _monoff; }
  int            scl_size() const { return _endoff - _scloff; }

  bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
  bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
  bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
  bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }

  uint              sp()     const { return _sp; }
  int               bci()    const { return _bci; }
  bool          has_method() const { return _method != NULL; }
  ciMethod*         method() const { assert(has_method(), ""); return _method; }
  JVMState*         caller() const { return _caller; }
  SafePointNode*    map()    const { return _map; }
  uint              depth()  const { return _depth; }
  uint        debug_start()  const; // returns locoff of root caller
  uint        debug_end()    const; // returns endoff of self
  uint        debug_size()   const {
    return loc_size() + sp() + mon_size() + scl_size();
  }
  uint        debug_depth()  const; // returns sum of debug_size values at all depths

  // Returns the JVM state at the desired depth (1 == root).
  JVMState* of_depth(int d) const;

  // Tells if two JVM states have the same call chain (depth, methods, & bcis).
  bool same_calls_as(const JVMState* that) const;

  // Monitors (monitors are stored as (boxNode, objNode) pairs
  enum { logMonitorEdges = 1 };
  int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
  int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
  int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
  int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
  bool is_monitor_box(uint off)    const {
    assert(is_mon(off), "should be called only for monitor edge");
    return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
  }
  bool is_monitor_use(uint off)    const { return (is_mon(off)
                                                   && is_monitor_box(off))
                                             || (caller() && caller()->is_monitor_use(off)); }

  // Initialization functions for the JVM
  void              set_locoff(uint off) { _locoff = off; }
  void              set_stkoff(uint off) { _stkoff = off; }
  void              set_monoff(uint off) { _monoff = off; }
  void              set_scloff(uint off) { _scloff = off; }
  void              set_endoff(uint off) { _endoff = off; }
  void              set_offsets(uint off) {
    _locoff = _stkoff = _monoff = _scloff = _endoff = off;
  }
  void              set_map(SafePointNode *map) { _map = map; }
  void              set_sp(uint sp) { _sp = sp; }
  void              set_bci(int bci) { _bci = bci; }

  // Miscellaneous utility functions
  JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
  JVMState* clone_shallow(Compile* C) const; // retains uncloned caller

#ifndef PRODUCT
  void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
  void      dump_spec(outputStream *st) const;
  void      dump_on(outputStream* st) const;
  void      dump() const {
    dump_on(tty);
  }
#endif
};

//------------------------------SafePointNode----------------------------------
// A SafePointNode is a subclass of a MultiNode for convenience (and
// potential code sharing) only - conceptually it is independent of
// the Node semantics.
class SafePointNode : public MultiNode {
  virtual uint           cmp( const Node &n ) const;
  virtual uint           size_of() const;       // Size is bigger

public:
  SafePointNode(uint edges, JVMState* jvms,
                // A plain safepoint advertises no memory effects (NULL):
                const TypePtr* adr_type = NULL)
    : MultiNode( edges ),
      _jvms(jvms),
      _oop_map(NULL),
      _adr_type(adr_type)
  {
    init_class_id(Class_SafePoint);
  }

  OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
  JVMState* const _jvms;      // Pointer to list of JVM State objects
  const TypePtr*  _adr_type;  // What type of memory does this node produce?

  // Many calls take *all* of memory as input,
  // but some produce a limited subset of that memory as output.
  // The adr_type reports the call's behavior as a store, not a load.

  virtual JVMState* jvms() const { return _jvms; }
  void set_jvms(JVMState* s) {
    *(JVMState**)&_jvms = s;  // override const attribute in the accessor
  }
  OopMap *oop_map() const { return _oop_map; }
  void set_oop_map(OopMap *om) { _oop_map = om; }

  // Functionality from old debug nodes which has changed
  Node *local(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(jvms->locoff() + idx);
  }
  Node *stack(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(jvms->stkoff() + idx);
  }
  Node *argument(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(jvms->argoff() + idx);
  }
  Node *monitor_box(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(jvms->monitor_box_offset(idx));
  }
  Node *monitor_obj(JVMState* jvms, uint idx) const {
    assert(verify_jvms(jvms), "jvms must match");
    return in(jvms->monitor_obj_offset(idx));
  }

  void  set_local(JVMState* jvms, uint idx, Node *c);

  void  set_stack(JVMState* jvms, uint idx, Node *c) {
    assert(verify_jvms(jvms), "jvms must match");
    set_req(jvms->stkoff() + idx, c);
  }
  void  set_argument(JVMState* jvms, uint idx, Node *c) {
    assert(verify_jvms(jvms), "jvms must match");
    set_req(jvms->argoff() + idx, c);
  }
  void ensure_stack(JVMState* jvms, uint stk_size) {
    assert(verify_jvms(jvms), "jvms must match");
    int grow_by = (int)stk_size - (int)jvms->stk_size();
    if (grow_by > 0)  grow_stack(jvms, grow_by);
  }
  void grow_stack(JVMState* jvms, uint grow_by);
  // Handle monitor stack
  void push_monitor( const FastLockNode *lock );
  void pop_monitor ();
  Node *peek_monitor_box() const;
  Node *peek_monitor_obj() const;

  // Access functions for the JVM
  Node *control  () const { return in(TypeFunc::Control  ); }
  Node *i_o      () const { return in(TypeFunc::I_O      ); }
  Node *memory   () const { return in(TypeFunc::Memory   ); }
  Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
  Node *frameptr () const { return in(TypeFunc::FramePtr ); }

  void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
  void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
  void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }

  MergeMemNode* merged_memory() const {
    return in(TypeFunc::Memory)->as_MergeMem();
  }

  // The parser marks useless maps as dead when it's done with them:
  bool is_killed() { return in(TypeFunc::Control) == NULL; }

  // Exception states bubbling out of subgraphs such as inlined calls
  // are recorded here.  (There might be more than one, hence the "next".)
  // This feature is used only for safepoints which serve as "maps"
  // for JVM states during parsing, intrinsic expansion, etc.
  SafePointNode*         next_exception() const;
  void               set_next_exception(SafePointNode* n);
  bool                   has_exceptions() const { return next_exception() != NULL; }

  // Standard Node stuff
  virtual int            Opcode() const;
  virtual bool           pinned() const { return true; }
  virtual const Type    *Value( PhaseTransform *phase ) const;
  virtual const Type    *bottom_type() const { return Type::CONTROL; }
  virtual const TypePtr *adr_type() const { return _adr_type; }
  virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
  virtual Node          *Identity( PhaseTransform *phase );
  virtual uint           ideal_reg() const { return 0; }
  virtual const RegMask &in_RegMask(uint) const;
  virtual const RegMask &out_RegMask() const;
  virtual uint           match_edge(uint idx) const;

  static  bool           needs_polling_address_input();

#ifndef PRODUCT
  virtual void              dump_spec(outputStream *st) const;
#endif
};

//------------------------------SafePointScalarObjectNode----------------------
// A SafePointScalarObjectNode represents the state of a scalarized object
// at a safepoint.

class SafePointScalarObjectNode: public TypeNode {
  uint _first_index; // First input edge index of a SafePoint node where
                     // states of the scalarized object fields are collected.
  uint _n_fields;    // Number of non-static fields of the scalarized object.
  DEBUG_ONLY(AllocateNode* _alloc;)
public:
  SafePointScalarObjectNode(const TypeOopPtr* tp,
#ifdef ASSERT
                            AllocateNode* alloc,
#endif
                            uint first_index, uint n_fields);
  virtual int Opcode() const;
  virtual uint           ideal_reg() const;
  virtual const RegMask &in_RegMask(uint) const;
  virtual const RegMask &out_RegMask() const;
  virtual uint           match_edge(uint idx) const;

  uint first_index() const { return _first_index; }
  uint n_fields()    const { return _n_fields; }
  DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })

  // SafePointScalarObject should be always pinned to the control edge
  // of the SafePoint node for which it was generated.
  virtual bool pinned() const; // { return true; }

  // SafePointScalarObject depends on the SafePoint node
  // for which it was generated.
  virtual bool depends_only_on_test() const; // { return false; }

  virtual uint size_of() const { return sizeof(*this); }

  // Assumes that "this" is an argument to a safepoint node "s", and that
  // "new_call" is being created to correspond to "s".  But the difference
  // between the start index of the jvmstates of "new_call" and "s" is
  // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
  // corresponds appropriately to "this" in "new_call".  Assumes that
  // "sosn_map" is a map, specific to the translation of "s" to "new_call",
  // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
  SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;

#ifndef PRODUCT
  virtual void              dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallNode---------------------------------------
// Call nodes now subsume the function of debug nodes at callsites, so they
// contain the functionality of a full scope chain of debug nodes.
class CallNode : public SafePointNode {
public:
  const TypeFunc *_tf;        // Function type
  address      _entry_point;  // Address of method being called
  float        _cnt;          // Estimate of number of times called

  CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
    : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
      _tf(tf),
      _entry_point(addr),
      _cnt(COUNT_UNKNOWN)
  {
    init_class_id(Class_Call);
    init_flags(Flag_is_Call);
  }

  const TypeFunc* tf()        const { return _tf; }
  const address entry_point() const { return _entry_point; }
  const float   cnt()         const { return _cnt; }

  void set_tf(const TypeFunc* tf) { _tf = tf; }
  void set_entry_point(address p) { _entry_point = p; }
  void set_cnt(float c)           { _cnt = c; }

  virtual const Type *bottom_type() const;
  virtual const Type *Value( PhaseTransform *phase ) const;
  virtual Node *Identity( PhaseTransform *phase ) { return this; }
  virtual uint        cmp( const Node &n ) const;
  virtual uint        size_of() const = 0;
  virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
  virtual Node       *match( const ProjNode *proj, const Matcher *m );
  virtual uint        ideal_reg() const { return NotAMachineReg; }
  // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
  // for some macro nodes whose expansion does not have a safepoint on the fast path.
  virtual bool        guaranteed_safepoint()  { return true; }
  // For macro nodes, the JVMState gets modified during expansion, so when cloning
  // the node the JVMState must be cloned.
  virtual void        clone_jvms() { }   // default is not to clone

  // Returns true if the call may modify n
  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
  // Does this node have a use of n other than in debug information?
  bool                has_non_debug_use(Node *n);
  // Returns the unique CheckCastPP of a call
  // or result projection is there are several CheckCastPP
  // or returns NULL if there is no one.
  Node *result_cast();

  virtual uint match_edge(uint idx) const;

#ifndef PRODUCT
  virtual void        dump_req()  const;
  virtual void        dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallJavaNode-----------------------------------
// Make a static or dynamic subroutine call node using Java calling
// convention.  (The "Java" calling convention is the compiler's calling
// convention, as opposed to the interpreter's or that of native C.)
class CallJavaNode : public CallNode {
protected:
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger

  bool    _optimized_virtual;
  ciMethod* _method;            // Method being direct called
public:
  const int       _bci;         // Byte Code Index of call byte code
  CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
    : CallNode(tf, addr, TypePtr::BOTTOM),
      _method(method), _bci(bci), _optimized_virtual(false)
  {
    init_class_id(Class_CallJava);
  }

  virtual int   Opcode() const;
  ciMethod* method() const                { return _method; }
  void  set_method(ciMethod *m)           { _method = m; }
  void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
  bool  is_optimized_virtual() const      { return _optimized_virtual; }

#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallStaticJavaNode-----------------------------
// Make a direct subroutine call using Java calling convention (for static
// calls and optimized virtual calls, plus calls to wrappers for run-time
// routines); generates static stub.
class CallStaticJavaNode : public CallJavaNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
    : CallJavaNode(tf, addr, method, bci), _name(NULL) {
    init_class_id(Class_CallStaticJava);
  }
  CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
                     const TypePtr* adr_type)
    : CallJavaNode(tf, addr, NULL, bci), _name(name) {
    init_class_id(Class_CallStaticJava);
    // This node calls a runtime stub, which often has narrow memory effects.
    _adr_type = adr_type;
  }
  const char *_name;            // Runtime wrapper name

  // If this is an uncommon trap, return the request code, else zero.
  int uncommon_trap_request() const;
  static int extract_uncommon_trap_request(const Node* call);

  virtual int         Opcode() const;
#ifndef PRODUCT
  virtual void        dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallDynamicJavaNode----------------------------
// Make a dispatched call using Java calling convention.
class CallDynamicJavaNode : public CallJavaNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
    init_class_id(Class_CallDynamicJava);
  }

  int _vtable_index;
  virtual int   Opcode() const;
#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallRuntimeNode--------------------------------
// Make a direct subroutine call node into compiled C++ code.
class CallRuntimeNode : public CallNode {
  virtual uint cmp( const Node &n ) const;
  virtual uint size_of() const; // Size is bigger
public:
  CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
                  const TypePtr* adr_type)
    : CallNode(tf, addr, adr_type),
      _name(name)
  {
    init_class_id(Class_CallRuntime);
  }

  const char *_name;            // Printable name, if _method is NULL
  virtual int   Opcode() const;
  virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;

#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallLeafNode-----------------------------------
// Make a direct subroutine call node into compiled C++ code, without
// safepoints
class CallLeafNode : public CallRuntimeNode {
public:
  CallLeafNode(const TypeFunc* tf, address addr, const char* name,
               const TypePtr* adr_type)
    : CallRuntimeNode(tf, addr, name, adr_type)
  {
    init_class_id(Class_CallLeaf);
  }
  virtual int   Opcode() const;
  virtual bool        guaranteed_safepoint()  { return false; }
#ifndef PRODUCT
  virtual void  dump_spec(outputStream *st) const;
#endif
};

//------------------------------CallLeafNoFPNode-------------------------------
// CallLeafNode, not using floating point or using it in the same manner as
// the generated code
class CallLeafNoFPNode : public CallLeafNode {
public:
  CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
                   const TypePtr* adr_type)
    : CallLeafNode(tf, addr, name, adr_type)
  {
  }
  virtual int   Opcode() const;
};


//------------------------------Allocate---------------------------------------
// High-level memory allocation
//
//  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
//  get expanded into a code sequence containing a call.  Unlike other CallNodes,
//  they have 2 memory projections and 2 i_o projections (which are distinguished by
//  the _is_io_use flag in the projection.)  This is needed when expanding the node in
//  order to differentiate the uses of the projection on the normal control path from
//  those on the exception return path.
//
class AllocateNode : public CallNode {
public:
  enum {
    // Output:
    RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
    // Inputs:
    AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
    KlassNode,                        // type (maybe dynamic) of the obj.
    InitialTest,                      // slow-path test (may be constant)
    ALength,                          // array length (or TOP if none)
    ParmLimit
  };

  static const TypeFunc* alloc_type() {
    const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
    fields[AllocSize]   = TypeInt::POS;
    fields[KlassNode]   = TypeInstPtr::NOTNULL;
    fields[InitialTest] = TypeInt::BOOL;
    fields[ALength]     = TypeInt::INT;  // length (can be a bad length)

    const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);

    // create result type (range)
    fields = TypeTuple::fields(1);
    fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop

    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);

    return TypeFunc::make(domain, range);
  }

  bool _is_scalar_replaceable;  // Result of Escape Analysis

  virtual uint size_of() const; // Size is bigger
  AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
               Node *size, Node *klass_node, Node *initial_test);
  // Expansion modifies the JVMState, so we need to clone it
  virtual void  clone_jvms() {
    set_jvms(jvms()->clone_deep(Compile::current()));
  }
  virtual int Opcode() const;
  virtual uint ideal_reg() const { return Op_RegP; }
  virtual bool        guaranteed_safepoint()  { return false; }

  // allocations do not modify their arguments
  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}

  // Pattern-match a possible usage of AllocateNode.
  // Return null if no allocation is recognized.
  // The operand is the pointer produced by the (possible) allocation.
  // It must be a projection of the Allocate or its subsequent CastPP.
  // (Note:  This function is defined in file graphKit.cpp, near
  // GraphKit::new_instance/new_array, whose output it recognizes.)
  // The 'ptr' may not have an offset unless the 'offset' argument is given.
  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);

  // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
  // an offset, which is reported back to the caller.
  // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
  static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
                                        intptr_t& offset);

  // Dig the klass operand out of a (possible) allocation site.
  static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
    AllocateNode* allo = Ideal_allocation(ptr, phase);
    return (allo == NULL) ? NULL : allo->in(KlassNode);
  }

  // Conservatively small estimate of offset of first non-header byte.
  int minimum_header_size() {
    return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
                                instanceOopDesc::base_offset_in_bytes();
  }

  // Return the corresponding initialization barrier (or null if none).
  // Walks out edges to find it...
  // (Note: Both InitializeNode::allocation and AllocateNode::initialization
  // are defined in graphKit.cpp, which sets up the bidirectional relation.)
  InitializeNode* initialization();

  // Convenience for initialization->maybe_set_complete(phase)
  bool maybe_set_complete(PhaseGVN* phase);
};

//------------------------------AllocateArray---------------------------------
//
// High-level array allocation
//
class AllocateArrayNode : public AllocateNode {
public:
  AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
                    Node* size, Node* klass_node, Node* initial_test,
                    Node* count_val
                    )
    : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
                   initial_test)
  {
    init_class_id(Class_AllocateArray);
    set_req(AllocateNode::ALength,        count_val);
  }
  virtual int Opcode() const;
  virtual uint size_of() const; // Size is bigger
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);

  // Dig the length operand out of a array allocation site.
  Node* Ideal_length() {
    return in(AllocateNode::ALength);
  }

  // Dig the length operand out of a array allocation site and narrow the
  // type with a CastII, if necesssary
  Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);

  // Pattern-match a possible usage of AllocateArrayNode.
  // Return null if no allocation is recognized.
  static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
    AllocateNode* allo = Ideal_allocation(ptr, phase);
    return (allo == NULL || !allo->is_AllocateArray())
           ? NULL : allo->as_AllocateArray();
  }
};

//------------------------------AbstractLockNode-----------------------------------
class AbstractLockNode: public CallNode {
private:
  bool _eliminate;    // indicates this lock can be safely eliminated
  bool _coarsened;    // indicates this lock was coarsened
#ifndef PRODUCT
  NamedCounter* _counter;
#endif

protected:
  // helper functions for lock elimination
  //

  bool find_matching_unlock(const Node* ctrl, LockNode* lock,
                            GrowableArray<AbstractLockNode*> &lock_ops);
  bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
                                       GrowableArray<AbstractLockNode*> &lock_ops);
  bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
                               GrowableArray<AbstractLockNode*> &lock_ops);
  LockNode *find_matching_lock(UnlockNode* unlock);


public:
  AbstractLockNode(const TypeFunc *tf)
    : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
      _coarsened(false),
      _eliminate(false)
  {
#ifndef PRODUCT
    _counter = NULL;
#endif
  }
  virtual int Opcode() const = 0;
  Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
  Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
  Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
  const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}

  virtual uint size_of() const { return sizeof(*this); }

  bool is_eliminated()         {return _eliminate; }
  // mark node as eliminated and update the counter if there is one
  void set_eliminated();

  bool is_coarsened()  { return _coarsened; }
  void set_coarsened() { _coarsened = true; }

  // locking does not modify its arguments
  virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}

#ifndef PRODUCT
  void create_lock_counter(JVMState* s);
  NamedCounter* counter() const { return _counter; }
#endif
};

//------------------------------Lock---------------------------------------
// High-level lock operation
//
// This is a subclass of CallNode because it is a macro node which gets expanded
// into a code sequence containing a call.  This node takes 3 "parameters":
//    0  -  object to lock
//    1 -   a BoxLockNode
//    2 -   a FastLockNode
//
class LockNode : public AbstractLockNode {
public:

  static const TypeFunc *lock_type() {
    // create input type (domain)
    const Type **fields = TypeTuple::fields(3);
    fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
    fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
    fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);

    // create result type (range)
    fields = TypeTuple::fields(0);

    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);

    return TypeFunc::make(domain,range);
  }

  virtual int Opcode() const;
  virtual uint size_of() const; // Size is bigger
  LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
    init_class_id(Class_Lock);
    init_flags(Flag_is_macro);
    C->add_macro_node(this);
  }
  virtual bool        guaranteed_safepoint()  { return false; }

  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  // Expansion modifies the JVMState, so we need to clone it
  virtual void  clone_jvms() {
    set_jvms(jvms()->clone_deep(Compile::current()));
  }
};

//------------------------------Unlock---------------------------------------
// High-level unlock operation
class UnlockNode : public AbstractLockNode {
public:
  virtual int Opcode() const;
  virtual uint size_of() const; // Size is bigger
  UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
    init_class_id(Class_Unlock);
    init_flags(Flag_is_macro);
    C->add_macro_node(this);
  }
  virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  // unlock is never a safepoint
  virtual bool        guaranteed_safepoint()  { return false; }
};