aboutsummaryrefslogtreecommitdiff
path: root/src/share/classes/java/math/BigInteger.java
blob: e35c723fdd5f245e5deba59d1c3e41acd00a25cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
/*
 * Copyright (c) 1996, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

/*
 * Portions Copyright (c) 1995  Colin Plumb.  All rights reserved.
 */

package java.math;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.ObjectStreamField;
import java.util.Arrays;
import java.util.Random;
import java.util.concurrent.ThreadLocalRandom;
import sun.misc.DoubleConsts;
import sun.misc.FloatConsts;

/**
 * Immutable arbitrary-precision integers.  All operations behave as if
 * BigIntegers were represented in two's-complement notation (like Java's
 * primitive integer types).  BigInteger provides analogues to all of Java's
 * primitive integer operators, and all relevant methods from java.lang.Math.
 * Additionally, BigInteger provides operations for modular arithmetic, GCD
 * calculation, primality testing, prime generation, bit manipulation,
 * and a few other miscellaneous operations.
 *
 * <p>Semantics of arithmetic operations exactly mimic those of Java's integer
 * arithmetic operators, as defined in <i>The Java Language Specification</i>.
 * For example, division by zero throws an {@code ArithmeticException}, and
 * division of a negative by a positive yields a negative (or zero) remainder.
 * All of the details in the Spec concerning overflow are ignored, as
 * BigIntegers are made as large as necessary to accommodate the results of an
 * operation.
 *
 * <p>Semantics of shift operations extend those of Java's shift operators
 * to allow for negative shift distances.  A right-shift with a negative
 * shift distance results in a left shift, and vice-versa.  The unsigned
 * right shift operator ({@code >>>}) is omitted, as this operation makes
 * little sense in combination with the "infinite word size" abstraction
 * provided by this class.
 *
 * <p>Semantics of bitwise logical operations exactly mimic those of Java's
 * bitwise integer operators.  The binary operators ({@code and},
 * {@code or}, {@code xor}) implicitly perform sign extension on the shorter
 * of the two operands prior to performing the operation.
 *
 * <p>Comparison operations perform signed integer comparisons, analogous to
 * those performed by Java's relational and equality operators.
 *
 * <p>Modular arithmetic operations are provided to compute residues, perform
 * exponentiation, and compute multiplicative inverses.  These methods always
 * return a non-negative result, between {@code 0} and {@code (modulus - 1)},
 * inclusive.
 *
 * <p>Bit operations operate on a single bit of the two's-complement
 * representation of their operand.  If necessary, the operand is sign-
 * extended so that it contains the designated bit.  None of the single-bit
 * operations can produce a BigInteger with a different sign from the
 * BigInteger being operated on, as they affect only a single bit, and the
 * "infinite word size" abstraction provided by this class ensures that there
 * are infinitely many "virtual sign bits" preceding each BigInteger.
 *
 * <p>For the sake of brevity and clarity, pseudo-code is used throughout the
 * descriptions of BigInteger methods.  The pseudo-code expression
 * {@code (i + j)} is shorthand for "a BigInteger whose value is
 * that of the BigInteger {@code i} plus that of the BigInteger {@code j}."
 * The pseudo-code expression {@code (i == j)} is shorthand for
 * "{@code true} if and only if the BigInteger {@code i} represents the same
 * value as the BigInteger {@code j}."  Other pseudo-code expressions are
 * interpreted similarly.
 *
 * <p>All methods and constructors in this class throw
 * {@code NullPointerException} when passed
 * a null object reference for any input parameter.
 *
 * BigInteger must support values in the range
 * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive)
 * and may support values outside of that range.
 *
 * The range of probable prime values is limited and may be less than
 * the full supported positive range of {@code BigInteger}.
 * The range must be at least 1 to 2<sup>500000000</sup>.
 *
 * @implNote
 * BigInteger constructors and operations throw {@code ArithmeticException} when
 * the result is out of the supported range of
 * -2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive) to
 * +2<sup>{@code Integer.MAX_VALUE}</sup> (exclusive).
 *
 * @see     BigDecimal
 * @author  Josh Bloch
 * @author  Michael McCloskey
 * @author  Alan Eliasen
 * @author  Timothy Buktu
 * @since JDK1.1
 */

public class BigInteger extends Number implements Comparable<BigInteger> {
    /**
     * The signum of this BigInteger: -1 for negative, 0 for zero, or
     * 1 for positive.  Note that the BigInteger zero <i>must</i> have
     * a signum of 0.  This is necessary to ensures that there is exactly one
     * representation for each BigInteger value.
     *
     * @serial
     */
    final int signum;

    /**
     * The magnitude of this BigInteger, in <i>big-endian</i> order: the
     * zeroth element of this array is the most-significant int of the
     * magnitude.  The magnitude must be "minimal" in that the most-significant
     * int ({@code mag[0]}) must be non-zero.  This is necessary to
     * ensure that there is exactly one representation for each BigInteger
     * value.  Note that this implies that the BigInteger zero has a
     * zero-length mag array.
     */
    final int[] mag;

    // These "redundant fields" are initialized with recognizable nonsense
    // values, and cached the first time they are needed (or never, if they
    // aren't needed).

     /**
     * One plus the bitCount of this BigInteger. Zeros means unitialized.
     *
     * @serial
     * @see #bitCount
     * @deprecated Deprecated since logical value is offset from stored
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int bitCount;

    /**
     * One plus the bitLength of this BigInteger. Zeros means unitialized.
     * (either value is acceptable).
     *
     * @serial
     * @see #bitLength()
     * @deprecated Deprecated since logical value is offset from stored
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int bitLength;

    /**
     * Two plus the lowest set bit of this BigInteger, as returned by
     * getLowestSetBit().
     *
     * @serial
     * @see #getLowestSetBit
     * @deprecated Deprecated since logical value is offset from stored
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int lowestSetBit;

    /**
     * Two plus the index of the lowest-order int in the magnitude of this
     * BigInteger that contains a nonzero int, or -2 (either value is acceptable).
     * The least significant int has int-number 0, the next int in order of
     * increasing significance has int-number 1, and so forth.
     * @deprecated Deprecated since logical value is offset from stored
     * value and correction factor is applied in accessor method.
     */
    @Deprecated
    private int firstNonzeroIntNum;

    /**
     * This mask is used to obtain the value of an int as if it were unsigned.
     */
    final static long LONG_MASK = 0xffffffffL;

    /**
     * This constant limits {@code mag.length} of BigIntegers to the supported
     * range.
     */
    private static final int MAX_MAG_LENGTH = Integer.MAX_VALUE / Integer.SIZE + 1; // (1 << 26)

    /**
     * Bit lengths larger than this constant can cause overflow in searchLen
     * calculation and in BitSieve.singleSearch method.
     */
    private static final  int PRIME_SEARCH_BIT_LENGTH_LIMIT = 500000000;

    /**
     * The threshold value for using Karatsuba multiplication.  If the number
     * of ints in both mag arrays are greater than this number, then
     * Karatsuba multiplication will be used.   This value is found
     * experimentally to work well.
     */
    private static final int KARATSUBA_THRESHOLD = 80;

    /**
     * The threshold value for using 3-way Toom-Cook multiplication.
     * If the number of ints in each mag array is greater than the
     * Karatsuba threshold, and the number of ints in at least one of
     * the mag arrays is greater than this threshold, then Toom-Cook
     * multiplication will be used.
     */
    private static final int TOOM_COOK_THRESHOLD = 240;

    /**
     * The threshold value for using Karatsuba squaring.  If the number
     * of ints in the number are larger than this value,
     * Karatsuba squaring will be used.   This value is found
     * experimentally to work well.
     */
    private static final int KARATSUBA_SQUARE_THRESHOLD = 128;

    /**
     * The threshold value for using Toom-Cook squaring.  If the number
     * of ints in the number are larger than this value,
     * Toom-Cook squaring will be used.   This value is found
     * experimentally to work well.
     */
    private static final int TOOM_COOK_SQUARE_THRESHOLD = 216;

    /**
     * The threshold value for using Burnikel-Ziegler division.  If the number
     * of ints in the divisor are larger than this value, Burnikel-Ziegler
     * division may be used.  This value is found experimentally to work well.
     */
    static final int BURNIKEL_ZIEGLER_THRESHOLD = 80;

    /**
     * The offset value for using Burnikel-Ziegler division.  If the number
     * of ints in the divisor exceeds the Burnikel-Ziegler threshold, and the
     * number of ints in the dividend is greater than the number of ints in the
     * divisor plus this value, Burnikel-Ziegler division will be used.  This
     * value is found experimentally to work well.
     */
    static final int BURNIKEL_ZIEGLER_OFFSET = 40;

    /**
     * The threshold value for using Schoenhage recursive base conversion. If
     * the number of ints in the number are larger than this value,
     * the Schoenhage algorithm will be used.  In practice, it appears that the
     * Schoenhage routine is faster for any threshold down to 2, and is
     * relatively flat for thresholds between 2-25, so this choice may be
     * varied within this range for very small effect.
     */
    private static final int SCHOENHAGE_BASE_CONVERSION_THRESHOLD = 20;

    /**
     * The threshold value for using squaring code to perform multiplication
     * of a {@code BigInteger} instance by itself.  If the number of ints in
     * the number are larger than this value, {@code multiply(this)} will
     * return {@code square()}.
     */
    private static final int MULTIPLY_SQUARE_THRESHOLD = 20;

    /**
     * The threshold for using an intrinsic version of
     * implMontgomeryXXX to perform Montgomery multiplication.  If the
     * number of ints in the number is more than this value we do not
     * use the intrinsic.
     */
    private static final int MONTGOMERY_INTRINSIC_THRESHOLD = 512;


    // Constructors

    /**
     * Translates a byte array containing the two's-complement binary
     * representation of a BigInteger into a BigInteger.  The input array is
     * assumed to be in <i>big-endian</i> byte-order: the most significant
     * byte is in the zeroth element.
     *
     * @param  val big-endian two's-complement binary representation of
     *         BigInteger.
     * @throws NumberFormatException {@code val} is zero bytes long.
     */
    public BigInteger(byte[] val) {
        if (val.length == 0)
            throw new NumberFormatException("Zero length BigInteger");

        if (val[0] < 0) {
            mag = makePositive(val);
            signum = -1;
        } else {
            mag = stripLeadingZeroBytes(val);
            signum = (mag.length == 0 ? 0 : 1);
        }
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    /**
     * This private constructor translates an int array containing the
     * two's-complement binary representation of a BigInteger into a
     * BigInteger. The input array is assumed to be in <i>big-endian</i>
     * int-order: the most significant int is in the zeroth element.
     */
    private BigInteger(int[] val) {
        if (val.length == 0)
            throw new NumberFormatException("Zero length BigInteger");

        if (val[0] < 0) {
            mag = makePositive(val);
            signum = -1;
        } else {
            mag = trustedStripLeadingZeroInts(val);
            signum = (mag.length == 0 ? 0 : 1);
        }
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    /**
     * Translates the sign-magnitude representation of a BigInteger into a
     * BigInteger.  The sign is represented as an integer signum value: -1 for
     * negative, 0 for zero, or 1 for positive.  The magnitude is a byte array
     * in <i>big-endian</i> byte-order: the most significant byte is in the
     * zeroth element.  A zero-length magnitude array is permissible, and will
     * result in a BigInteger value of 0, whether signum is -1, 0 or 1.
     *
     * @param  signum signum of the number (-1 for negative, 0 for zero, 1
     *         for positive).
     * @param  magnitude big-endian binary representation of the magnitude of
     *         the number.
     * @throws NumberFormatException {@code signum} is not one of the three
     *         legal values (-1, 0, and 1), or {@code signum} is 0 and
     *         {@code magnitude} contains one or more non-zero bytes.
     */
    public BigInteger(int signum, byte[] magnitude) {
        this.mag = stripLeadingZeroBytes(magnitude);

        if (signum < -1 || signum > 1)
            throw(new NumberFormatException("Invalid signum value"));

        if (this.mag.length == 0) {
            this.signum = 0;
        } else {
            if (signum == 0)
                throw(new NumberFormatException("signum-magnitude mismatch"));
            this.signum = signum;
        }
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    /**
     * A constructor for internal use that translates the sign-magnitude
     * representation of a BigInteger into a BigInteger. It checks the
     * arguments and copies the magnitude so this constructor would be
     * safe for external use.
     */
    private BigInteger(int signum, int[] magnitude) {
        this.mag = stripLeadingZeroInts(magnitude);

        if (signum < -1 || signum > 1)
            throw(new NumberFormatException("Invalid signum value"));

        if (this.mag.length == 0) {
            this.signum = 0;
        } else {
            if (signum == 0)
                throw(new NumberFormatException("signum-magnitude mismatch"));
            this.signum = signum;
        }
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    /**
     * Translates the String representation of a BigInteger in the
     * specified radix into a BigInteger.  The String representation
     * consists of an optional minus or plus sign followed by a
     * sequence of one or more digits in the specified radix.  The
     * character-to-digit mapping is provided by {@code
     * Character.digit}.  The String may not contain any extraneous
     * characters (whitespace, for example).
     *
     * @param val String representation of BigInteger.
     * @param radix radix to be used in interpreting {@code val}.
     * @throws NumberFormatException {@code val} is not a valid representation
     *         of a BigInteger in the specified radix, or {@code radix} is
     *         outside the range from {@link Character#MIN_RADIX} to
     *         {@link Character#MAX_RADIX}, inclusive.
     * @see    Character#digit
     */
    public BigInteger(String val, int radix) {
        int cursor = 0, numDigits;
        final int len = val.length();

        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
            throw new NumberFormatException("Radix out of range");
        if (len == 0)
            throw new NumberFormatException("Zero length BigInteger");

        // Check for at most one leading sign
        int sign = 1;
        int index1 = val.lastIndexOf('-');
        int index2 = val.lastIndexOf('+');
        if (index1 >= 0) {
            if (index1 != 0 || index2 >= 0) {
                throw new NumberFormatException("Illegal embedded sign character");
            }
            sign = -1;
            cursor = 1;
        } else if (index2 >= 0) {
            if (index2 != 0) {
                throw new NumberFormatException("Illegal embedded sign character");
            }
            cursor = 1;
        }
        if (cursor == len)
            throw new NumberFormatException("Zero length BigInteger");

        // Skip leading zeros and compute number of digits in magnitude
        while (cursor < len &&
               Character.digit(val.charAt(cursor), radix) == 0) {
            cursor++;
        }

        if (cursor == len) {
            signum = 0;
            mag = ZERO.mag;
            return;
        }

        numDigits = len - cursor;
        signum = sign;

        // Pre-allocate array of expected size. May be too large but can
        // never be too small. Typically exact.
        long numBits = ((numDigits * bitsPerDigit[radix]) >>> 10) + 1;
        if (numBits + 31 >= (1L << 32)) {
            reportOverflow();
        }
        int numWords = (int) (numBits + 31) >>> 5;
        int[] magnitude = new int[numWords];

        // Process first (potentially short) digit group
        int firstGroupLen = numDigits % digitsPerInt[radix];
        if (firstGroupLen == 0)
            firstGroupLen = digitsPerInt[radix];
        String group = val.substring(cursor, cursor += firstGroupLen);
        magnitude[numWords - 1] = Integer.parseInt(group, radix);
        if (magnitude[numWords - 1] < 0)
            throw new NumberFormatException("Illegal digit");

        // Process remaining digit groups
        int superRadix = intRadix[radix];
        int groupVal = 0;
        while (cursor < len) {
            group = val.substring(cursor, cursor += digitsPerInt[radix]);
            groupVal = Integer.parseInt(group, radix);
            if (groupVal < 0)
                throw new NumberFormatException("Illegal digit");
            destructiveMulAdd(magnitude, superRadix, groupVal);
        }
        // Required for cases where the array was overallocated.
        mag = trustedStripLeadingZeroInts(magnitude);
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    /*
     * Constructs a new BigInteger using a char array with radix=10.
     * Sign is precalculated outside and not allowed in the val.
     */
    BigInteger(char[] val, int sign, int len) {
        int cursor = 0, numDigits;

        // Skip leading zeros and compute number of digits in magnitude
        while (cursor < len && Character.digit(val[cursor], 10) == 0) {
            cursor++;
        }
        if (cursor == len) {
            signum = 0;
            mag = ZERO.mag;
            return;
        }

        numDigits = len - cursor;
        signum = sign;
        // Pre-allocate array of expected size
        int numWords;
        if (len < 10) {
            numWords = 1;
        } else {
            long numBits = ((numDigits * bitsPerDigit[10]) >>> 10) + 1;
            if (numBits + 31 >= (1L << 32)) {
                reportOverflow();
            }
            numWords = (int) (numBits + 31) >>> 5;
        }
        int[] magnitude = new int[numWords];

        // Process first (potentially short) digit group
        int firstGroupLen = numDigits % digitsPerInt[10];
        if (firstGroupLen == 0)
            firstGroupLen = digitsPerInt[10];
        magnitude[numWords - 1] = parseInt(val, cursor,  cursor += firstGroupLen);

        // Process remaining digit groups
        while (cursor < len) {
            int groupVal = parseInt(val, cursor, cursor += digitsPerInt[10]);
            destructiveMulAdd(magnitude, intRadix[10], groupVal);
        }
        mag = trustedStripLeadingZeroInts(magnitude);
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    // Create an integer with the digits between the two indexes
    // Assumes start < end. The result may be negative, but it
    // is to be treated as an unsigned value.
    private int parseInt(char[] source, int start, int end) {
        int result = Character.digit(source[start++], 10);
        if (result == -1)
            throw new NumberFormatException(new String(source));

        for (int index = start; index < end; index++) {
            int nextVal = Character.digit(source[index], 10);
            if (nextVal == -1)
                throw new NumberFormatException(new String(source));
            result = 10*result + nextVal;
        }

        return result;
    }

    // bitsPerDigit in the given radix times 1024
    // Rounded up to avoid underallocation.
    private static long bitsPerDigit[] = { 0, 0,
        1024, 1624, 2048, 2378, 2648, 2875, 3072, 3247, 3402, 3543, 3672,
        3790, 3899, 4001, 4096, 4186, 4271, 4350, 4426, 4498, 4567, 4633,
        4696, 4756, 4814, 4870, 4923, 4975, 5025, 5074, 5120, 5166, 5210,
                                           5253, 5295};

    // Multiply x array times word y in place, and add word z
    private static void destructiveMulAdd(int[] x, int y, int z) {
        // Perform the multiplication word by word
        long ylong = y & LONG_MASK;
        long zlong = z & LONG_MASK;
        int len = x.length;

        long product = 0;
        long carry = 0;
        for (int i = len-1; i >= 0; i--) {
            product = ylong * (x[i] & LONG_MASK) + carry;
            x[i] = (int)product;
            carry = product >>> 32;
        }

        // Perform the addition
        long sum = (x[len-1] & LONG_MASK) + zlong;
        x[len-1] = (int)sum;
        carry = sum >>> 32;
        for (int i = len-2; i >= 0; i--) {
            sum = (x[i] & LONG_MASK) + carry;
            x[i] = (int)sum;
            carry = sum >>> 32;
        }
    }

    /**
     * Translates the decimal String representation of a BigInteger into a
     * BigInteger.  The String representation consists of an optional minus
     * sign followed by a sequence of one or more decimal digits.  The
     * character-to-digit mapping is provided by {@code Character.digit}.
     * The String may not contain any extraneous characters (whitespace, for
     * example).
     *
     * @param val decimal String representation of BigInteger.
     * @throws NumberFormatException {@code val} is not a valid representation
     *         of a BigInteger.
     * @see    Character#digit
     */
    public BigInteger(String val) {
        this(val, 10);
    }

    /**
     * Constructs a randomly generated BigInteger, uniformly distributed over
     * the range 0 to (2<sup>{@code numBits}</sup> - 1), inclusive.
     * The uniformity of the distribution assumes that a fair source of random
     * bits is provided in {@code rnd}.  Note that this constructor always
     * constructs a non-negative BigInteger.
     *
     * @param  numBits maximum bitLength of the new BigInteger.
     * @param  rnd source of randomness to be used in computing the new
     *         BigInteger.
     * @throws IllegalArgumentException {@code numBits} is negative.
     * @see #bitLength()
     */
    public BigInteger(int numBits, Random rnd) {
        this(1, randomBits(numBits, rnd));
    }

    private static byte[] randomBits(int numBits, Random rnd) {
        if (numBits < 0)
            throw new IllegalArgumentException("numBits must be non-negative");
        int numBytes = (int)(((long)numBits+7)/8); // avoid overflow
        byte[] randomBits = new byte[numBytes];

        // Generate random bytes and mask out any excess bits
        if (numBytes > 0) {
            rnd.nextBytes(randomBits);
            int excessBits = 8*numBytes - numBits;
            randomBits[0] &= (1 << (8-excessBits)) - 1;
        }
        return randomBits;
    }

    /**
     * Constructs a randomly generated positive BigInteger that is probably
     * prime, with the specified bitLength.
     *
     * <p>It is recommended that the {@link #probablePrime probablePrime}
     * method be used in preference to this constructor unless there
     * is a compelling need to specify a certainty.
     *
     * @param  bitLength bitLength of the returned BigInteger.
     * @param  certainty a measure of the uncertainty that the caller is
     *         willing to tolerate.  The probability that the new BigInteger
     *         represents a prime number will exceed
     *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
     *         this constructor is proportional to the value of this parameter.
     * @param  rnd source of random bits used to select candidates to be
     *         tested for primality.
     * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
     * @see    #bitLength()
     */
    public BigInteger(int bitLength, int certainty, Random rnd) {
        BigInteger prime;

        if (bitLength < 2)
            throw new ArithmeticException("bitLength < 2");
        prime = (bitLength < SMALL_PRIME_THRESHOLD
                                ? smallPrime(bitLength, certainty, rnd)
                                : largePrime(bitLength, certainty, rnd));
        signum = 1;
        mag = prime.mag;
    }

    // Minimum size in bits that the requested prime number has
    // before we use the large prime number generating algorithms.
    // The cutoff of 95 was chosen empirically for best performance.
    private static final int SMALL_PRIME_THRESHOLD = 95;

    // Certainty required to meet the spec of probablePrime
    private static final int DEFAULT_PRIME_CERTAINTY = 100;

    /**
     * Returns a positive BigInteger that is probably prime, with the
     * specified bitLength. The probability that a BigInteger returned
     * by this method is composite does not exceed 2<sup>-100</sup>.
     *
     * @param  bitLength bitLength of the returned BigInteger.
     * @param  rnd source of random bits used to select candidates to be
     *         tested for primality.
     * @return a BigInteger of {@code bitLength} bits that is probably prime
     * @throws ArithmeticException {@code bitLength < 2} or {@code bitLength} is too large.
     * @see    #bitLength()
     * @since 1.4
     */
    public static BigInteger probablePrime(int bitLength, Random rnd) {
        if (bitLength < 2)
            throw new ArithmeticException("bitLength < 2");

        return (bitLength < SMALL_PRIME_THRESHOLD ?
                smallPrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd) :
                largePrime(bitLength, DEFAULT_PRIME_CERTAINTY, rnd));
    }

    /**
     * Find a random number of the specified bitLength that is probably prime.
     * This method is used for smaller primes, its performance degrades on
     * larger bitlengths.
     *
     * This method assumes bitLength > 1.
     */
    private static BigInteger smallPrime(int bitLength, int certainty, Random rnd) {
        int magLen = (bitLength + 31) >>> 5;
        int temp[] = new int[magLen];
        int highBit = 1 << ((bitLength+31) & 0x1f);  // High bit of high int
        int highMask = (highBit << 1) - 1;  // Bits to keep in high int

        while (true) {
            // Construct a candidate
            for (int i=0; i < magLen; i++)
                temp[i] = rnd.nextInt();
            temp[0] = (temp[0] & highMask) | highBit;  // Ensure exact length
            if (bitLength > 2)
                temp[magLen-1] |= 1;  // Make odd if bitlen > 2

            BigInteger p = new BigInteger(temp, 1);

            // Do cheap "pre-test" if applicable
            if (bitLength > 6) {
                long r = p.remainder(SMALL_PRIME_PRODUCT).longValue();
                if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
                    (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
                    (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0))
                    continue; // Candidate is composite; try another
            }

            // All candidates of bitLength 2 and 3 are prime by this point
            if (bitLength < 4)
                return p;

            // Do expensive test if we survive pre-test (or it's inapplicable)
            if (p.primeToCertainty(certainty, rnd))
                return p;
        }
    }

    private static final BigInteger SMALL_PRIME_PRODUCT
                       = valueOf(3L*5*7*11*13*17*19*23*29*31*37*41);

    /**
     * Find a random number of the specified bitLength that is probably prime.
     * This method is more appropriate for larger bitlengths since it uses
     * a sieve to eliminate most composites before using a more expensive
     * test.
     */
    private static BigInteger largePrime(int bitLength, int certainty, Random rnd) {
        BigInteger p;
        p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
        p.mag[p.mag.length-1] &= 0xfffffffe;

        // Use a sieve length likely to contain the next prime number
        int searchLen = getPrimeSearchLen(bitLength);
        BitSieve searchSieve = new BitSieve(p, searchLen);
        BigInteger candidate = searchSieve.retrieve(p, certainty, rnd);

        while ((candidate == null) || (candidate.bitLength() != bitLength)) {
            p = p.add(BigInteger.valueOf(2*searchLen));
            if (p.bitLength() != bitLength)
                p = new BigInteger(bitLength, rnd).setBit(bitLength-1);
            p.mag[p.mag.length-1] &= 0xfffffffe;
            searchSieve = new BitSieve(p, searchLen);
            candidate = searchSieve.retrieve(p, certainty, rnd);
        }
        return candidate;
    }

   /**
    * Returns the first integer greater than this {@code BigInteger} that
    * is probably prime.  The probability that the number returned by this
    * method is composite does not exceed 2<sup>-100</sup>. This method will
    * never skip over a prime when searching: if it returns {@code p}, there
    * is no prime {@code q} such that {@code this < q < p}.
    *
    * @return the first integer greater than this {@code BigInteger} that
    *         is probably prime.
    * @throws ArithmeticException {@code this < 0} or {@code this} is too large.
    * @since 1.5
    */
    public BigInteger nextProbablePrime() {
        if (this.signum < 0)
            throw new ArithmeticException("start < 0: " + this);

        // Handle trivial cases
        if ((this.signum == 0) || this.equals(ONE))
            return TWO;

        BigInteger result = this.add(ONE);

        // Fastpath for small numbers
        if (result.bitLength() < SMALL_PRIME_THRESHOLD) {

            // Ensure an odd number
            if (!result.testBit(0))
                result = result.add(ONE);

            while (true) {
                // Do cheap "pre-test" if applicable
                if (result.bitLength() > 6) {
                    long r = result.remainder(SMALL_PRIME_PRODUCT).longValue();
                    if ((r%3==0)  || (r%5==0)  || (r%7==0)  || (r%11==0) ||
                        (r%13==0) || (r%17==0) || (r%19==0) || (r%23==0) ||
                        (r%29==0) || (r%31==0) || (r%37==0) || (r%41==0)) {
                        result = result.add(TWO);
                        continue; // Candidate is composite; try another
                    }
                }

                // All candidates of bitLength 2 and 3 are prime by this point
                if (result.bitLength() < 4)
                    return result;

                // The expensive test
                if (result.primeToCertainty(DEFAULT_PRIME_CERTAINTY, null))
                    return result;

                result = result.add(TWO);
            }
        }

        // Start at previous even number
        if (result.testBit(0))
            result = result.subtract(ONE);

        // Looking for the next large prime
        int searchLen = getPrimeSearchLen(result.bitLength());

        while (true) {
           BitSieve searchSieve = new BitSieve(result, searchLen);
           BigInteger candidate = searchSieve.retrieve(result,
                                                 DEFAULT_PRIME_CERTAINTY, null);
           if (candidate != null)
               return candidate;
           result = result.add(BigInteger.valueOf(2 * searchLen));
        }
    }

    private static int getPrimeSearchLen(int bitLength) {
        if (bitLength > PRIME_SEARCH_BIT_LENGTH_LIMIT + 1) {
            throw new ArithmeticException("Prime search implementation restriction on bitLength");
        }
        return bitLength / 20 * 64;
    }

    /**
     * Returns {@code true} if this BigInteger is probably prime,
     * {@code false} if it's definitely composite.
     *
     * This method assumes bitLength > 2.
     *
     * @param  certainty a measure of the uncertainty that the caller is
     *         willing to tolerate: if the call returns {@code true}
     *         the probability that this BigInteger is prime exceeds
     *         {@code (1 - 1/2<sup>certainty</sup>)}.  The execution time of
     *         this method is proportional to the value of this parameter.
     * @return {@code true} if this BigInteger is probably prime,
     *         {@code false} if it's definitely composite.
     */
    boolean primeToCertainty(int certainty, Random random) {
        int rounds = 0;
        int n = (Math.min(certainty, Integer.MAX_VALUE-1)+1)/2;

        // The relationship between the certainty and the number of rounds
        // we perform is given in the draft standard ANSI X9.80, "PRIME
        // NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
        int sizeInBits = this.bitLength();
        if (sizeInBits < 100) {
            rounds = 50;
            rounds = n < rounds ? n : rounds;
            return passesMillerRabin(rounds, random);
        }

        if (sizeInBits < 256) {
            rounds = 27;
        } else if (sizeInBits < 512) {
            rounds = 15;
        } else if (sizeInBits < 768) {
            rounds = 8;
        } else if (sizeInBits < 1024) {
            rounds = 4;
        } else {
            rounds = 2;
        }
        rounds = n < rounds ? n : rounds;

        return passesMillerRabin(rounds, random) && passesLucasLehmer();
    }

    /**
     * Returns true iff this BigInteger is a Lucas-Lehmer probable prime.
     *
     * The following assumptions are made:
     * This BigInteger is a positive, odd number.
     */
    private boolean passesLucasLehmer() {
        BigInteger thisPlusOne = this.add(ONE);

        // Step 1
        int d = 5;
        while (jacobiSymbol(d, this) != -1) {
            // 5, -7, 9, -11, ...
            d = (d < 0) ? Math.abs(d)+2 : -(d+2);
        }

        // Step 2
        BigInteger u = lucasLehmerSequence(d, thisPlusOne, this);

        // Step 3
        return u.mod(this).equals(ZERO);
    }

    /**
     * Computes Jacobi(p,n).
     * Assumes n positive, odd, n>=3.
     */
    private static int jacobiSymbol(int p, BigInteger n) {
        if (p == 0)
            return 0;

        // Algorithm and comments adapted from Colin Plumb's C library.
        int j = 1;
        int u = n.mag[n.mag.length-1];

        // Make p positive
        if (p < 0) {
            p = -p;
            int n8 = u & 7;
            if ((n8 == 3) || (n8 == 7))
                j = -j; // 3 (011) or 7 (111) mod 8
        }

        // Get rid of factors of 2 in p
        while ((p & 3) == 0)
            p >>= 2;
        if ((p & 1) == 0) {
            p >>= 1;
            if (((u ^ (u>>1)) & 2) != 0)
                j = -j; // 3 (011) or 5 (101) mod 8
        }
        if (p == 1)
            return j;
        // Then, apply quadratic reciprocity
        if ((p & u & 2) != 0)   // p = u = 3 (mod 4)?
            j = -j;
        // And reduce u mod p
        u = n.mod(BigInteger.valueOf(p)).intValue();

        // Now compute Jacobi(u,p), u < p
        while (u != 0) {
            while ((u & 3) == 0)
                u >>= 2;
            if ((u & 1) == 0) {
                u >>= 1;
                if (((p ^ (p>>1)) & 2) != 0)
                    j = -j;     // 3 (011) or 5 (101) mod 8
            }
            if (u == 1)
                return j;
            // Now both u and p are odd, so use quadratic reciprocity
            assert (u < p);
            int t = u; u = p; p = t;
            if ((u & p & 2) != 0) // u = p = 3 (mod 4)?
                j = -j;
            // Now u >= p, so it can be reduced
            u %= p;
        }
        return 0;
    }

    private static BigInteger lucasLehmerSequence(int z, BigInteger k, BigInteger n) {
        BigInteger d = BigInteger.valueOf(z);
        BigInteger u = ONE; BigInteger u2;
        BigInteger v = ONE; BigInteger v2;

        for (int i=k.bitLength()-2; i >= 0; i--) {
            u2 = u.multiply(v).mod(n);

            v2 = v.square().add(d.multiply(u.square())).mod(n);
            if (v2.testBit(0))
                v2 = v2.subtract(n);

            v2 = v2.shiftRight(1);

            u = u2; v = v2;
            if (k.testBit(i)) {
                u2 = u.add(v).mod(n);
                if (u2.testBit(0))
                    u2 = u2.subtract(n);

                u2 = u2.shiftRight(1);
                v2 = v.add(d.multiply(u)).mod(n);
                if (v2.testBit(0))
                    v2 = v2.subtract(n);
                v2 = v2.shiftRight(1);

                u = u2; v = v2;
            }
        }
        return u;
    }

    /**
     * Returns true iff this BigInteger passes the specified number of
     * Miller-Rabin tests. This test is taken from the DSA spec (NIST FIPS
     * 186-2).
     *
     * The following assumptions are made:
     * This BigInteger is a positive, odd number greater than 2.
     * iterations<=50.
     */
    private boolean passesMillerRabin(int iterations, Random rnd) {
        // Find a and m such that m is odd and this == 1 + 2**a * m
        BigInteger thisMinusOne = this.subtract(ONE);
        BigInteger m = thisMinusOne;
        int a = m.getLowestSetBit();
        m = m.shiftRight(a);

        // Do the tests
        if (rnd == null) {
            rnd = ThreadLocalRandom.current();
        }
        for (int i=0; i < iterations; i++) {
            // Generate a uniform random on (1, this)
            BigInteger b;
            do {
                b = new BigInteger(this.bitLength(), rnd);
            } while (b.compareTo(ONE) <= 0 || b.compareTo(this) >= 0);

            int j = 0;
            BigInteger z = b.modPow(m, this);
            while (!((j == 0 && z.equals(ONE)) || z.equals(thisMinusOne))) {
                if (j > 0 && z.equals(ONE) || ++j == a)
                    return false;
                z = z.modPow(TWO, this);
            }
        }
        return true;
    }

    /**
     * This internal constructor differs from its public cousin
     * with the arguments reversed in two ways: it assumes that its
     * arguments are correct, and it doesn't copy the magnitude array.
     */
    BigInteger(int[] magnitude, int signum) {
        this.signum = (magnitude.length == 0 ? 0 : signum);
        this.mag = magnitude;
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    /**
     * This private constructor is for internal use and assumes that its
     * arguments are correct.
     */
    private BigInteger(byte[] magnitude, int signum) {
        this.signum = (magnitude.length == 0 ? 0 : signum);
        this.mag = stripLeadingZeroBytes(magnitude);
        if (mag.length >= MAX_MAG_LENGTH) {
            checkRange();
        }
    }

    /**
     * Throws an {@code ArithmeticException} if the {@code BigInteger} would be
     * out of the supported range.
     *
     * @throws ArithmeticException if {@code this} exceeds the supported range.
     */
    private void checkRange() {
        if (mag.length > MAX_MAG_LENGTH || mag.length == MAX_MAG_LENGTH && mag[0] < 0) {
            reportOverflow();
        }
    }

    private static void reportOverflow() {
        throw new ArithmeticException("BigInteger would overflow supported range");
    }

    //Static Factory Methods

    /**
     * Returns a BigInteger whose value is equal to that of the
     * specified {@code long}.  This "static factory method" is
     * provided in preference to a ({@code long}) constructor
     * because it allows for reuse of frequently used BigIntegers.
     *
     * @param  val value of the BigInteger to return.
     * @return a BigInteger with the specified value.
     */
    public static BigInteger valueOf(long val) {
        // If -MAX_CONSTANT < val < MAX_CONSTANT, return stashed constant
        if (val == 0)
            return ZERO;
        if (val > 0 && val <= MAX_CONSTANT)
            return posConst[(int) val];
        else if (val < 0 && val >= -MAX_CONSTANT)
            return negConst[(int) -val];

        return new BigInteger(val);
    }

    /**
     * Constructs a BigInteger with the specified value, which may not be zero.
     */
    private BigInteger(long val) {
        if (val < 0) {
            val = -val;
            signum = -1;
        } else {
            signum = 1;
        }

        int highWord = (int)(val >>> 32);
        if (highWord == 0) {
            mag = new int[1];
            mag[0] = (int)val;
        } else {
            mag = new int[2];
            mag[0] = highWord;
            mag[1] = (int)val;
        }
    }

    /**
     * Returns a BigInteger with the given two's complement representation.
     * Assumes that the input array will not be modified (the returned
     * BigInteger will reference the input array if feasible).
     */
    private static BigInteger valueOf(int val[]) {
        return (val[0] > 0 ? new BigInteger(val, 1) : new BigInteger(val));
    }

    // Constants

    /**
     * Initialize static constant array when class is loaded.
     */
    private final static int MAX_CONSTANT = 16;
    private static BigInteger posConst[] = new BigInteger[MAX_CONSTANT+1];
    private static BigInteger negConst[] = new BigInteger[MAX_CONSTANT+1];

    /**
     * The cache of powers of each radix.  This allows us to not have to
     * recalculate powers of radix^(2^n) more than once.  This speeds
     * Schoenhage recursive base conversion significantly.
     */
    private static volatile BigInteger[][] powerCache;

    /** The cache of logarithms of radices for base conversion. */
    private static final double[] logCache;

    /** The natural log of 2.  This is used in computing cache indices. */
    private static final double LOG_TWO = Math.log(2.0);

    static {
        for (int i = 1; i <= MAX_CONSTANT; i++) {
            int[] magnitude = new int[1];
            magnitude[0] = i;
            posConst[i] = new BigInteger(magnitude,  1);
            negConst[i] = new BigInteger(magnitude, -1);
        }

        /*
         * Initialize the cache of radix^(2^x) values used for base conversion
         * with just the very first value.  Additional values will be created
         * on demand.
         */
        powerCache = new BigInteger[Character.MAX_RADIX+1][];
        logCache = new double[Character.MAX_RADIX+1];

        for (int i=Character.MIN_RADIX; i <= Character.MAX_RADIX; i++) {
            powerCache[i] = new BigInteger[] { BigInteger.valueOf(i) };
            logCache[i] = Math.log(i);
        }
    }

    /**
     * The BigInteger constant zero.
     *
     * @since   1.2
     */
    public static final BigInteger ZERO = new BigInteger(new int[0], 0);

    /**
     * The BigInteger constant one.
     *
     * @since   1.2
     */
    public static final BigInteger ONE = valueOf(1);

    /**
     * The BigInteger constant two.  (Not exported.)
     */
    private static final BigInteger TWO = valueOf(2);

    /**
     * The BigInteger constant -1.  (Not exported.)
     */
    private static final BigInteger NEGATIVE_ONE = valueOf(-1);

    /**
     * The BigInteger constant ten.
     *
     * @since   1.5
     */
    public static final BigInteger TEN = valueOf(10);

    // Arithmetic Operations

    /**
     * Returns a BigInteger whose value is {@code (this + val)}.
     *
     * @param  val value to be added to this BigInteger.
     * @return {@code this + val}
     */
    public BigInteger add(BigInteger val) {
        if (val.signum == 0)
            return this;
        if (signum == 0)
            return val;
        if (val.signum == signum)
            return new BigInteger(add(mag, val.mag), signum);

        int cmp = compareMagnitude(val);
        if (cmp == 0)
            return ZERO;
        int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
                           : subtract(val.mag, mag));
        resultMag = trustedStripLeadingZeroInts(resultMag);

        return new BigInteger(resultMag, cmp == signum ? 1 : -1);
    }

    /**
     * Package private methods used by BigDecimal code to add a BigInteger
     * with a long. Assumes val is not equal to INFLATED.
     */
    BigInteger add(long val) {
        if (val == 0)
            return this;
        if (signum == 0)
            return valueOf(val);
        if (Long.signum(val) == signum)
            return new BigInteger(add(mag, Math.abs(val)), signum);
        int cmp = compareMagnitude(val);
        if (cmp == 0)
            return ZERO;
        int[] resultMag = (cmp > 0 ? subtract(mag, Math.abs(val)) : subtract(Math.abs(val), mag));
        resultMag = trustedStripLeadingZeroInts(resultMag);
        return new BigInteger(resultMag, cmp == signum ? 1 : -1);
    }

    /**
     * Adds the contents of the int array x and long value val. This
     * method allocates a new int array to hold the answer and returns
     * a reference to that array.  Assumes x.length &gt; 0 and val is
     * non-negative
     */
    private static int[] add(int[] x, long val) {
        int[] y;
        long sum = 0;
        int xIndex = x.length;
        int[] result;
        int highWord = (int)(val >>> 32);
        if (highWord == 0) {
            result = new int[xIndex];
            sum = (x[--xIndex] & LONG_MASK) + val;
            result[xIndex] = (int)sum;
        } else {
            if (xIndex == 1) {
                result = new int[2];
                sum = val  + (x[0] & LONG_MASK);
                result[1] = (int)sum;
                result[0] = (int)(sum >>> 32);
                return result;
            } else {
                result = new int[xIndex];
                sum = (x[--xIndex] & LONG_MASK) + (val & LONG_MASK);
                result[xIndex] = (int)sum;
                sum = (x[--xIndex] & LONG_MASK) + (highWord & LONG_MASK) + (sum >>> 32);
                result[xIndex] = (int)sum;
            }
        }
        // Copy remainder of longer number while carry propagation is required
        boolean carry = (sum >>> 32 != 0);
        while (xIndex > 0 && carry)
            carry = ((result[--xIndex] = x[xIndex] + 1) == 0);
        // Copy remainder of longer number
        while (xIndex > 0)
            result[--xIndex] = x[xIndex];
        // Grow result if necessary
        if (carry) {
            int bigger[] = new int[result.length + 1];
            System.arraycopy(result, 0, bigger, 1, result.length);
            bigger[0] = 0x01;
            return bigger;
        }
        return result;
    }

    /**
     * Adds the contents of the int arrays x and y. This method allocates
     * a new int array to hold the answer and returns a reference to that
     * array.
     */
    private static int[] add(int[] x, int[] y) {
        // If x is shorter, swap the two arrays
        if (x.length < y.length) {
            int[] tmp = x;
            x = y;
            y = tmp;
        }

        int xIndex = x.length;
        int yIndex = y.length;
        int result[] = new int[xIndex];
        long sum = 0;
        if (yIndex == 1) {
            sum = (x[--xIndex] & LONG_MASK) + (y[0] & LONG_MASK) ;
            result[xIndex] = (int)sum;
        } else {
            // Add common parts of both numbers
            while (yIndex > 0) {
                sum = (x[--xIndex] & LONG_MASK) +
                      (y[--yIndex] & LONG_MASK) + (sum >>> 32);
                result[xIndex] = (int)sum;
            }
        }
        // Copy remainder of longer number while carry propagation is required
        boolean carry = (sum >>> 32 != 0);
        while (xIndex > 0 && carry)
            carry = ((result[--xIndex] = x[xIndex] + 1) == 0);

        // Copy remainder of longer number
        while (xIndex > 0)
            result[--xIndex] = x[xIndex];

        // Grow result if necessary
        if (carry) {
            int bigger[] = new int[result.length + 1];
            System.arraycopy(result, 0, bigger, 1, result.length);
            bigger[0] = 0x01;
            return bigger;
        }
        return result;
    }

    private static int[] subtract(long val, int[] little) {
        int highWord = (int)(val >>> 32);
        if (highWord == 0) {
            int result[] = new int[1];
            result[0] = (int)(val - (little[0] & LONG_MASK));
            return result;
        } else {
            int result[] = new int[2];
            if (little.length == 1) {
                long difference = ((int)val & LONG_MASK) - (little[0] & LONG_MASK);
                result[1] = (int)difference;
                // Subtract remainder of longer number while borrow propagates
                boolean borrow = (difference >> 32 != 0);
                if (borrow) {
                    result[0] = highWord - 1;
                } else {        // Copy remainder of longer number
                    result[0] = highWord;
                }
                return result;
            } else { // little.length == 2
                long difference = ((int)val & LONG_MASK) - (little[1] & LONG_MASK);
                result[1] = (int)difference;
                difference = (highWord & LONG_MASK) - (little[0] & LONG_MASK) + (difference >> 32);
                result[0] = (int)difference;
                return result;
            }
        }
    }

    /**
     * Subtracts the contents of the second argument (val) from the
     * first (big).  The first int array (big) must represent a larger number
     * than the second.  This method allocates the space necessary to hold the
     * answer.
     * assumes val &gt;= 0
     */
    private static int[] subtract(int[] big, long val) {
        int highWord = (int)(val >>> 32);
        int bigIndex = big.length;
        int result[] = new int[bigIndex];
        long difference = 0;

        if (highWord == 0) {
            difference = (big[--bigIndex] & LONG_MASK) - val;
            result[bigIndex] = (int)difference;
        } else {
            difference = (big[--bigIndex] & LONG_MASK) - (val & LONG_MASK);
            result[bigIndex] = (int)difference;
            difference = (big[--bigIndex] & LONG_MASK) - (highWord & LONG_MASK) + (difference >> 32);
            result[bigIndex] = (int)difference;
        }

        // Subtract remainder of longer number while borrow propagates
        boolean borrow = (difference >> 32 != 0);
        while (bigIndex > 0 && borrow)
            borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);

        // Copy remainder of longer number
        while (bigIndex > 0)
            result[--bigIndex] = big[bigIndex];

        return result;
    }

    /**
     * Returns a BigInteger whose value is {@code (this - val)}.
     *
     * @param  val value to be subtracted from this BigInteger.
     * @return {@code this - val}
     */
    public BigInteger subtract(BigInteger val) {
        if (val.signum == 0)
            return this;
        if (signum == 0)
            return val.negate();
        if (val.signum != signum)
            return new BigInteger(add(mag, val.mag), signum);

        int cmp = compareMagnitude(val);
        if (cmp == 0)
            return ZERO;
        int[] resultMag = (cmp > 0 ? subtract(mag, val.mag)
                           : subtract(val.mag, mag));
        resultMag = trustedStripLeadingZeroInts(resultMag);
        return new BigInteger(resultMag, cmp == signum ? 1 : -1);
    }

    /**
     * Subtracts the contents of the second int arrays (little) from the
     * first (big).  The first int array (big) must represent a larger number
     * than the second.  This method allocates the space necessary to hold the
     * answer.
     */
    private static int[] subtract(int[] big, int[] little) {
        int bigIndex = big.length;
        int result[] = new int[bigIndex];
        int littleIndex = little.length;
        long difference = 0;

        // Subtract common parts of both numbers
        while (littleIndex > 0) {
            difference = (big[--bigIndex] & LONG_MASK) -
                         (little[--littleIndex] & LONG_MASK) +
                         (difference >> 32);
            result[bigIndex] = (int)difference;
        }

        // Subtract remainder of longer number while borrow propagates
        boolean borrow = (difference >> 32 != 0);
        while (bigIndex > 0 && borrow)
            borrow = ((result[--bigIndex] = big[bigIndex] - 1) == -1);

        // Copy remainder of longer number
        while (bigIndex > 0)
            result[--bigIndex] = big[bigIndex];

        return result;
    }

    /**
     * Returns a BigInteger whose value is {@code (this * val)}.
     *
     * @implNote An implementation may offer better algorithmic
     * performance when {@code val == this}.
     *
     * @param  val value to be multiplied by this BigInteger.
     * @return {@code this * val}
     */
    public BigInteger multiply(BigInteger val) {
        if (val.signum == 0 || signum == 0)
            return ZERO;

        int xlen = mag.length;

        if (val == this && xlen > MULTIPLY_SQUARE_THRESHOLD) {
            return square();
        }

        int ylen = val.mag.length;

        if ((xlen < KARATSUBA_THRESHOLD) || (ylen < KARATSUBA_THRESHOLD)) {
            int resultSign = signum == val.signum ? 1 : -1;
            if (val.mag.length == 1) {
                return multiplyByInt(mag,val.mag[0], resultSign);
            }
            if (mag.length == 1) {
                return multiplyByInt(val.mag,mag[0], resultSign);
            }
            int[] result = multiplyToLen(mag, xlen,
                                         val.mag, ylen, null);
            result = trustedStripLeadingZeroInts(result);
            return new BigInteger(result, resultSign);
        } else {
            if ((xlen < TOOM_COOK_THRESHOLD) && (ylen < TOOM_COOK_THRESHOLD)) {
                return multiplyKaratsuba(this, val);
            } else {
                return multiplyToomCook3(this, val);
            }
        }
    }

    private static BigInteger multiplyByInt(int[] x, int y, int sign) {
        if (Integer.bitCount(y) == 1) {
            return new BigInteger(shiftLeft(x,Integer.numberOfTrailingZeros(y)), sign);
        }
        int xlen = x.length;
        int[] rmag =  new int[xlen + 1];
        long carry = 0;
        long yl = y & LONG_MASK;
        int rstart = rmag.length - 1;
        for (int i = xlen - 1; i >= 0; i--) {
            long product = (x[i] & LONG_MASK) * yl + carry;
            rmag[rstart--] = (int)product;
            carry = product >>> 32;
        }
        if (carry == 0L) {
            rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
        } else {
            rmag[rstart] = (int)carry;
        }
        return new BigInteger(rmag, sign);
    }

    /**
     * Package private methods used by BigDecimal code to multiply a BigInteger
     * with a long. Assumes v is not equal to INFLATED.
     */
    BigInteger multiply(long v) {
        if (v == 0 || signum == 0)
          return ZERO;
        if (v == BigDecimal.INFLATED)
            return multiply(BigInteger.valueOf(v));
        int rsign = (v > 0 ? signum : -signum);
        if (v < 0)
            v = -v;
        long dh = v >>> 32;      // higher order bits
        long dl = v & LONG_MASK; // lower order bits

        int xlen = mag.length;
        int[] value = mag;
        int[] rmag = (dh == 0L) ? (new int[xlen + 1]) : (new int[xlen + 2]);
        long carry = 0;
        int rstart = rmag.length - 1;
        for (int i = xlen - 1; i >= 0; i--) {
            long product = (value[i] & LONG_MASK) * dl + carry;
            rmag[rstart--] = (int)product;
            carry = product >>> 32;
        }
        rmag[rstart] = (int)carry;
        if (dh != 0L) {
            carry = 0;
            rstart = rmag.length - 2;
            for (int i = xlen - 1; i >= 0; i--) {
                long product = (value[i] & LONG_MASK) * dh +
                    (rmag[rstart] & LONG_MASK) + carry;
                rmag[rstart--] = (int)product;
                carry = product >>> 32;
            }
            rmag[0] = (int)carry;
        }
        if (carry == 0L)
            rmag = java.util.Arrays.copyOfRange(rmag, 1, rmag.length);
        return new BigInteger(rmag, rsign);
    }

    /**
     * Multiplies int arrays x and y to the specified lengths and places
     * the result into z. There will be no leading zeros in the resultant array.
     */
    private static int[] multiplyToLen(int[] x, int xlen, int[] y, int ylen, int[] z) {
        int xstart = xlen - 1;
        int ystart = ylen - 1;

        if (z == null || z.length < (xlen+ ylen))
            z = new int[xlen+ylen];

        long carry = 0;
        for (int j=ystart, k=ystart+1+xstart; j >= 0; j--, k--) {
            long product = (y[j] & LONG_MASK) *
                           (x[xstart] & LONG_MASK) + carry;
            z[k] = (int)product;
            carry = product >>> 32;
        }
        z[xstart] = (int)carry;

        for (int i = xstart-1; i >= 0; i--) {
            carry = 0;
            for (int j=ystart, k=ystart+1+i; j >= 0; j--, k--) {
                long product = (y[j] & LONG_MASK) *
                               (x[i] & LONG_MASK) +
                               (z[k] & LONG_MASK) + carry;
                z[k] = (int)product;
                carry = product >>> 32;
            }
            z[i] = (int)carry;
        }
        return z;
    }

    /**
     * Multiplies two BigIntegers using the Karatsuba multiplication
     * algorithm.  This is a recursive divide-and-conquer algorithm which is
     * more efficient for large numbers than what is commonly called the
     * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
     * multiplied have length n, the "grade-school" algorithm has an
     * asymptotic complexity of O(n^2).  In contrast, the Karatsuba algorithm
     * has complexity of O(n^(log2(3))), or O(n^1.585).  It achieves this
     * increased performance by doing 3 multiplies instead of 4 when
     * evaluating the product.  As it has some overhead, should be used when
     * both numbers are larger than a certain threshold (found
     * experimentally).
     *
     * See:  http://en.wikipedia.org/wiki/Karatsuba_algorithm
     */
    private static BigInteger multiplyKaratsuba(BigInteger x, BigInteger y) {
        int xlen = x.mag.length;
        int ylen = y.mag.length;

        // The number of ints in each half of the number.
        int half = (Math.max(xlen, ylen)+1) / 2;

        // xl and yl are the lower halves of x and y respectively,
        // xh and yh are the upper halves.
        BigInteger xl = x.getLower(half);
        BigInteger xh = x.getUpper(half);
        BigInteger yl = y.getLower(half);
        BigInteger yh = y.getUpper(half);

        BigInteger p1 = xh.multiply(yh);  // p1 = xh*yh
        BigInteger p2 = xl.multiply(yl);  // p2 = xl*yl

        // p3=(xh+xl)*(yh+yl)
        BigInteger p3 = xh.add(xl).multiply(yh.add(yl));

        // result = p1 * 2^(32*2*half) + (p3 - p1 - p2) * 2^(32*half) + p2
        BigInteger result = p1.shiftLeft(32*half).add(p3.subtract(p1).subtract(p2)).shiftLeft(32*half).add(p2);

        if (x.signum != y.signum) {
            return result.negate();
        } else {
            return result;
        }
    }

    /**
     * Multiplies two BigIntegers using a 3-way Toom-Cook multiplication
     * algorithm.  This is a recursive divide-and-conquer algorithm which is
     * more efficient for large numbers than what is commonly called the
     * "grade-school" algorithm used in multiplyToLen.  If the numbers to be
     * multiplied have length n, the "grade-school" algorithm has an
     * asymptotic complexity of O(n^2).  In contrast, 3-way Toom-Cook has a
     * complexity of about O(n^1.465).  It achieves this increased asymptotic
     * performance by breaking each number into three parts and by doing 5
     * multiplies instead of 9 when evaluating the product.  Due to overhead
     * (additions, shifts, and one division) in the Toom-Cook algorithm, it
     * should only be used when both numbers are larger than a certain
     * threshold (found experimentally).  This threshold is generally larger
     * than that for Karatsuba multiplication, so this algorithm is generally
     * only used when numbers become significantly larger.
     *
     * The algorithm used is the "optimal" 3-way Toom-Cook algorithm outlined
     * by Marco Bodrato.
     *
     *  See: http://bodrato.it/toom-cook/
     *       http://bodrato.it/papers/#WAIFI2007
     *
     * "Towards Optimal Toom-Cook Multiplication for Univariate and
     * Multivariate Polynomials in Characteristic 2 and 0." by Marco BODRATO;
     * In C.Carlet and B.Sunar, Eds., "WAIFI'07 proceedings", p. 116-133,
     * LNCS #4547. Springer, Madrid, Spain, June 21-22, 2007.
     *
     */
    private static BigInteger multiplyToomCook3(BigInteger a, BigInteger b) {
        int alen = a.mag.length;
        int blen = b.mag.length;

        int largest = Math.max(alen, blen);

        // k is the size (in ints) of the lower-order slices.
        int k = (largest+2)/3;   // Equal to ceil(largest/3)

        // r is the size (in ints) of the highest-order slice.
        int r = largest - 2*k;

        // Obtain slices of the numbers. a2 and b2 are the most significant
        // bits of the numbers a and b, and a0 and b0 the least significant.
        BigInteger a0, a1, a2, b0, b1, b2;
        a2 = a.getToomSlice(k, r, 0, largest);
        a1 = a.getToomSlice(k, r, 1, largest);
        a0 = a.getToomSlice(k, r, 2, largest);
        b2 = b.getToomSlice(k, r, 0, largest);
        b1 = b.getToomSlice(k, r, 1, largest);
        b0 = b.getToomSlice(k, r, 2, largest);

        BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1, db1;

        v0 = a0.multiply(b0);
        da1 = a2.add(a0);
        db1 = b2.add(b0);
        vm1 = da1.subtract(a1).multiply(db1.subtract(b1));
        da1 = da1.add(a1);
        db1 = db1.add(b1);
        v1 = da1.multiply(db1);
        v2 = da1.add(a2).shiftLeft(1).subtract(a0).multiply(
             db1.add(b2).shiftLeft(1).subtract(b0));
        vinf = a2.multiply(b2);

        // The algorithm requires two divisions by 2 and one by 3.
        // All divisions are known to be exact, that is, they do not produce
        // remainders, and all results are positive.  The divisions by 2 are
        // implemented as right shifts which are relatively efficient, leaving
        // only an exact division by 3, which is done by a specialized
        // linear-time algorithm.
        t2 = v2.subtract(vm1).exactDivideBy3();
        tm1 = v1.subtract(vm1).shiftRight(1);
        t1 = v1.subtract(v0);
        t2 = t2.subtract(t1).shiftRight(1);
        t1 = t1.subtract(tm1).subtract(vinf);
        t2 = t2.subtract(vinf.shiftLeft(1));
        tm1 = tm1.subtract(t2);

        // Number of bits to shift left.
        int ss = k*32;

        BigInteger result = vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);

        if (a.signum != b.signum) {
            return result.negate();
        } else {
            return result;
        }
    }


    /**
     * Returns a slice of a BigInteger for use in Toom-Cook multiplication.
     *
     * @param lowerSize The size of the lower-order bit slices.
     * @param upperSize The size of the higher-order bit slices.
     * @param slice The index of which slice is requested, which must be a
     * number from 0 to size-1. Slice 0 is the highest-order bits, and slice
     * size-1 are the lowest-order bits. Slice 0 may be of different size than
     * the other slices.
     * @param fullsize The size of the larger integer array, used to align
     * slices to the appropriate position when multiplying different-sized
     * numbers.
     */
    private BigInteger getToomSlice(int lowerSize, int upperSize, int slice,
                                    int fullsize) {
        int start, end, sliceSize, len, offset;

        len = mag.length;
        offset = fullsize - len;

        if (slice == 0) {
            start = 0 - offset;
            end = upperSize - 1 - offset;
        } else {
            start = upperSize + (slice-1)*lowerSize - offset;
            end = start + lowerSize - 1;
        }

        if (start < 0) {
            start = 0;
        }
        if (end < 0) {
           return ZERO;
        }

        sliceSize = (end-start) + 1;

        if (sliceSize <= 0) {
            return ZERO;
        }

        // While performing Toom-Cook, all slices are positive and
        // the sign is adjusted when the final number is composed.
        if (start == 0 && sliceSize >= len) {
            return this.abs();
        }

        int intSlice[] = new int[sliceSize];
        System.arraycopy(mag, start, intSlice, 0, sliceSize);

        return new BigInteger(trustedStripLeadingZeroInts(intSlice), 1);
    }

    /**
     * Does an exact division (that is, the remainder is known to be zero)
     * of the specified number by 3.  This is used in Toom-Cook
     * multiplication.  This is an efficient algorithm that runs in linear
     * time.  If the argument is not exactly divisible by 3, results are
     * undefined.  Note that this is expected to be called with positive
     * arguments only.
     */
    private BigInteger exactDivideBy3() {
        int len = mag.length;
        int[] result = new int[len];
        long x, w, q, borrow;
        borrow = 0L;
        for (int i=len-1; i >= 0; i--) {
            x = (mag[i] & LONG_MASK);
            w = x - borrow;
            if (borrow > x) {      // Did we make the number go negative?
                borrow = 1L;
            } else {
                borrow = 0L;
            }

            // 0xAAAAAAAB is the modular inverse of 3 (mod 2^32).  Thus,
            // the effect of this is to divide by 3 (mod 2^32).
            // This is much faster than division on most architectures.
            q = (w * 0xAAAAAAABL) & LONG_MASK;
            result[i] = (int) q;

            // Now check the borrow. The second check can of course be
            // eliminated if the first fails.
            if (q >= 0x55555556L) {
                borrow++;
                if (q >= 0xAAAAAAABL)
                    borrow++;
            }
        }
        result = trustedStripLeadingZeroInts(result);
        return new BigInteger(result, signum);
    }

    /**
     * Returns a new BigInteger representing n lower ints of the number.
     * This is used by Karatsuba multiplication and Karatsuba squaring.
     */
    private BigInteger getLower(int n) {
        int len = mag.length;

        if (len <= n) {
            return abs();
        }

        int lowerInts[] = new int[n];
        System.arraycopy(mag, len-n, lowerInts, 0, n);

        return new BigInteger(trustedStripLeadingZeroInts(lowerInts), 1);
    }

    /**
     * Returns a new BigInteger representing mag.length-n upper
     * ints of the number.  This is used by Karatsuba multiplication and
     * Karatsuba squaring.
     */
    private BigInteger getUpper(int n) {
        int len = mag.length;

        if (len <= n) {
            return ZERO;
        }

        int upperLen = len - n;
        int upperInts[] = new int[upperLen];
        System.arraycopy(mag, 0, upperInts, 0, upperLen);

        return new BigInteger(trustedStripLeadingZeroInts(upperInts), 1);
    }

    // Squaring

    /**
     * Returns a BigInteger whose value is {@code (this<sup>2</sup>)}.
     *
     * @return {@code this<sup>2</sup>}
     */
    private BigInteger square() {
        if (signum == 0) {
            return ZERO;
        }
        int len = mag.length;

        if (len < KARATSUBA_SQUARE_THRESHOLD) {
            int[] z = squareToLen(mag, len, null);
            return new BigInteger(trustedStripLeadingZeroInts(z), 1);
        } else {
            if (len < TOOM_COOK_SQUARE_THRESHOLD) {
                return squareKaratsuba();
            } else {
                return squareToomCook3();
            }
        }
    }

    /**
     * Squares the contents of the int array x. The result is placed into the
     * int array z.  The contents of x are not changed.
     */
    private static final int[] squareToLen(int[] x, int len, int[] z) {
         int zlen = len << 1;
         if (z == null || z.length < zlen)
             z = new int[zlen];

         // Execute checks before calling intrinsified method.
         implSquareToLenChecks(x, len, z, zlen);
         return implSquareToLen(x, len, z, zlen);
     }

     /**
      * Parameters validation.
      */
     private static void implSquareToLenChecks(int[] x, int len, int[] z, int zlen) throws RuntimeException {
         if (len < 1) {
             throw new IllegalArgumentException("invalid input length: " + len);
         }
         if (len > x.length) {
             throw new IllegalArgumentException("input length out of bound: " +
                                        len + " > " + x.length);
         }
         if (len * 2 > z.length) {
             throw new IllegalArgumentException("input length out of bound: " +
                                        (len * 2) + " > " + z.length);
         }
         if (zlen < 1) {
             throw new IllegalArgumentException("invalid input length: " + zlen);
         }
         if (zlen > z.length) {
             throw new IllegalArgumentException("input length out of bound: " +
                                        len + " > " + z.length);
         }
     }

     /**
      * Java Runtime may use intrinsic for this method.
      */
     private static final int[] implSquareToLen(int[] x, int len, int[] z, int zlen) {
        /*
         * The algorithm used here is adapted from Colin Plumb's C library.
         * Technique: Consider the partial products in the multiplication
         * of "abcde" by itself:
         *
         *               a  b  c  d  e
         *            *  a  b  c  d  e
         *          ==================
         *              ae be ce de ee
         *           ad bd cd dd de
         *        ac bc cc cd ce
         *     ab bb bc bd be
         *  aa ab ac ad ae
         *
         * Note that everything above the main diagonal:
         *              ae be ce de = (abcd) * e
         *           ad bd cd       = (abc) * d
         *        ac bc             = (ab) * c
         *     ab                   = (a) * b
         *
         * is a copy of everything below the main diagonal:
         *                       de
         *                 cd ce
         *           bc bd be
         *     ab ac ad ae
         *
         * Thus, the sum is 2 * (off the diagonal) + diagonal.
         *
         * This is accumulated beginning with the diagonal (which
         * consist of the squares of the digits of the input), which is then
         * divided by two, the off-diagonal added, and multiplied by two
         * again.  The low bit is simply a copy of the low bit of the
         * input, so it doesn't need special care.
         */

        // Store the squares, right shifted one bit (i.e., divided by 2)
        int lastProductLowWord = 0;
        for (int j=0, i=0; j < len; j++) {
            long piece = (x[j] & LONG_MASK);
            long product = piece * piece;
            z[i++] = (lastProductLowWord << 31) | (int)(product >>> 33);
            z[i++] = (int)(product >>> 1);
            lastProductLowWord = (int)product;
        }

        // Add in off-diagonal sums
        for (int i=len, offset=1; i > 0; i--, offset+=2) {
            int t = x[i-1];
            t = mulAdd(z, x, offset, i-1, t);
            addOne(z, offset-1, i, t);
        }

        // Shift back up and set low bit
        primitiveLeftShift(z, zlen, 1);
        z[zlen-1] |= x[len-1] & 1;

        return z;
    }

    /**
     * Squares a BigInteger using the Karatsuba squaring algorithm.  It should
     * be used when both numbers are larger than a certain threshold (found
     * experimentally).  It is a recursive divide-and-conquer algorithm that
     * has better asymptotic performance than the algorithm used in
     * squareToLen.
     */
    private BigInteger squareKaratsuba() {
        int half = (mag.length+1) / 2;

        BigInteger xl = getLower(half);
        BigInteger xh = getUpper(half);

        BigInteger xhs = xh.square();  // xhs = xh^2
        BigInteger xls = xl.square();  // xls = xl^2

        // xh^2 << 64  +  (((xl+xh)^2 - (xh^2 + xl^2)) << 32) + xl^2
        return xhs.shiftLeft(half*32).add(xl.add(xh).square().subtract(xhs.add(xls))).shiftLeft(half*32).add(xls);
    }

    /**
     * Squares a BigInteger using the 3-way Toom-Cook squaring algorithm.  It
     * should be used when both numbers are larger than a certain threshold
     * (found experimentally).  It is a recursive divide-and-conquer algorithm
     * that has better asymptotic performance than the algorithm used in
     * squareToLen or squareKaratsuba.
     */
    private BigInteger squareToomCook3() {
        int len = mag.length;

        // k is the size (in ints) of the lower-order slices.
        int k = (len+2)/3;   // Equal to ceil(largest/3)

        // r is the size (in ints) of the highest-order slice.
        int r = len - 2*k;

        // Obtain slices of the numbers. a2 is the most significant
        // bits of the number, and a0 the least significant.
        BigInteger a0, a1, a2;
        a2 = getToomSlice(k, r, 0, len);
        a1 = getToomSlice(k, r, 1, len);
        a0 = getToomSlice(k, r, 2, len);
        BigInteger v0, v1, v2, vm1, vinf, t1, t2, tm1, da1;

        v0 = a0.square();
        da1 = a2.add(a0);
        vm1 = da1.subtract(a1).square();
        da1 = da1.add(a1);
        v1 = da1.square();
        vinf = a2.square();
        v2 = da1.add(a2).shiftLeft(1).subtract(a0).square();

        // The algorithm requires two divisions by 2 and one by 3.
        // All divisions are known to be exact, that is, they do not produce
        // remainders, and all results are positive.  The divisions by 2 are
        // implemented as right shifts which are relatively efficient, leaving
        // only a division by 3.
        // The division by 3 is done by an optimized algorithm for this case.
        t2 = v2.subtract(vm1).exactDivideBy3();
        tm1 = v1.subtract(vm1).shiftRight(1);
        t1 = v1.subtract(v0);
        t2 = t2.subtract(t1).shiftRight(1);
        t1 = t1.subtract(tm1).subtract(vinf);
        t2 = t2.subtract(vinf.shiftLeft(1));
        tm1 = tm1.subtract(t2);

        // Number of bits to shift left.
        int ss = k*32;

        return vinf.shiftLeft(ss).add(t2).shiftLeft(ss).add(t1).shiftLeft(ss).add(tm1).shiftLeft(ss).add(v0);
    }

    // Division

    /**
     * Returns a BigInteger whose value is {@code (this / val)}.
     *
     * @param  val value by which this BigInteger is to be divided.
     * @return {@code this / val}
     * @throws ArithmeticException if {@code val} is zero.
     */
    public BigInteger divide(BigInteger val) {
        if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
                mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
            return divideKnuth(val);
        } else {
            return divideBurnikelZiegler(val);
        }
    }

    /**
     * Returns a BigInteger whose value is {@code (this / val)} using an O(n^2) algorithm from Knuth.
     *
     * @param  val value by which this BigInteger is to be divided.
     * @return {@code this / val}
     * @throws ArithmeticException if {@code val} is zero.
     * @see MutableBigInteger#divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
     */
    private BigInteger divideKnuth(BigInteger val) {
        MutableBigInteger q = new MutableBigInteger(),
                          a = new MutableBigInteger(this.mag),
                          b = new MutableBigInteger(val.mag);

        a.divideKnuth(b, q, false);
        return q.toBigInteger(this.signum * val.signum);
    }

    /**
     * Returns an array of two BigIntegers containing {@code (this / val)}
     * followed by {@code (this % val)}.
     *
     * @param  val value by which this BigInteger is to be divided, and the
     *         remainder computed.
     * @return an array of two BigIntegers: the quotient {@code (this / val)}
     *         is the initial element, and the remainder {@code (this % val)}
     *         is the final element.
     * @throws ArithmeticException if {@code val} is zero.
     */
    public BigInteger[] divideAndRemainder(BigInteger val) {
        if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
                mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
            return divideAndRemainderKnuth(val);
        } else {
            return divideAndRemainderBurnikelZiegler(val);
        }
    }

    /** Long division */
    private BigInteger[] divideAndRemainderKnuth(BigInteger val) {
        BigInteger[] result = new BigInteger[2];
        MutableBigInteger q = new MutableBigInteger(),
                          a = new MutableBigInteger(this.mag),
                          b = new MutableBigInteger(val.mag);
        MutableBigInteger r = a.divideKnuth(b, q);
        result[0] = q.toBigInteger(this.signum == val.signum ? 1 : -1);
        result[1] = r.toBigInteger(this.signum);
        return result;
    }

    /**
     * Returns a BigInteger whose value is {@code (this % val)}.
     *
     * @param  val value by which this BigInteger is to be divided, and the
     *         remainder computed.
     * @return {@code this % val}
     * @throws ArithmeticException if {@code val} is zero.
     */
    public BigInteger remainder(BigInteger val) {
        if (val.mag.length < BURNIKEL_ZIEGLER_THRESHOLD ||
                mag.length - val.mag.length < BURNIKEL_ZIEGLER_OFFSET) {
            return remainderKnuth(val);
        } else {
            return remainderBurnikelZiegler(val);
        }
    }

    /** Long division */
    private BigInteger remainderKnuth(BigInteger val) {
        MutableBigInteger q = new MutableBigInteger(),
                          a = new MutableBigInteger(this.mag),
                          b = new MutableBigInteger(val.mag);

        return a.divideKnuth(b, q).toBigInteger(this.signum);
    }

    /**
     * Calculates {@code this / val} using the Burnikel-Ziegler algorithm.
     * @param  val the divisor
     * @return {@code this / val}
     */
    private BigInteger divideBurnikelZiegler(BigInteger val) {
        return divideAndRemainderBurnikelZiegler(val)[0];
    }

    /**
     * Calculates {@code this % val} using the Burnikel-Ziegler algorithm.
     * @param val the divisor
     * @return {@code this % val}
     */
    private BigInteger remainderBurnikelZiegler(BigInteger val) {
        return divideAndRemainderBurnikelZiegler(val)[1];
    }

    /**
     * Computes {@code this / val} and {@code this % val} using the
     * Burnikel-Ziegler algorithm.
     * @param val the divisor
     * @return an array containing the quotient and remainder
     */
    private BigInteger[] divideAndRemainderBurnikelZiegler(BigInteger val) {
        MutableBigInteger q = new MutableBigInteger();
        MutableBigInteger r = new MutableBigInteger(this).divideAndRemainderBurnikelZiegler(new MutableBigInteger(val), q);
        BigInteger qBigInt = q.isZero() ? ZERO : q.toBigInteger(signum*val.signum);
        BigInteger rBigInt = r.isZero() ? ZERO : r.toBigInteger(signum);
        return new BigInteger[] {qBigInt, rBigInt};
    }

    /**
     * Returns a BigInteger whose value is <tt>(this<sup>exponent</sup>)</tt>.
     * Note that {@code exponent} is an integer rather than a BigInteger.
     *
     * @param  exponent exponent to which this BigInteger is to be raised.
     * @return <tt>this<sup>exponent</sup></tt>
     * @throws ArithmeticException {@code exponent} is negative.  (This would
     *         cause the operation to yield a non-integer value.)
     */
    public BigInteger pow(int exponent) {
        if (exponent < 0) {
            throw new ArithmeticException("Negative exponent");
        }
        if (signum == 0) {
            return (exponent == 0 ? ONE : this);
        }

        BigInteger partToSquare = this.abs();

        // Factor out powers of two from the base, as the exponentiation of
        // these can be done by left shifts only.
        // The remaining part can then be exponentiated faster.  The
        // powers of two will be multiplied back at the end.
        int powersOfTwo = partToSquare.getLowestSetBit();
        long bitsToShift = (long)powersOfTwo * exponent;
        if (bitsToShift > Integer.MAX_VALUE) {
            reportOverflow();
        }

        int remainingBits;

        // Factor the powers of two out quickly by shifting right, if needed.
        if (powersOfTwo > 0) {
            partToSquare = partToSquare.shiftRight(powersOfTwo);
            remainingBits = partToSquare.bitLength();
            if (remainingBits == 1) {  // Nothing left but +/- 1?
                if (signum < 0 && (exponent&1) == 1) {
                    return NEGATIVE_ONE.shiftLeft(powersOfTwo*exponent);
                } else {
                    return ONE.shiftLeft(powersOfTwo*exponent);
                }
            }
        } else {
            remainingBits = partToSquare.bitLength();
            if (remainingBits == 1) { // Nothing left but +/- 1?
                if (signum < 0  && (exponent&1) == 1) {
                    return NEGATIVE_ONE;
                } else {
                    return ONE;
                }
            }
        }

        // This is a quick way to approximate the size of the result,
        // similar to doing log2[n] * exponent.  This will give an upper bound
        // of how big the result can be, and which algorithm to use.
        long scaleFactor = (long)remainingBits * exponent;

        // Use slightly different algorithms for small and large operands.
        // See if the result will safely fit into a long. (Largest 2^63-1)
        if (partToSquare.mag.length == 1 && scaleFactor <= 62) {
            // Small number algorithm.  Everything fits into a long.
            int newSign = (signum <0  && (exponent&1) == 1 ? -1 : 1);
            long result = 1;
            long baseToPow2 = partToSquare.mag[0] & LONG_MASK;

            int workingExponent = exponent;

            // Perform exponentiation using repeated squaring trick
            while (workingExponent != 0) {
                if ((workingExponent & 1) == 1) {
                    result = result * baseToPow2;
                }

                if ((workingExponent >>>= 1) != 0) {
                    baseToPow2 = baseToPow2 * baseToPow2;
                }
            }

            // Multiply back the powers of two (quickly, by shifting left)
            if (powersOfTwo > 0) {
                if (bitsToShift + scaleFactor <= 62) { // Fits in long?
                    return valueOf((result << bitsToShift) * newSign);
                } else {
                    return valueOf(result*newSign).shiftLeft((int) bitsToShift);
                }
            }
            else {
                return valueOf(result*newSign);
            }
        } else {
            // Large number algorithm.  This is basically identical to
            // the algorithm above, but calls multiply() and square()
            // which may use more efficient algorithms for large numbers.
            BigInteger answer = ONE;

            int workingExponent = exponent;
            // Perform exponentiation using repeated squaring trick
            while (workingExponent != 0) {
                if ((workingExponent & 1) == 1) {
                    answer = answer.multiply(partToSquare);
                }

                if ((workingExponent >>>= 1) != 0) {
                    partToSquare = partToSquare.square();
                }
            }
            // Multiply back the (exponentiated) powers of two (quickly,
            // by shifting left)
            if (powersOfTwo > 0) {
                answer = answer.shiftLeft(powersOfTwo*exponent);
            }

            if (signum < 0 && (exponent&1) == 1) {
                return answer.negate();
            } else {
                return answer;
            }
        }
    }

    /**
     * Returns a BigInteger whose value is the greatest common divisor of
     * {@code abs(this)} and {@code abs(val)}.  Returns 0 if
     * {@code this == 0 && val == 0}.
     *
     * @param  val value with which the GCD is to be computed.
     * @return {@code GCD(abs(this), abs(val))}
     */
    public BigInteger gcd(BigInteger val) {
        if (val.signum == 0)
            return this.abs();
        else if (this.signum == 0)
            return val.abs();

        MutableBigInteger a = new MutableBigInteger(this);
        MutableBigInteger b = new MutableBigInteger(val);

        MutableBigInteger result = a.hybridGCD(b);

        return result.toBigInteger(1);
    }

    /**
     * Package private method to return bit length for an integer.
     */
    static int bitLengthForInt(int n) {
        return 32 - Integer.numberOfLeadingZeros(n);
    }

    /**
     * Left shift int array a up to len by n bits. Returns the array that
     * results from the shift since space may have to be reallocated.
     */
    private static int[] leftShift(int[] a, int len, int n) {
        int nInts = n >>> 5;
        int nBits = n&0x1F;
        int bitsInHighWord = bitLengthForInt(a[0]);

        // If shift can be done without recopy, do so
        if (n <= (32-bitsInHighWord)) {
            primitiveLeftShift(a, len, nBits);
            return a;
        } else { // Array must be resized
            if (nBits <= (32-bitsInHighWord)) {
                int result[] = new int[nInts+len];
                System.arraycopy(a, 0, result, 0, len);
                primitiveLeftShift(result, result.length, nBits);
                return result;
            } else {
                int result[] = new int[nInts+len+1];
                System.arraycopy(a, 0, result, 0, len);
                primitiveRightShift(result, result.length, 32 - nBits);
                return result;
            }
        }
    }

    // shifts a up to len right n bits assumes no leading zeros, 0<n<32
    static void primitiveRightShift(int[] a, int len, int n) {
        int n2 = 32 - n;
        for (int i=len-1, c=a[i]; i > 0; i--) {
            int b = c;
            c = a[i-1];
            a[i] = (c << n2) | (b >>> n);
        }
        a[0] >>>= n;
    }

    // shifts a up to len left n bits assumes no leading zeros, 0<=n<32
    static void primitiveLeftShift(int[] a, int len, int n) {
        if (len == 0 || n == 0)
            return;

        int n2 = 32 - n;
        for (int i=0, c=a[i], m=i+len-1; i < m; i++) {
            int b = c;
            c = a[i+1];
            a[i] = (b << n) | (c >>> n2);
        }
        a[len-1] <<= n;
    }

    /**
     * Calculate bitlength of contents of the first len elements an int array,
     * assuming there are no leading zero ints.
     */
    private static int bitLength(int[] val, int len) {
        if (len == 0)
            return 0;
        return ((len - 1) << 5) + bitLengthForInt(val[0]);
    }

    /**
     * Returns a BigInteger whose value is the absolute value of this
     * BigInteger.
     *
     * @return {@code abs(this)}
     */
    public BigInteger abs() {
        return (signum >= 0 ? this : this.negate());
    }

    /**
     * Returns a BigInteger whose value is {@code (-this)}.
     *
     * @return {@code -this}
     */
    public BigInteger negate() {
        return new BigInteger(this.mag, -this.signum);
    }

    /**
     * Returns the signum function of this BigInteger.
     *
     * @return -1, 0 or 1 as the value of this BigInteger is negative, zero or
     *         positive.
     */
    public int signum() {
        return this.signum;
    }

    // Modular Arithmetic Operations

    /**
     * Returns a BigInteger whose value is {@code (this mod m}).  This method
     * differs from {@code remainder} in that it always returns a
     * <i>non-negative</i> BigInteger.
     *
     * @param  m the modulus.
     * @return {@code this mod m}
     * @throws ArithmeticException {@code m} &le; 0
     * @see    #remainder
     */
    public BigInteger mod(BigInteger m) {
        if (m.signum <= 0)
            throw new ArithmeticException("BigInteger: modulus not positive");

        BigInteger result = this.remainder(m);
        return (result.signum >= 0 ? result : result.add(m));
    }

    /**
     * Returns a BigInteger whose value is
     * <tt>(this<sup>exponent</sup> mod m)</tt>.  (Unlike {@code pow}, this
     * method permits negative exponents.)
     *
     * @param  exponent the exponent.
     * @param  m the modulus.
     * @return <tt>this<sup>exponent</sup> mod m</tt>
     * @throws ArithmeticException {@code m} &le; 0 or the exponent is
     *         negative and this BigInteger is not <i>relatively
     *         prime</i> to {@code m}.
     * @see    #modInverse
     */
    public BigInteger modPow(BigInteger exponent, BigInteger m) {
        if (m.signum <= 0)
            throw new ArithmeticException("BigInteger: modulus not positive");

        // Trivial cases
        if (exponent.signum == 0)
            return (m.equals(ONE) ? ZERO : ONE);

        if (this.equals(ONE))
            return (m.equals(ONE) ? ZERO : ONE);

        if (this.equals(ZERO) && exponent.signum >= 0)
            return ZERO;

        if (this.equals(negConst[1]) && (!exponent.testBit(0)))
            return (m.equals(ONE) ? ZERO : ONE);

        boolean invertResult;
        if ((invertResult = (exponent.signum < 0)))
            exponent = exponent.negate();

        BigInteger base = (this.signum < 0 || this.compareTo(m) >= 0
                           ? this.mod(m) : this);
        BigInteger result;
        if (m.testBit(0)) { // odd modulus
            result = base.oddModPow(exponent, m);
        } else {
            /*
             * Even modulus.  Tear it into an "odd part" (m1) and power of two
             * (m2), exponentiate mod m1, manually exponentiate mod m2, and
             * use Chinese Remainder Theorem to combine results.
             */

            // Tear m apart into odd part (m1) and power of 2 (m2)
            int p = m.getLowestSetBit();   // Max pow of 2 that divides m

            BigInteger m1 = m.shiftRight(p);  // m/2**p
            BigInteger m2 = ONE.shiftLeft(p); // 2**p

            // Calculate new base from m1
            BigInteger base2 = (this.signum < 0 || this.compareTo(m1) >= 0
                                ? this.mod(m1) : this);

            // Caculate (base ** exponent) mod m1.
            BigInteger a1 = (m1.equals(ONE) ? ZERO :
                             base2.oddModPow(exponent, m1));

            // Calculate (this ** exponent) mod m2
            BigInteger a2 = base.modPow2(exponent, p);

            // Combine results using Chinese Remainder Theorem
            BigInteger y1 = m2.modInverse(m1);
            BigInteger y2 = m1.modInverse(m2);

            if (m.mag.length < MAX_MAG_LENGTH / 2) {
                result = a1.multiply(m2).multiply(y1).add(a2.multiply(m1).multiply(y2)).mod(m);
            } else {
                MutableBigInteger t1 = new MutableBigInteger();
                new MutableBigInteger(a1.multiply(m2)).multiply(new MutableBigInteger(y1), t1);
                MutableBigInteger t2 = new MutableBigInteger();
                new MutableBigInteger(a2.multiply(m1)).multiply(new MutableBigInteger(y2), t2);
                t1.add(t2);
                MutableBigInteger q = new MutableBigInteger();
                result = t1.divide(new MutableBigInteger(m), q).toBigInteger();
            }
        }

        return (invertResult ? result.modInverse(m) : result);
    }

    // Montgomery multiplication.  These are wrappers for
    // implMontgomeryXX routines which are expected to be replaced by
    // virtual machine intrinsics.  We don't use the intrinsics for
    // very large operands: MONTGOMERY_INTRINSIC_THRESHOLD should be
    // larger than any reasonable crypto key.
    private static int[] montgomeryMultiply(int[] a, int[] b, int[] n, int len, long inv,
                                            int[] product) {
        implMontgomeryMultiplyChecks(a, b, n, len, product);
        if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
            // Very long argument: do not use an intrinsic
            product = multiplyToLen(a, len, b, len, product);
            return montReduce(product, n, len, (int)inv);
        } else {
            return implMontgomeryMultiply(a, b, n, len, inv, materialize(product, len));
        }
    }
    private static int[] montgomerySquare(int[] a, int[] n, int len, long inv,
                                          int[] product) {
        implMontgomeryMultiplyChecks(a, a, n, len, product);
        if (len > MONTGOMERY_INTRINSIC_THRESHOLD) {
            // Very long argument: do not use an intrinsic
            product = squareToLen(a, len, product);
            return montReduce(product, n, len, (int)inv);
        } else {
            return implMontgomerySquare(a, n, len, inv, materialize(product, len));
        }
    }

    // Range-check everything.
    private static void implMontgomeryMultiplyChecks
        (int[] a, int[] b, int[] n, int len, int[] product) throws RuntimeException {
        if (len % 2 != 0) {
            throw new IllegalArgumentException("input array length must be even: " + len);
        }

        if (len < 1) {
            throw new IllegalArgumentException("invalid input length: " + len);
        }

        if (len > a.length ||
            len > b.length ||
            len > n.length ||
            (product != null && len > product.length)) {
            throw new IllegalArgumentException("input array length out of bound: " + len);
        }
    }

    // Make sure that the int array z (which is expected to contain
    // the result of a Montgomery multiplication) is present and
    // sufficiently large.
    private static int[] materialize(int[] z, int len) {
         if (z == null || z.length < len)
             z = new int[len];
         return z;
    }

    // These methods are intended to be be replaced by virtual machine
    // intrinsics.
    private static int[] implMontgomeryMultiply(int[] a, int[] b, int[] n, int len,
                                         long inv, int[] product) {
        product = multiplyToLen(a, len, b, len, product);
        return montReduce(product, n, len, (int)inv);
    }
    private static int[] implMontgomerySquare(int[] a, int[] n, int len,
                                       long inv, int[] product) {
        product = squareToLen(a, len, product);
        return montReduce(product, n, len, (int)inv);
    }

    static int[] bnExpModThreshTable = {7, 25, 81, 241, 673, 1793,
                                                Integer.MAX_VALUE}; // Sentinel

    /**
     * Returns a BigInteger whose value is x to the power of y mod z.
     * Assumes: z is odd && x < z.
     */
    private BigInteger oddModPow(BigInteger y, BigInteger z) {
    /*
     * The algorithm is adapted from Colin Plumb's C library.
     *
     * The window algorithm:
     * The idea is to keep a running product of b1 = n^(high-order bits of exp)
     * and then keep appending exponent bits to it.  The following patterns
     * apply to a 3-bit window (k = 3):
     * To append   0: square
     * To append   1: square, multiply by n^1
     * To append  10: square, multiply by n^1, square
     * To append  11: square, square, multiply by n^3
     * To append 100: square, multiply by n^1, square, square
     * To append 101: square, square, square, multiply by n^5
     * To append 110: square, square, multiply by n^3, square
     * To append 111: square, square, square, multiply by n^7
     *
     * Since each pattern involves only one multiply, the longer the pattern
     * the better, except that a 0 (no multiplies) can be appended directly.
     * We precompute a table of odd powers of n, up to 2^k, and can then
     * multiply k bits of exponent at a time.  Actually, assuming random
     * exponents, there is on average one zero bit between needs to
     * multiply (1/2 of the time there's none, 1/4 of the time there's 1,
     * 1/8 of the time, there's 2, 1/32 of the time, there's 3, etc.), so
     * you have to do one multiply per k+1 bits of exponent.
     *
     * The loop walks down the exponent, squaring the result buffer as
     * it goes.  There is a wbits+1 bit lookahead buffer, buf, that is
     * filled with the upcoming exponent bits.  (What is read after the
     * end of the exponent is unimportant, but it is filled with zero here.)
     * When the most-significant bit of this buffer becomes set, i.e.
     * (buf & tblmask) != 0, we have to decide what pattern to multiply
     * by, and when to do it.  We decide, remember to do it in future
     * after a suitable number of squarings have passed (e.g. a pattern
     * of "100" in the buffer requires that we multiply by n^1 immediately;
     * a pattern of "110" calls for multiplying by n^3 after one more
     * squaring), clear the buffer, and continue.
     *
     * When we start, there is one more optimization: the result buffer
     * is implcitly one, so squaring it or multiplying by it can be
     * optimized away.  Further, if we start with a pattern like "100"
     * in the lookahead window, rather than placing n into the buffer
     * and then starting to square it, we have already computed n^2
     * to compute the odd-powers table, so we can place that into
     * the buffer and save a squaring.
     *
     * This means that if you have a k-bit window, to compute n^z,
     * where z is the high k bits of the exponent, 1/2 of the time
     * it requires no squarings.  1/4 of the time, it requires 1
     * squaring, ... 1/2^(k-1) of the time, it reqires k-2 squarings.
     * And the remaining 1/2^(k-1) of the time, the top k bits are a
     * 1 followed by k-1 0 bits, so it again only requires k-2
     * squarings, not k-1.  The average of these is 1.  Add that
     * to the one squaring we have to do to compute the table,
     * and you'll see that a k-bit window saves k-2 squarings
     * as well as reducing the multiplies.  (It actually doesn't
     * hurt in the case k = 1, either.)
     */
        // Special case for exponent of one
        if (y.equals(ONE))
            return this;

        // Special case for base of zero
        if (signum == 0)
            return ZERO;

        int[] base = mag.clone();
        int[] exp = y.mag;
        int[] mod = z.mag;
        int modLen = mod.length;

        // Make modLen even. It is conventional to use a cryptographic
        // modulus that is 512, 768, 1024, or 2048 bits, so this code
        // will not normally be executed. However, it is necessary for
        // the correct functioning of the HotSpot intrinsics.
        if ((modLen & 1) != 0) {
            int[] x = new int[modLen + 1];
            System.arraycopy(mod, 0, x, 1, modLen);
            mod = x;
            modLen++;
        }

        // Select an appropriate window size
        int wbits = 0;
        int ebits = bitLength(exp, exp.length);
        // if exponent is 65537 (0x10001), use minimum window size
        if ((ebits != 17) || (exp[0] != 65537)) {
            while (ebits > bnExpModThreshTable[wbits]) {
                wbits++;
            }
        }

        // Calculate appropriate table size
        int tblmask = 1 << wbits;

        // Allocate table for precomputed odd powers of base in Montgomery form
        int[][] table = new int[tblmask][];
        for (int i=0; i < tblmask; i++)
            table[i] = new int[modLen];

        // Compute the modular inverse of the least significant 64-bit
        // digit of the modulus
        long n0 = (mod[modLen-1] & LONG_MASK) + ((mod[modLen-2] & LONG_MASK) << 32);
        long inv = -MutableBigInteger.inverseMod64(n0);

        // Convert base to Montgomery form
        int[] a = leftShift(base, base.length, modLen << 5);

        MutableBigInteger q = new MutableBigInteger(),
                          a2 = new MutableBigInteger(a),
                          b2 = new MutableBigInteger(mod);
        b2.normalize(); // MutableBigInteger.divide() assumes that its
                        // divisor is in normal form.

        MutableBigInteger r= a2.divide(b2, q);
        table[0] = r.toIntArray();

        // Pad table[0] with leading zeros so its length is at least modLen
        if (table[0].length < modLen) {
           int offset = modLen - table[0].length;
           int[] t2 = new int[modLen];
           System.arraycopy(table[0], 0, t2, offset, table[0].length);
           table[0] = t2;
        }

        // Set b to the square of the base
        int[] b = montgomerySquare(table[0], mod, modLen, inv, null);

        // Set t to high half of b
        int[] t = Arrays.copyOf(b, modLen);

        // Fill in the table with odd powers of the base
        for (int i=1; i < tblmask; i++) {
            table[i] = montgomeryMultiply(t, table[i-1], mod, modLen, inv, null);
        }

        // Pre load the window that slides over the exponent
        int bitpos = 1 << ((ebits-1) & (32-1));

        int buf = 0;
        int elen = exp.length;
        int eIndex = 0;
        for (int i = 0; i <= wbits; i++) {
            buf = (buf << 1) | (((exp[eIndex] & bitpos) != 0)?1:0);
            bitpos >>>= 1;
            if (bitpos == 0) {
                eIndex++;
                bitpos = 1 << (32-1);
                elen--;
            }
        }

        int multpos = ebits;

        // The first iteration, which is hoisted out of the main loop
        ebits--;
        boolean isone = true;

        multpos = ebits - wbits;
        while ((buf & 1) == 0) {
            buf >>>= 1;
            multpos++;
        }

        int[] mult = table[buf >>> 1];

        buf = 0;
        if (multpos == ebits)
            isone = false;

        // The main loop
        while (true) {
            ebits--;
            // Advance the window
            buf <<= 1;

            if (elen != 0) {
                buf |= ((exp[eIndex] & bitpos) != 0) ? 1 : 0;
                bitpos >>>= 1;
                if (bitpos == 0) {
                    eIndex++;
                    bitpos = 1 << (32-1);
                    elen--;
                }
            }

            // Examine the window for pending multiplies
            if ((buf & tblmask) != 0) {
                multpos = ebits - wbits;
                while ((buf & 1) == 0) {
                    buf >>>= 1;
                    multpos++;
                }
                mult = table[buf >>> 1];
                buf = 0;
            }

            // Perform multiply
            if (ebits == multpos) {
                if (isone) {
                    b = mult.clone();
                    isone = false;
                } else {
                    t = b;
                    a = montgomeryMultiply(t, mult, mod, modLen, inv, a);
                    t = a; a = b; b = t;
                }
            }

            // Check if done
            if (ebits == 0)
                break;

            // Square the input
            if (!isone) {
                t = b;
                a = montgomerySquare(t, mod, modLen, inv, a);
                t = a; a = b; b = t;
            }
        }

        // Convert result out of Montgomery form and return
        int[] t2 = new int[2*modLen];
        System.arraycopy(b, 0, t2, modLen, modLen);

        b = montReduce(t2, mod, modLen, (int)inv);

        t2 = Arrays.copyOf(b, modLen);

        return new BigInteger(1, t2);
    }

    /**
     * Montgomery reduce n, modulo mod.  This reduces modulo mod and divides
     * by 2^(32*mlen). Adapted from Colin Plumb's C library.
     */
    private static int[] montReduce(int[] n, int[] mod, int mlen, int inv) {
        int c=0;
        int len = mlen;
        int offset=0;

        do {
            int nEnd = n[n.length-1-offset];
            int carry = mulAdd(n, mod, offset, mlen, inv * nEnd);
            c += addOne(n, offset, mlen, carry);
            offset++;
        } while (--len > 0);

        while (c > 0)
            c += subN(n, mod, mlen);

        while (intArrayCmpToLen(n, mod, mlen) >= 0)
            subN(n, mod, mlen);

        return n;
    }


    /*
     * Returns -1, 0 or +1 as big-endian unsigned int array arg1 is less than,
     * equal to, or greater than arg2 up to length len.
     */
    private static int intArrayCmpToLen(int[] arg1, int[] arg2, int len) {
        for (int i=0; i < len; i++) {
            long b1 = arg1[i] & LONG_MASK;
            long b2 = arg2[i] & LONG_MASK;
            if (b1 < b2)
                return -1;
            if (b1 > b2)
                return 1;
        }
        return 0;
    }

    /**
     * Subtracts two numbers of same length, returning borrow.
     */
    private static int subN(int[] a, int[] b, int len) {
        long sum = 0;

        while (--len >= 0) {
            sum = (a[len] & LONG_MASK) -
                 (b[len] & LONG_MASK) + (sum >> 32);
            a[len] = (int)sum;
        }

        return (int)(sum >> 32);
    }

    /**
     * Multiply an array by one word k and add to result, return the carry
     */
    static int mulAdd(int[] out, int[] in, int offset, int len, int k) {
        implMulAddCheck(out, in, offset, len, k);
        return implMulAdd(out, in, offset, len, k);
    }

    /**
     * Parameters validation.
     */
    private static void implMulAddCheck(int[] out, int[] in, int offset, int len, int k) {
        if (len > in.length) {
            throw new IllegalArgumentException("input length is out of bound: " + len + " > " + in.length);
        }
        if (offset < 0) {
            throw new IllegalArgumentException("input offset is invalid: " + offset);
        }
        if (offset > (out.length - 1)) {
            throw new IllegalArgumentException("input offset is out of bound: " + offset + " > " + (out.length - 1));
        }
        if (len > (out.length - offset)) {
            throw new IllegalArgumentException("input len is out of bound: " + len + " > " + (out.length - offset));
        }
    }

    /**
     * Java Runtime may use intrinsic for this method.
     */
    private static int implMulAdd(int[] out, int[] in, int offset, int len, int k) {
        long kLong = k & LONG_MASK;
        long carry = 0;

        offset = out.length-offset - 1;
        for (int j=len-1; j >= 0; j--) {
            long product = (in[j] & LONG_MASK) * kLong +
                           (out[offset] & LONG_MASK) + carry;
            out[offset--] = (int)product;
            carry = product >>> 32;
        }
        return (int)carry;
    }

    /**
     * Add one word to the number a mlen words into a. Return the resulting
     * carry.
     */
    static int addOne(int[] a, int offset, int mlen, int carry) {
        offset = a.length-1-mlen-offset;
        long t = (a[offset] & LONG_MASK) + (carry & LONG_MASK);

        a[offset] = (int)t;
        if ((t >>> 32) == 0)
            return 0;
        while (--mlen >= 0) {
            if (--offset < 0) { // Carry out of number
                return 1;
            } else {
                a[offset]++;
                if (a[offset] != 0)
                    return 0;
            }
        }
        return 1;
    }

    /**
     * Returns a BigInteger whose value is (this ** exponent) mod (2**p)
     */
    private BigInteger modPow2(BigInteger exponent, int p) {
        /*
         * Perform exponentiation using repeated squaring trick, chopping off
         * high order bits as indicated by modulus.
         */
        BigInteger result = ONE;
        BigInteger baseToPow2 = this.mod2(p);
        int expOffset = 0;

        int limit = exponent.bitLength();

        if (this.testBit(0))
           limit = (p-1) < limit ? (p-1) : limit;

        while (expOffset < limit) {
            if (exponent.testBit(expOffset))
                result = result.multiply(baseToPow2).mod2(p);
            expOffset++;
            if (expOffset < limit)
                baseToPow2 = baseToPow2.square().mod2(p);
        }

        return result;
    }

    /**
     * Returns a BigInteger whose value is this mod(2**p).
     * Assumes that this {@code BigInteger >= 0} and {@code p > 0}.
     */
    private BigInteger mod2(int p) {
        if (bitLength() <= p)
            return this;

        // Copy remaining ints of mag
        int numInts = (p + 31) >>> 5;
        int[] mag = new int[numInts];
        System.arraycopy(this.mag, (this.mag.length - numInts), mag, 0, numInts);

        // Mask out any excess bits
        int excessBits = (numInts << 5) - p;
        mag[0] &= (1L << (32-excessBits)) - 1;

        return (mag[0] == 0 ? new BigInteger(1, mag) : new BigInteger(mag, 1));
    }

    /**
     * Returns a BigInteger whose value is {@code (this}<sup>-1</sup> {@code mod m)}.
     *
     * @param  m the modulus.
     * @return {@code this}<sup>-1</sup> {@code mod m}.
     * @throws ArithmeticException {@code  m} &le; 0, or this BigInteger
     *         has no multiplicative inverse mod m (that is, this BigInteger
     *         is not <i>relatively prime</i> to m).
     */
    public BigInteger modInverse(BigInteger m) {
        if (m.signum != 1)
            throw new ArithmeticException("BigInteger: modulus not positive");

        if (m.equals(ONE))
            return ZERO;

        // Calculate (this mod m)
        BigInteger modVal = this;
        if (signum < 0 || (this.compareMagnitude(m) >= 0))
            modVal = this.mod(m);

        if (modVal.equals(ONE))
            return ONE;

        MutableBigInteger a = new MutableBigInteger(modVal);
        MutableBigInteger b = new MutableBigInteger(m);

        MutableBigInteger result = a.mutableModInverse(b);
        return result.toBigInteger(1);
    }

    // Shift Operations

    /**
     * Returns a BigInteger whose value is {@code (this << n)}.
     * The shift distance, {@code n}, may be negative, in which case
     * this method performs a right shift.
     * (Computes <tt>floor(this * 2<sup>n</sup>)</tt>.)
     *
     * @param  n shift distance, in bits.
     * @return {@code this << n}
     * @see #shiftRight
     */
    public BigInteger shiftLeft(int n) {
        if (signum == 0)
            return ZERO;
        if (n > 0) {
            return new BigInteger(shiftLeft(mag, n), signum);
        } else if (n == 0) {
            return this;
        } else {
            // Possible int overflow in (-n) is not a trouble,
            // because shiftRightImpl considers its argument unsigned
            return shiftRightImpl(-n);
        }
    }

    /**
     * Returns a magnitude array whose value is {@code (mag << n)}.
     * The shift distance, {@code n}, is considered unnsigned.
     * (Computes <tt>this * 2<sup>n</sup></tt>.)
     *
     * @param mag magnitude, the most-significant int ({@code mag[0]}) must be non-zero.
     * @param  n unsigned shift distance, in bits.
     * @return {@code mag << n}
     */
    private static int[] shiftLeft(int[] mag, int n) {
        int nInts = n >>> 5;
        int nBits = n & 0x1f;
        int magLen = mag.length;
        int newMag[] = null;

        if (nBits == 0) {
            newMag = new int[magLen + nInts];
            System.arraycopy(mag, 0, newMag, 0, magLen);
        } else {
            int i = 0;
            int nBits2 = 32 - nBits;
            int highBits = mag[0] >>> nBits2;
            if (highBits != 0) {
                newMag = new int[magLen + nInts + 1];
                newMag[i++] = highBits;
            } else {
                newMag = new int[magLen + nInts];
            }
            int j=0;
            while (j < magLen-1)
                newMag[i++] = mag[j++] << nBits | mag[j] >>> nBits2;
            newMag[i] = mag[j] << nBits;
        }
        return newMag;
    }

    /**
     * Returns a BigInteger whose value is {@code (this >> n)}.  Sign
     * extension is performed.  The shift distance, {@code n}, may be
     * negative, in which case this method performs a left shift.
     * (Computes <tt>floor(this / 2<sup>n</sup>)</tt>.)
     *
     * @param  n shift distance, in bits.
     * @return {@code this >> n}
     * @see #shiftLeft
     */
    public BigInteger shiftRight(int n) {
        if (signum == 0)
            return ZERO;
        if (n > 0) {
            return shiftRightImpl(n);
        } else if (n == 0) {
            return this;
        } else {
            // Possible int overflow in {@code -n} is not a trouble,
            // because shiftLeft considers its argument unsigned
            return new BigInteger(shiftLeft(mag, -n), signum);
        }
    }

    /**
     * Returns a BigInteger whose value is {@code (this >> n)}. The shift
     * distance, {@code n}, is considered unsigned.
     * (Computes <tt>floor(this * 2<sup>-n</sup>)</tt>.)
     *
     * @param  n unsigned shift distance, in bits.
     * @return {@code this >> n}
     */
    private BigInteger shiftRightImpl(int n) {
        int nInts = n >>> 5;
        int nBits = n & 0x1f;
        int magLen = mag.length;
        int newMag[] = null;

        // Special case: entire contents shifted off the end
        if (nInts >= magLen)
            return (signum >= 0 ? ZERO : negConst[1]);

        if (nBits == 0) {
            int newMagLen = magLen - nInts;
            newMag = Arrays.copyOf(mag, newMagLen);
        } else {
            int i = 0;
            int highBits = mag[0] >>> nBits;
            if (highBits != 0) {
                newMag = new int[magLen - nInts];
                newMag[i++] = highBits;
            } else {
                newMag = new int[magLen - nInts -1];
            }

            int nBits2 = 32 - nBits;
            int j=0;
            while (j < magLen - nInts - 1)
                newMag[i++] = (mag[j++] << nBits2) | (mag[j] >>> nBits);
        }

        if (signum < 0) {
            // Find out whether any one-bits were shifted off the end.
            boolean onesLost = false;
            for (int i=magLen-1, j=magLen-nInts; i >= j && !onesLost; i--)
                onesLost = (mag[i] != 0);
            if (!onesLost && nBits != 0)
                onesLost = (mag[magLen - nInts - 1] << (32 - nBits) != 0);

            if (onesLost)
                newMag = javaIncrement(newMag);
        }

        return new BigInteger(newMag, signum);
    }

    int[] javaIncrement(int[] val) {
        int lastSum = 0;
        for (int i=val.length-1;  i >= 0 && lastSum == 0; i--)
            lastSum = (val[i] += 1);
        if (lastSum == 0) {
            val = new int[val.length+1];
            val[0] = 1;
        }
        return val;
    }

    // Bitwise Operations

    /**
     * Returns a BigInteger whose value is {@code (this & val)}.  (This
     * method returns a negative BigInteger if and only if this and val are
     * both negative.)
     *
     * @param val value to be AND'ed with this BigInteger.
     * @return {@code this & val}
     */
    public BigInteger and(BigInteger val) {
        int[] result = new int[Math.max(intLength(), val.intLength())];
        for (int i=0; i < result.length; i++)
            result[i] = (getInt(result.length-i-1)
                         & val.getInt(result.length-i-1));

        return valueOf(result);
    }

    /**
     * Returns a BigInteger whose value is {@code (this | val)}.  (This method
     * returns a negative BigInteger if and only if either this or val is
     * negative.)
     *
     * @param val value to be OR'ed with this BigInteger.
     * @return {@code this | val}
     */
    public BigInteger or(BigInteger val) {
        int[] result = new int[Math.max(intLength(), val.intLength())];
        for (int i=0; i < result.length; i++)
            result[i] = (getInt(result.length-i-1)
                         | val.getInt(result.length-i-1));

        return valueOf(result);
    }

    /**
     * Returns a BigInteger whose value is {@code (this ^ val)}.  (This method
     * returns a negative BigInteger if and only if exactly one of this and
     * val are negative.)
     *
     * @param val value to be XOR'ed with this BigInteger.
     * @return {@code this ^ val}
     */
    public BigInteger xor(BigInteger val) {
        int[] result = new int[Math.max(intLength(), val.intLength())];
        for (int i=0; i < result.length; i++)
            result[i] = (getInt(result.length-i-1)
                         ^ val.getInt(result.length-i-1));

        return valueOf(result);
    }

    /**
     * Returns a BigInteger whose value is {@code (~this)}.  (This method
     * returns a negative value if and only if this BigInteger is
     * non-negative.)
     *
     * @return {@code ~this}
     */
    public BigInteger not() {
        int[] result = new int[intLength()];
        for (int i=0; i < result.length; i++)
            result[i] = ~getInt(result.length-i-1);

        return valueOf(result);
    }

    /**
     * Returns a BigInteger whose value is {@code (this & ~val)}.  This
     * method, which is equivalent to {@code and(val.not())}, is provided as
     * a convenience for masking operations.  (This method returns a negative
     * BigInteger if and only if {@code this} is negative and {@code val} is
     * positive.)
     *
     * @param val value to be complemented and AND'ed with this BigInteger.
     * @return {@code this & ~val}
     */
    public BigInteger andNot(BigInteger val) {
        int[] result = new int[Math.max(intLength(), val.intLength())];
        for (int i=0; i < result.length; i++)
            result[i] = (getInt(result.length-i-1)
                         & ~val.getInt(result.length-i-1));

        return valueOf(result);
    }


    // Single Bit Operations

    /**
     * Returns {@code true} if and only if the designated bit is set.
     * (Computes {@code ((this & (1<<n)) != 0)}.)
     *
     * @param  n index of bit to test.
     * @return {@code true} if and only if the designated bit is set.
     * @throws ArithmeticException {@code n} is negative.
     */
    public boolean testBit(int n) {
        if (n < 0)
            throw new ArithmeticException("Negative bit address");

        return (getInt(n >>> 5) & (1 << (n & 31))) != 0;
    }

    /**
     * Returns a BigInteger whose value is equivalent to this BigInteger
     * with the designated bit set.  (Computes {@code (this | (1<<n))}.)
     *
     * @param  n index of bit to set.
     * @return {@code this | (1<<n)}
     * @throws ArithmeticException {@code n} is negative.
     */
    public BigInteger setBit(int n) {
        if (n < 0)
            throw new ArithmeticException("Negative bit address");

        int intNum = n >>> 5;
        int[] result = new int[Math.max(intLength(), intNum+2)];

        for (int i=0; i < result.length; i++)
            result[result.length-i-1] = getInt(i);

        result[result.length-intNum-1] |= (1 << (n & 31));

        return valueOf(result);
    }

    /**
     * Returns a BigInteger whose value is equivalent to this BigInteger
     * with the designated bit cleared.
     * (Computes {@code (this & ~(1<<n))}.)
     *
     * @param  n index of bit to clear.
     * @return {@code this & ~(1<<n)}
     * @throws ArithmeticException {@code n} is negative.
     */
    public BigInteger clearBit(int n) {
        if (n < 0)
            throw new ArithmeticException("Negative bit address");

        int intNum = n >>> 5;
        int[] result = new int[Math.max(intLength(), ((n + 1) >>> 5) + 1)];

        for (int i=0; i < result.length; i++)
            result[result.length-i-1] = getInt(i);

        result[result.length-intNum-1] &= ~(1 << (n & 31));

        return valueOf(result);
    }

    /**
     * Returns a BigInteger whose value is equivalent to this BigInteger
     * with the designated bit flipped.
     * (Computes {@code (this ^ (1<<n))}.)
     *
     * @param  n index of bit to flip.
     * @return {@code this ^ (1<<n)}
     * @throws ArithmeticException {@code n} is negative.
     */
    public BigInteger flipBit(int n) {
        if (n < 0)
            throw new ArithmeticException("Negative bit address");

        int intNum = n >>> 5;
        int[] result = new int[Math.max(intLength(), intNum+2)];

        for (int i=0; i < result.length; i++)
            result[result.length-i-1] = getInt(i);

        result[result.length-intNum-1] ^= (1 << (n & 31));

        return valueOf(result);
    }

    /**
     * Returns the index of the rightmost (lowest-order) one bit in this
     * BigInteger (the number of zero bits to the right of the rightmost
     * one bit).  Returns -1 if this BigInteger contains no one bits.
     * (Computes {@code (this == 0? -1 : log2(this & -this))}.)
     *
     * @return index of the rightmost one bit in this BigInteger.
     */
    public int getLowestSetBit() {
        @SuppressWarnings("deprecation") int lsb = lowestSetBit - 2;
        if (lsb == -2) {  // lowestSetBit not initialized yet
            lsb = 0;
            if (signum == 0) {
                lsb -= 1;
            } else {
                // Search for lowest order nonzero int
                int i,b;
                for (i=0; (b = getInt(i)) == 0; i++)
                    ;
                lsb += (i << 5) + Integer.numberOfTrailingZeros(b);
            }
            lowestSetBit = lsb + 2;
        }
        return lsb;
    }


    // Miscellaneous Bit Operations

    /**
     * Returns the number of bits in the minimal two's-complement
     * representation of this BigInteger, <i>excluding</i> a sign bit.
     * For positive BigIntegers, this is equivalent to the number of bits in
     * the ordinary binary representation.  (Computes
     * {@code (ceil(log2(this < 0 ? -this : this+1)))}.)
     *
     * @return number of bits in the minimal two's-complement
     *         representation of this BigInteger, <i>excluding</i> a sign bit.
     */
    public int bitLength() {
        @SuppressWarnings("deprecation") int n = bitLength - 1;
        if (n == -1) { // bitLength not initialized yet
            int[] m = mag;
            int len = m.length;
            if (len == 0) {
                n = 0; // offset by one to initialize
            }  else {
                // Calculate the bit length of the magnitude
                int magBitLength = ((len - 1) << 5) + bitLengthForInt(mag[0]);
                 if (signum < 0) {
                     // Check if magnitude is a power of two
                     boolean pow2 = (Integer.bitCount(mag[0]) == 1);
                     for (int i=1; i< len && pow2; i++)
                         pow2 = (mag[i] == 0);

                     n = (pow2 ? magBitLength -1 : magBitLength);
                 } else {
                     n = magBitLength;
                 }
            }
            bitLength = n + 1;
        }
        return n;
    }

    /**
     * Returns the number of bits in the two's complement representation
     * of this BigInteger that differ from its sign bit.  This method is
     * useful when implementing bit-vector style sets atop BigIntegers.
     *
     * @return number of bits in the two's complement representation
     *         of this BigInteger that differ from its sign bit.
     */
    public int bitCount() {
        @SuppressWarnings("deprecation") int bc = bitCount - 1;
        if (bc == -1) {  // bitCount not initialized yet
            bc = 0;      // offset by one to initialize
            // Count the bits in the magnitude
            for (int i=0; i < mag.length; i++)
                bc += Integer.bitCount(mag[i]);
            if (signum < 0) {
                // Count the trailing zeros in the magnitude
                int magTrailingZeroCount = 0, j;
                for (j=mag.length-1; mag[j] == 0; j--)
                    magTrailingZeroCount += 32;
                magTrailingZeroCount += Integer.numberOfTrailingZeros(mag[j]);
                bc += magTrailingZeroCount - 1;
            }
            bitCount = bc + 1;
        }
        return bc;
    }

    // Primality Testing

    /**
     * Returns {@code true} if this BigInteger is probably prime,
     * {@code false} if it's definitely composite.  If
     * {@code certainty} is &le; 0, {@code true} is
     * returned.
     *
     * @param  certainty a measure of the uncertainty that the caller is
     *         willing to tolerate: if the call returns {@code true}
     *         the probability that this BigInteger is prime exceeds
     *         (1 - 1/2<sup>{@code certainty}</sup>).  The execution time of
     *         this method is proportional to the value of this parameter.
     * @return {@code true} if this BigInteger is probably prime,
     *         {@code false} if it's definitely composite.
     */
    public boolean isProbablePrime(int certainty) {
        if (certainty <= 0)
            return true;
        BigInteger w = this.abs();
        if (w.equals(TWO))
            return true;
        if (!w.testBit(0) || w.equals(ONE))
            return false;

        return w.primeToCertainty(certainty, null);
    }

    // Comparison Operations

    /**
     * Compares this BigInteger with the specified BigInteger.  This
     * method is provided in preference to individual methods for each
     * of the six boolean comparison operators ({@literal <}, ==,
     * {@literal >}, {@literal >=}, !=, {@literal <=}).  The suggested
     * idiom for performing these comparisons is: {@code
     * (x.compareTo(y)} &lt;<i>op</i>&gt; {@code 0)}, where
     * &lt;<i>op</i>&gt; is one of the six comparison operators.
     *
     * @param  val BigInteger to which this BigInteger is to be compared.
     * @return -1, 0 or 1 as this BigInteger is numerically less than, equal
     *         to, or greater than {@code val}.
     */
    public int compareTo(BigInteger val) {
        if (signum == val.signum) {
            switch (signum) {
            case 1:
                return compareMagnitude(val);
            case -1:
                return val.compareMagnitude(this);
            default:
                return 0;
            }
        }
        return signum > val.signum ? 1 : -1;
    }

    /**
     * Compares the magnitude array of this BigInteger with the specified
     * BigInteger's. This is the version of compareTo ignoring sign.
     *
     * @param val BigInteger whose magnitude array to be compared.
     * @return -1, 0 or 1 as this magnitude array is less than, equal to or
     *         greater than the magnitude aray for the specified BigInteger's.
     */
    final int compareMagnitude(BigInteger val) {
        int[] m1 = mag;
        int len1 = m1.length;
        int[] m2 = val.mag;
        int len2 = m2.length;
        if (len1 < len2)
            return -1;
        if (len1 > len2)
            return 1;
        for (int i = 0; i < len1; i++) {
            int a = m1[i];
            int b = m2[i];
            if (a != b)
                return ((a & LONG_MASK) < (b & LONG_MASK)) ? -1 : 1;
        }
        return 0;
    }

    /**
     * Version of compareMagnitude that compares magnitude with long value.
     * val can't be Long.MIN_VALUE.
     */
    final int compareMagnitude(long val) {
        assert val != Long.MIN_VALUE;
        int[] m1 = mag;
        int len = m1.length;
        if (len > 2) {
            return 1;
        }
        if (val < 0) {
            val = -val;
        }
        int highWord = (int)(val >>> 32);
        if (highWord == 0) {
            if (len < 1)
                return -1;
            if (len > 1)
                return 1;
            int a = m1[0];
            int b = (int)val;
            if (a != b) {
                return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
            }
            return 0;
        } else {
            if (len < 2)
                return -1;
            int a = m1[0];
            int b = highWord;
            if (a != b) {
                return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
            }
            a = m1[1];
            b = (int)val;
            if (a != b) {
                return ((a & LONG_MASK) < (b & LONG_MASK))? -1 : 1;
            }
            return 0;
        }
    }

    /**
     * Compares this BigInteger with the specified Object for equality.
     *
     * @param  x Object to which this BigInteger is to be compared.
     * @return {@code true} if and only if the specified Object is a
     *         BigInteger whose value is numerically equal to this BigInteger.
     */
    public boolean equals(Object x) {
        // This test is just an optimization, which may or may not help
        if (x == this)
            return true;

        if (!(x instanceof BigInteger))
            return false;

        BigInteger xInt = (BigInteger) x;
        if (xInt.signum != signum)
            return false;

        int[] m = mag;
        int len = m.length;
        int[] xm = xInt.mag;
        if (len != xm.length)
            return false;

        for (int i = 0; i < len; i++)
            if (xm[i] != m[i])
                return false;

        return true;
    }

    /**
     * Returns the minimum of this BigInteger and {@code val}.
     *
     * @param  val value with which the minimum is to be computed.
     * @return the BigInteger whose value is the lesser of this BigInteger and
     *         {@code val}.  If they are equal, either may be returned.
     */
    public BigInteger min(BigInteger val) {
        return (compareTo(val) < 0 ? this : val);
    }

    /**
     * Returns the maximum of this BigInteger and {@code val}.
     *
     * @param  val value with which the maximum is to be computed.
     * @return the BigInteger whose value is the greater of this and
     *         {@code val}.  If they are equal, either may be returned.
     */
    public BigInteger max(BigInteger val) {
        return (compareTo(val) > 0 ? this : val);
    }


    // Hash Function

    /**
     * Returns the hash code for this BigInteger.
     *
     * @return hash code for this BigInteger.
     */
    public int hashCode() {
        int hashCode = 0;

        for (int i=0; i < mag.length; i++)
            hashCode = (int)(31*hashCode + (mag[i] & LONG_MASK));

        return hashCode * signum;
    }

    /**
     * Returns the String representation of this BigInteger in the
     * given radix.  If the radix is outside the range from {@link
     * Character#MIN_RADIX} to {@link Character#MAX_RADIX} inclusive,
     * it will default to 10 (as is the case for
     * {@code Integer.toString}).  The digit-to-character mapping
     * provided by {@code Character.forDigit} is used, and a minus
     * sign is prepended if appropriate.  (This representation is
     * compatible with the {@link #BigInteger(String, int) (String,
     * int)} constructor.)
     *
     * @param  radix  radix of the String representation.
     * @return String representation of this BigInteger in the given radix.
     * @see    Integer#toString
     * @see    Character#forDigit
     * @see    #BigInteger(java.lang.String, int)
     */
    public String toString(int radix) {
        if (signum == 0)
            return "0";
        if (radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
            radix = 10;

        // If it's small enough, use smallToString.
        if (mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD)
           return smallToString(radix);

        // Otherwise use recursive toString, which requires positive arguments.
        // The results will be concatenated into this StringBuilder
        StringBuilder sb = new StringBuilder();
        if (signum < 0) {
            toString(this.negate(), sb, radix, 0);
            sb.insert(0, '-');
        }
        else
            toString(this, sb, radix, 0);

        return sb.toString();
    }

    /** This method is used to perform toString when arguments are small. */
    private String smallToString(int radix) {
        if (signum == 0) {
            return "0";
        }

        // Compute upper bound on number of digit groups and allocate space
        int maxNumDigitGroups = (4*mag.length + 6)/7;
        String digitGroup[] = new String[maxNumDigitGroups];

        // Translate number to string, a digit group at a time
        BigInteger tmp = this.abs();
        int numGroups = 0;
        while (tmp.signum != 0) {
            BigInteger d = longRadix[radix];

            MutableBigInteger q = new MutableBigInteger(),
                              a = new MutableBigInteger(tmp.mag),
                              b = new MutableBigInteger(d.mag);
            MutableBigInteger r = a.divide(b, q);
            BigInteger q2 = q.toBigInteger(tmp.signum * d.signum);
            BigInteger r2 = r.toBigInteger(tmp.signum * d.signum);

            digitGroup[numGroups++] = Long.toString(r2.longValue(), radix);
            tmp = q2;
        }

        // Put sign (if any) and first digit group into result buffer
        StringBuilder buf = new StringBuilder(numGroups*digitsPerLong[radix]+1);
        if (signum < 0) {
            buf.append('-');
        }
        buf.append(digitGroup[numGroups-1]);

        // Append remaining digit groups padded with leading zeros
        for (int i=numGroups-2; i >= 0; i--) {
            // Prepend (any) leading zeros for this digit group
            int numLeadingZeros = digitsPerLong[radix]-digitGroup[i].length();
            if (numLeadingZeros != 0) {
                buf.append(zeros[numLeadingZeros]);
            }
            buf.append(digitGroup[i]);
        }
        return buf.toString();
    }

    /**
     * Converts the specified BigInteger to a string and appends to
     * {@code sb}.  This implements the recursive Schoenhage algorithm
     * for base conversions.
     * <p/>
     * See Knuth, Donald,  _The Art of Computer Programming_, Vol. 2,
     * Answers to Exercises (4.4) Question 14.
     *
     * @param u      The number to convert to a string.
     * @param sb     The StringBuilder that will be appended to in place.
     * @param radix  The base to convert to.
     * @param digits The minimum number of digits to pad to.
     */
    private static void toString(BigInteger u, StringBuilder sb, int radix,
                                 int digits) {
        /* If we're smaller than a certain threshold, use the smallToString
           method, padding with leading zeroes when necessary. */
        if (u.mag.length <= SCHOENHAGE_BASE_CONVERSION_THRESHOLD) {
            String s = u.smallToString(radix);

            // Pad with internal zeros if necessary.
            // Don't pad if we're at the beginning of the string.
            if ((s.length() < digits) && (sb.length() > 0)) {
                for (int i=s.length(); i < digits; i++) { // May be a faster way to
                    sb.append('0');                    // do this?
                }
            }

            sb.append(s);
            return;
        }

        int b, n;
        b = u.bitLength();

        // Calculate a value for n in the equation radix^(2^n) = u
        // and subtract 1 from that value.  This is used to find the
        // cache index that contains the best value to divide u.
        n = (int) Math.round(Math.log(b * LOG_TWO / logCache[radix]) / LOG_TWO - 1.0);
        BigInteger v = getRadixConversionCache(radix, n);
        BigInteger[] results;
        results = u.divideAndRemainder(v);

        int expectedDigits = 1 << n;

        // Now recursively build the two halves of each number.
        toString(results[0], sb, radix, digits-expectedDigits);
        toString(results[1], sb, radix, expectedDigits);
    }

    /**
     * Returns the value radix^(2^exponent) from the cache.
     * If this value doesn't already exist in the cache, it is added.
     * <p/>
     * This could be changed to a more complicated caching method using
     * {@code Future}.
     */
    private static BigInteger getRadixConversionCache(int radix, int exponent) {
        BigInteger[] cacheLine = powerCache[radix]; // volatile read
        if (exponent < cacheLine.length) {
            return cacheLine[exponent];
        }

        int oldLength = cacheLine.length;
        cacheLine = Arrays.copyOf(cacheLine, exponent + 1);
        for (int i = oldLength; i <= exponent; i++) {
            cacheLine[i] = cacheLine[i - 1].pow(2);
        }

        BigInteger[][] pc = powerCache; // volatile read again
        if (exponent >= pc[radix].length) {
            pc = pc.clone();
            pc[radix] = cacheLine;
            powerCache = pc; // volatile write, publish
        }
        return cacheLine[exponent];
    }

    /* zero[i] is a string of i consecutive zeros. */
    private static String zeros[] = new String[64];
    static {
        zeros[63] =
            "000000000000000000000000000000000000000000000000000000000000000";
        for (int i=0; i < 63; i++)
            zeros[i] = zeros[63].substring(0, i);
    }

    /**
     * Returns the decimal String representation of this BigInteger.
     * The digit-to-character mapping provided by
     * {@code Character.forDigit} is used, and a minus sign is
     * prepended if appropriate.  (This representation is compatible
     * with the {@link #BigInteger(String) (String)} constructor, and
     * allows for String concatenation with Java's + operator.)
     *
     * @return decimal String representation of this BigInteger.
     * @see    Character#forDigit
     * @see    #BigInteger(java.lang.String)
     */
    public String toString() {
        return toString(10);
    }

    /**
     * Returns a byte array containing the two's-complement
     * representation of this BigInteger.  The byte array will be in
     * <i>big-endian</i> byte-order: the most significant byte is in
     * the zeroth element.  The array will contain the minimum number
     * of bytes required to represent this BigInteger, including at
     * least one sign bit, which is {@code (ceil((this.bitLength() +
     * 1)/8))}.  (This representation is compatible with the
     * {@link #BigInteger(byte[]) (byte[])} constructor.)
     *
     * @return a byte array containing the two's-complement representation of
     *         this BigInteger.
     * @see    #BigInteger(byte[])
     */
    public byte[] toByteArray() {
        int byteLen = bitLength()/8 + 1;
        byte[] byteArray = new byte[byteLen];

        for (int i=byteLen-1, bytesCopied=4, nextInt=0, intIndex=0; i >= 0; i--) {
            if (bytesCopied == 4) {
                nextInt = getInt(intIndex++);
                bytesCopied = 1;
            } else {
                nextInt >>>= 8;
                bytesCopied++;
            }
            byteArray[i] = (byte)nextInt;
        }
        return byteArray;
    }

    /**
     * Converts this BigInteger to an {@code int}.  This
     * conversion is analogous to a
     * <i>narrowing primitive conversion</i> from {@code long} to
     * {@code int} as defined in section 5.1.3 of
     * <cite>The Java&trade; Language Specification</cite>:
     * if this BigInteger is too big to fit in an
     * {@code int}, only the low-order 32 bits are returned.
     * Note that this conversion can lose information about the
     * overall magnitude of the BigInteger value as well as return a
     * result with the opposite sign.
     *
     * @return this BigInteger converted to an {@code int}.
     * @see #intValueExact()
     */
    public int intValue() {
        int result = 0;
        result = getInt(0);
        return result;
    }

    /**
     * Converts this BigInteger to a {@code long}.  This
     * conversion is analogous to a
     * <i>narrowing primitive conversion</i> from {@code long} to
     * {@code int} as defined in section 5.1.3 of
     * <cite>The Java&trade; Language Specification</cite>:
     * if this BigInteger is too big to fit in a
     * {@code long}, only the low-order 64 bits are returned.
     * Note that this conversion can lose information about the
     * overall magnitude of the BigInteger value as well as return a
     * result with the opposite sign.
     *
     * @return this BigInteger converted to a {@code long}.
     * @see #longValueExact()
     */
    public long longValue() {
        long result = 0;

        for (int i=1; i >= 0; i--)
            result = (result << 32) + (getInt(i) & LONG_MASK);
        return result;
    }

    /**
     * Converts this BigInteger to a {@code float}.  This
     * conversion is similar to the
     * <i>narrowing primitive conversion</i> from {@code double} to
     * {@code float} as defined in section 5.1.3 of
     * <cite>The Java&trade; Language Specification</cite>:
     * if this BigInteger has too great a magnitude
     * to represent as a {@code float}, it will be converted to
     * {@link Float#NEGATIVE_INFINITY} or {@link
     * Float#POSITIVE_INFINITY} as appropriate.  Note that even when
     * the return value is finite, this conversion can lose
     * information about the precision of the BigInteger value.
     *
     * @return this BigInteger converted to a {@code float}.
     */
    public float floatValue() {
        if (signum == 0) {
            return 0.0f;
        }

        int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;

        // exponent == floor(log2(abs(this)))
        if (exponent < Long.SIZE - 1) {
            return longValue();
        } else if (exponent > Float.MAX_EXPONENT) {
            return signum > 0 ? Float.POSITIVE_INFINITY : Float.NEGATIVE_INFINITY;
        }

        /*
         * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
         * one bit. To make rounding easier, we pick out the top
         * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
         * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
         * bits, and signifFloor the top SIGNIFICAND_WIDTH.
         *
         * It helps to consider the real number signif = abs(this) *
         * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
         */
        int shift = exponent - FloatConsts.SIGNIFICAND_WIDTH;

        int twiceSignifFloor;
        // twiceSignifFloor will be == abs().shiftRight(shift).intValue()
        // We do the shift into an int directly to improve performance.

        int nBits = shift & 0x1f;
        int nBits2 = 32 - nBits;

        if (nBits == 0) {
            twiceSignifFloor = mag[0];
        } else {
            twiceSignifFloor = mag[0] >>> nBits;
            if (twiceSignifFloor == 0) {
                twiceSignifFloor = (mag[0] << nBits2) | (mag[1] >>> nBits);
            }
        }

        int signifFloor = twiceSignifFloor >> 1;
        signifFloor &= FloatConsts.SIGNIF_BIT_MASK; // remove the implied bit

        /*
         * We round up if either the fractional part of signif is strictly
         * greater than 0.5 (which is true if the 0.5 bit is set and any lower
         * bit is set), or if the fractional part of signif is >= 0.5 and
         * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
         * are set). This is equivalent to the desired HALF_EVEN rounding.
         */
        boolean increment = (twiceSignifFloor & 1) != 0
                && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
        int signifRounded = increment ? signifFloor + 1 : signifFloor;
        int bits = ((exponent + FloatConsts.EXP_BIAS))
                << (FloatConsts.SIGNIFICAND_WIDTH - 1);
        bits += signifRounded;
        /*
         * If signifRounded == 2^24, we'd need to set all of the significand
         * bits to zero and add 1 to the exponent. This is exactly the behavior
         * we get from just adding signifRounded to bits directly. If the
         * exponent is Float.MAX_EXPONENT, we round up (correctly) to
         * Float.POSITIVE_INFINITY.
         */
        bits |= signum & FloatConsts.SIGN_BIT_MASK;
        return Float.intBitsToFloat(bits);
    }

    /**
     * Converts this BigInteger to a {@code double}.  This
     * conversion is similar to the
     * <i>narrowing primitive conversion</i> from {@code double} to
     * {@code float} as defined in section 5.1.3 of
     * <cite>The Java&trade; Language Specification</cite>:
     * if this BigInteger has too great a magnitude
     * to represent as a {@code double}, it will be converted to
     * {@link Double#NEGATIVE_INFINITY} or {@link
     * Double#POSITIVE_INFINITY} as appropriate.  Note that even when
     * the return value is finite, this conversion can lose
     * information about the precision of the BigInteger value.
     *
     * @return this BigInteger converted to a {@code double}.
     */
    public double doubleValue() {
        if (signum == 0) {
            return 0.0;
        }

        int exponent = ((mag.length - 1) << 5) + bitLengthForInt(mag[0]) - 1;

        // exponent == floor(log2(abs(this))Double)
        if (exponent < Long.SIZE - 1) {
            return longValue();
        } else if (exponent > Double.MAX_EXPONENT) {
            return signum > 0 ? Double.POSITIVE_INFINITY : Double.NEGATIVE_INFINITY;
        }

        /*
         * We need the top SIGNIFICAND_WIDTH bits, including the "implicit"
         * one bit. To make rounding easier, we pick out the top
         * SIGNIFICAND_WIDTH + 1 bits, so we have one to help us round up or
         * down. twiceSignifFloor will contain the top SIGNIFICAND_WIDTH + 1
         * bits, and signifFloor the top SIGNIFICAND_WIDTH.
         *
         * It helps to consider the real number signif = abs(this) *
         * 2^(SIGNIFICAND_WIDTH - 1 - exponent).
         */
        int shift = exponent - DoubleConsts.SIGNIFICAND_WIDTH;

        long twiceSignifFloor;
        // twiceSignifFloor will be == abs().shiftRight(shift).longValue()
        // We do the shift into a long directly to improve performance.

        int nBits = shift & 0x1f;
        int nBits2 = 32 - nBits;

        int highBits;
        int lowBits;
        if (nBits == 0) {
            highBits = mag[0];
            lowBits = mag[1];
        } else {
            highBits = mag[0] >>> nBits;
            lowBits = (mag[0] << nBits2) | (mag[1] >>> nBits);
            if (highBits == 0) {
                highBits = lowBits;
                lowBits = (mag[1] << nBits2) | (mag[2] >>> nBits);
            }
        }

        twiceSignifFloor = ((highBits & LONG_MASK) << 32)
                | (lowBits & LONG_MASK);

        long signifFloor = twiceSignifFloor >> 1;
        signifFloor &= DoubleConsts.SIGNIF_BIT_MASK; // remove the implied bit

        /*
         * We round up if either the fractional part of signif is strictly
         * greater than 0.5 (which is true if the 0.5 bit is set and any lower
         * bit is set), or if the fractional part of signif is >= 0.5 and
         * signifFloor is odd (which is true if both the 0.5 bit and the 1 bit
         * are set). This is equivalent to the desired HALF_EVEN rounding.
         */
        boolean increment = (twiceSignifFloor & 1) != 0
                && ((signifFloor & 1) != 0 || abs().getLowestSetBit() < shift);
        long signifRounded = increment ? signifFloor + 1 : signifFloor;
        long bits = (long) ((exponent + DoubleConsts.EXP_BIAS))
                << (DoubleConsts.SIGNIFICAND_WIDTH - 1);
        bits += signifRounded;
        /*
         * If signifRounded == 2^53, we'd need to set all of the significand
         * bits to zero and add 1 to the exponent. This is exactly the behavior
         * we get from just adding signifRounded to bits directly. If the
         * exponent is Double.MAX_EXPONENT, we round up (correctly) to
         * Double.POSITIVE_INFINITY.
         */
        bits |= signum & DoubleConsts.SIGN_BIT_MASK;
        return Double.longBitsToDouble(bits);
    }

    /**
     * Returns a copy of the input array stripped of any leading zero bytes.
     */
    private static int[] stripLeadingZeroInts(int val[]) {
        int vlen = val.length;
        int keep;

        // Find first nonzero byte
        for (keep = 0; keep < vlen && val[keep] == 0; keep++)
            ;
        return java.util.Arrays.copyOfRange(val, keep, vlen);
    }

    /**
     * Returns the input array stripped of any leading zero bytes.
     * Since the source is trusted the copying may be skipped.
     */
    private static int[] trustedStripLeadingZeroInts(int val[]) {
        int vlen = val.length;
        int keep;

        // Find first nonzero byte
        for (keep = 0; keep < vlen && val[keep] == 0; keep++)
            ;
        return keep == 0 ? val : java.util.Arrays.copyOfRange(val, keep, vlen);
    }

    /**
     * Returns a copy of the input array stripped of any leading zero bytes.
     */
    private static int[] stripLeadingZeroBytes(byte a[]) {
        int byteLength = a.length;
        int keep;

        // Find first nonzero byte
        for (keep = 0; keep < byteLength && a[keep] == 0; keep++)
            ;

        // Allocate new array and copy relevant part of input array
        int intLength = ((byteLength - keep) + 3) >>> 2;
        int[] result = new int[intLength];
        int b = byteLength - 1;
        for (int i = intLength-1; i >= 0; i--) {
            result[i] = a[b--] & 0xff;
            int bytesRemaining = b - keep + 1;
            int bytesToTransfer = Math.min(3, bytesRemaining);
            for (int j=8; j <= (bytesToTransfer << 3); j += 8)
                result[i] |= ((a[b--] & 0xff) << j);
        }
        return result;
    }

    /**
     * Takes an array a representing a negative 2's-complement number and
     * returns the minimal (no leading zero bytes) unsigned whose value is -a.
     */
    private static int[] makePositive(byte a[]) {
        int keep, k;
        int byteLength = a.length;

        // Find first non-sign (0xff) byte of input
        for (keep=0; keep < byteLength && a[keep] == -1; keep++)
            ;


        /* Allocate output array.  If all non-sign bytes are 0x00, we must
         * allocate space for one extra output byte. */
        for (k=keep; k < byteLength && a[k] == 0; k++)
            ;

        int extraByte = (k == byteLength) ? 1 : 0;
        int intLength = ((byteLength - keep + extraByte) + 3) >>> 2;
        int result[] = new int[intLength];

        /* Copy one's complement of input into output, leaving extra
         * byte (if it exists) == 0x00 */
        int b = byteLength - 1;
        for (int i = intLength-1; i >= 0; i--) {
            result[i] = a[b--] & 0xff;
            int numBytesToTransfer = Math.min(3, b-keep+1);
            if (numBytesToTransfer < 0)
                numBytesToTransfer = 0;
            for (int j=8; j <= 8*numBytesToTransfer; j += 8)
                result[i] |= ((a[b--] & 0xff) << j);

            // Mask indicates which bits must be complemented
            int mask = -1 >>> (8*(3-numBytesToTransfer));
            result[i] = ~result[i] & mask;
        }

        // Add one to one's complement to generate two's complement
        for (int i=result.length-1; i >= 0; i--) {
            result[i] = (int)((result[i] & LONG_MASK) + 1);
            if (result[i] != 0)
                break;
        }

        return result;
    }

    /**
     * Takes an array a representing a negative 2's-complement number and
     * returns the minimal (no leading zero ints) unsigned whose value is -a.
     */
    private static int[] makePositive(int a[]) {
        int keep, j;

        // Find first non-sign (0xffffffff) int of input
        for (keep=0; keep < a.length && a[keep] == -1; keep++)
            ;

        /* Allocate output array.  If all non-sign ints are 0x00, we must
         * allocate space for one extra output int. */
        for (j=keep; j < a.length && a[j] == 0; j++)
            ;
        int extraInt = (j == a.length ? 1 : 0);
        int result[] = new int[a.length - keep + extraInt];

        /* Copy one's complement of input into output, leaving extra
         * int (if it exists) == 0x00 */
        for (int i = keep; i < a.length; i++)
            result[i - keep + extraInt] = ~a[i];

        // Add one to one's complement to generate two's complement
        for (int i=result.length-1; ++result[i] == 0; i--)
            ;

        return result;
    }

    /*
     * The following two arrays are used for fast String conversions.  Both
     * are indexed by radix.  The first is the number of digits of the given
     * radix that can fit in a Java long without "going negative", i.e., the
     * highest integer n such that radix**n < 2**63.  The second is the
     * "long radix" that tears each number into "long digits", each of which
     * consists of the number of digits in the corresponding element in
     * digitsPerLong (longRadix[i] = i**digitPerLong[i]).  Both arrays have
     * nonsense values in their 0 and 1 elements, as radixes 0 and 1 are not
     * used.
     */
    private static int digitsPerLong[] = {0, 0,
        62, 39, 31, 27, 24, 22, 20, 19, 18, 18, 17, 17, 16, 16, 15, 15, 15, 14,
        14, 14, 14, 13, 13, 13, 13, 13, 13, 12, 12, 12, 12, 12, 12, 12, 12};

    private static BigInteger longRadix[] = {null, null,
        valueOf(0x4000000000000000L), valueOf(0x383d9170b85ff80bL),
        valueOf(0x4000000000000000L), valueOf(0x6765c793fa10079dL),
        valueOf(0x41c21cb8e1000000L), valueOf(0x3642798750226111L),
        valueOf(0x1000000000000000L), valueOf(0x12bf307ae81ffd59L),
        valueOf( 0xde0b6b3a7640000L), valueOf(0x4d28cb56c33fa539L),
        valueOf(0x1eca170c00000000L), valueOf(0x780c7372621bd74dL),
        valueOf(0x1e39a5057d810000L), valueOf(0x5b27ac993df97701L),
        valueOf(0x1000000000000000L), valueOf(0x27b95e997e21d9f1L),
        valueOf(0x5da0e1e53c5c8000L), valueOf( 0xb16a458ef403f19L),
        valueOf(0x16bcc41e90000000L), valueOf(0x2d04b7fdd9c0ef49L),
        valueOf(0x5658597bcaa24000L), valueOf( 0x6feb266931a75b7L),
        valueOf( 0xc29e98000000000L), valueOf(0x14adf4b7320334b9L),
        valueOf(0x226ed36478bfa000L), valueOf(0x383d9170b85ff80bL),
        valueOf(0x5a3c23e39c000000L), valueOf( 0x4e900abb53e6b71L),
        valueOf( 0x7600ec618141000L), valueOf( 0xaee5720ee830681L),
        valueOf(0x1000000000000000L), valueOf(0x172588ad4f5f0981L),
        valueOf(0x211e44f7d02c1000L), valueOf(0x2ee56725f06e5c71L),
        valueOf(0x41c21cb8e1000000L)};

    /*
     * These two arrays are the integer analogue of above.
     */
    private static int digitsPerInt[] = {0, 0, 30, 19, 15, 13, 11,
        11, 10, 9, 9, 8, 8, 8, 8, 7, 7, 7, 7, 7, 7, 7, 6, 6, 6, 6,
        6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5};

    private static int intRadix[] = {0, 0,
        0x40000000, 0x4546b3db, 0x40000000, 0x48c27395, 0x159fd800,
        0x75db9c97, 0x40000000, 0x17179149, 0x3b9aca00, 0xcc6db61,
        0x19a10000, 0x309f1021, 0x57f6c100, 0xa2f1b6f,  0x10000000,
        0x18754571, 0x247dbc80, 0x3547667b, 0x4c4b4000, 0x6b5a6e1d,
        0x6c20a40,  0x8d2d931,  0xb640000,  0xe8d4a51,  0x1269ae40,
        0x17179149, 0x1cb91000, 0x23744899, 0x2b73a840, 0x34e63b41,
        0x40000000, 0x4cfa3cc1, 0x5c13d840, 0x6d91b519, 0x39aa400
    };

    /**
     * These routines provide access to the two's complement representation
     * of BigIntegers.
     */

    /**
     * Returns the length of the two's complement representation in ints,
     * including space for at least one sign bit.
     */
    private int intLength() {
        return (bitLength() >>> 5) + 1;
    }

    /* Returns sign bit */
    private int signBit() {
        return signum < 0 ? 1 : 0;
    }

    /* Returns an int of sign bits */
    private int signInt() {
        return signum < 0 ? -1 : 0;
    }

    /**
     * Returns the specified int of the little-endian two's complement
     * representation (int 0 is the least significant).  The int number can
     * be arbitrarily high (values are logically preceded by infinitely many
     * sign ints).
     */
    private int getInt(int n) {
        if (n < 0)
            return 0;
        if (n >= mag.length)
            return signInt();

        int magInt = mag[mag.length-n-1];

        return (signum >= 0 ? magInt :
                (n <= firstNonzeroIntNum() ? -magInt : ~magInt));
    }

    /**
     * Returns the index of the int that contains the first nonzero int in the
     * little-endian binary representation of the magnitude (int 0 is the
     * least significant). If the magnitude is zero, return value is undefined.
     */
    private int firstNonzeroIntNum() {
        int fn = firstNonzeroIntNum - 2;
        if (fn == -2) { // firstNonzeroIntNum not initialized yet
            fn = 0;

            // Search for the first nonzero int
            int i;
            int mlen = mag.length;
            for (i = mlen - 1; i >= 0 && mag[i] == 0; i--)
                ;
            fn = mlen - i - 1;
            firstNonzeroIntNum = fn + 2; // offset by two to initialize
        }
        return fn;
    }

    /** use serialVersionUID from JDK 1.1. for interoperability */
    private static final long serialVersionUID = -8287574255936472291L;

    /**
     * Serializable fields for BigInteger.
     *
     * @serialField signum  int
     *              signum of this BigInteger.
     * @serialField magnitude int[]
     *              magnitude array of this BigInteger.
     * @serialField bitCount  int
     *              number of bits in this BigInteger
     * @serialField bitLength int
     *              the number of bits in the minimal two's-complement
     *              representation of this BigInteger
     * @serialField lowestSetBit int
     *              lowest set bit in the twos complement representation
     */
    private static final ObjectStreamField[] serialPersistentFields = {
        new ObjectStreamField("signum", Integer.TYPE),
        new ObjectStreamField("magnitude", byte[].class),
        new ObjectStreamField("bitCount", Integer.TYPE),
        new ObjectStreamField("bitLength", Integer.TYPE),
        new ObjectStreamField("firstNonzeroByteNum", Integer.TYPE),
        new ObjectStreamField("lowestSetBit", Integer.TYPE)
        };

    /**
     * Reconstitute the {@code BigInteger} instance from a stream (that is,
     * deserialize it). The magnitude is read in as an array of bytes
     * for historical reasons, but it is converted to an array of ints
     * and the byte array is discarded.
     * Note:
     * The current convention is to initialize the cache fields, bitCount,
     * bitLength and lowestSetBit, to 0 rather than some other marker value.
     * Therefore, no explicit action to set these fields needs to be taken in
     * readObject because those fields already have a 0 value be default since
     * defaultReadObject is not being used.
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        /*
         * In order to maintain compatibility with previous serialized forms,
         * the magnitude of a BigInteger is serialized as an array of bytes.
         * The magnitude field is used as a temporary store for the byte array
         * that is deserialized. The cached computation fields should be
         * transient but are serialized for compatibility reasons.
         */

        // prepare to read the alternate persistent fields
        ObjectInputStream.GetField fields = s.readFields();

        // Read the alternate persistent fields that we care about
        int sign = fields.get("signum", -2);
        byte[] magnitude = (byte[])fields.get("magnitude", null);

        // Validate signum
        if (sign < -1 || sign > 1) {
            String message = "BigInteger: Invalid signum value";
            if (fields.defaulted("signum"))
                message = "BigInteger: Signum not present in stream";
            throw new java.io.StreamCorruptedException(message);
        }
        int[] mag = stripLeadingZeroBytes(magnitude);
        if ((mag.length == 0) != (sign == 0)) {
            String message = "BigInteger: signum-magnitude mismatch";
            if (fields.defaulted("magnitude"))
                message = "BigInteger: Magnitude not present in stream";
            throw new java.io.StreamCorruptedException(message);
        }

        // Commit final fields via Unsafe
        UnsafeHolder.putSign(this, sign);

        // Calculate mag field from magnitude and discard magnitude
        UnsafeHolder.putMag(this, mag);
        if (mag.length >= MAX_MAG_LENGTH) {
            try {
                checkRange();
            } catch (ArithmeticException e) {
                throw new java.io.StreamCorruptedException("BigInteger: Out of the supported range");
            }
        }
    }

    // Support for resetting final fields while deserializing
    private static class UnsafeHolder {
        private static final sun.misc.Unsafe unsafe;
        private static final long signumOffset;
        private static final long magOffset;
        static {
            try {
                unsafe = sun.misc.Unsafe.getUnsafe();
                signumOffset = unsafe.objectFieldOffset
                    (BigInteger.class.getDeclaredField("signum"));
                magOffset = unsafe.objectFieldOffset
                    (BigInteger.class.getDeclaredField("mag"));
            } catch (Exception ex) {
                throw new ExceptionInInitializerError(ex);
            }
        }

        static void putSign(BigInteger bi, int sign) {
            unsafe.putIntVolatile(bi, signumOffset, sign);
        }

        static void putMag(BigInteger bi, int[] magnitude) {
            unsafe.putObjectVolatile(bi, magOffset, magnitude);
        }
    }

    /**
     * Save the {@code BigInteger} instance to a stream.
     * The magnitude of a BigInteger is serialized as a byte array for
     * historical reasons.
     *
     * @serialData two necessary fields are written as well as obsolete
     *             fields for compatibility with older versions.
     */
    private void writeObject(ObjectOutputStream s) throws IOException {
        // set the values of the Serializable fields
        ObjectOutputStream.PutField fields = s.putFields();
        fields.put("signum", signum);
        fields.put("magnitude", magSerializedForm());
        // The values written for cached fields are compatible with older
        // versions, but are ignored in readObject so don't otherwise matter.
        fields.put("bitCount", -1);
        fields.put("bitLength", -1);
        fields.put("lowestSetBit", -2);
        fields.put("firstNonzeroByteNum", -2);

        // save them
        s.writeFields();
}

    /**
     * Returns the mag array as an array of bytes.
     */
    private byte[] magSerializedForm() {
        int len = mag.length;

        int bitLen = (len == 0 ? 0 : ((len - 1) << 5) + bitLengthForInt(mag[0]));
        int byteLen = (bitLen + 7) >>> 3;
        byte[] result = new byte[byteLen];

        for (int i = byteLen - 1, bytesCopied = 4, intIndex = len - 1, nextInt = 0;
             i >= 0; i--) {
            if (bytesCopied == 4) {
                nextInt = mag[intIndex--];
                bytesCopied = 1;
            } else {
                nextInt >>>= 8;
                bytesCopied++;
            }
            result[i] = (byte)nextInt;
        }
        return result;
    }

    /**
     * Converts this {@code BigInteger} to a {@code long}, checking
     * for lost information.  If the value of this {@code BigInteger}
     * is out of the range of the {@code long} type, then an
     * {@code ArithmeticException} is thrown.
     *
     * @return this {@code BigInteger} converted to a {@code long}.
     * @throws ArithmeticException if the value of {@code this} will
     * not exactly fit in a {@code long}.
     * @see BigInteger#longValue
     * @since  1.8
     */
    public long longValueExact() {
        if (mag.length <= 2 && bitLength() <= 63)
            return longValue();
        else
            throw new ArithmeticException("BigInteger out of long range");
    }

    /**
     * Converts this {@code BigInteger} to an {@code int}, checking
     * for lost information.  If the value of this {@code BigInteger}
     * is out of the range of the {@code int} type, then an
     * {@code ArithmeticException} is thrown.
     *
     * @return this {@code BigInteger} converted to an {@code int}.
     * @throws ArithmeticException if the value of {@code this} will
     * not exactly fit in a {@code int}.
     * @see BigInteger#intValue
     * @since  1.8
     */
    public int intValueExact() {
        if (mag.length <= 1 && bitLength() <= 31)
            return intValue();
        else
            throw new ArithmeticException("BigInteger out of int range");
    }

    /**
     * Converts this {@code BigInteger} to a {@code short}, checking
     * for lost information.  If the value of this {@code BigInteger}
     * is out of the range of the {@code short} type, then an
     * {@code ArithmeticException} is thrown.
     *
     * @return this {@code BigInteger} converted to a {@code short}.
     * @throws ArithmeticException if the value of {@code this} will
     * not exactly fit in a {@code short}.
     * @see BigInteger#shortValue
     * @since  1.8
     */
    public short shortValueExact() {
        if (mag.length <= 1 && bitLength() <= 31) {
            int value = intValue();
            if (value >= Short.MIN_VALUE && value <= Short.MAX_VALUE)
                return shortValue();
        }
        throw new ArithmeticException("BigInteger out of short range");
    }

    /**
     * Converts this {@code BigInteger} to a {@code byte}, checking
     * for lost information.  If the value of this {@code BigInteger}
     * is out of the range of the {@code byte} type, then an
     * {@code ArithmeticException} is thrown.
     *
     * @return this {@code BigInteger} converted to a {@code byte}.
     * @throws ArithmeticException if the value of {@code this} will
     * not exactly fit in a {@code byte}.
     * @see BigInteger#byteValue
     * @since  1.8
     */
    public byte byteValueExact() {
        if (mag.length <= 1 && bitLength() <= 31) {
            int value = intValue();
            if (value >= Byte.MIN_VALUE && value <= Byte.MAX_VALUE)
                return byteValue();
        }
        throw new ArithmeticException("BigInteger out of byte range");
    }
}