summaryrefslogtreecommitdiff
path: root/base/metrics/sparse_histogram.cc
blob: 415d7f943024a84965933cfb39af4024fd334ea6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/metrics/sparse_histogram.h"

#include <utility>

#include "base/memory/ptr_util.h"
#include "base/metrics/metrics_hashes.h"
#include "base/metrics/persistent_histogram_allocator.h"
#include "base/metrics/persistent_sample_map.h"
#include "base/metrics/sample_map.h"
#include "base/metrics/statistics_recorder.h"
#include "base/pickle.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"

namespace base {

typedef HistogramBase::Count Count;
typedef HistogramBase::Sample Sample;

// static
HistogramBase* SparseHistogram::FactoryGet(const std::string& name,
                                           int32_t flags) {
  HistogramBase* histogram = StatisticsRecorder::FindHistogram(name);
  if (!histogram) {
    // Try to create the histogram using a "persistent" allocator. As of
    // 2016-02-25, the availability of such is controlled by a base::Feature
    // that is off by default. If the allocator doesn't exist or if
    // allocating from it fails, code below will allocate the histogram from
    // the process heap.
    PersistentMemoryAllocator::Reference histogram_ref = 0;
    std::unique_ptr<HistogramBase> tentative_histogram;
    PersistentHistogramAllocator* allocator = GlobalHistogramAllocator::Get();
    if (allocator) {
      tentative_histogram = allocator->AllocateHistogram(
          SPARSE_HISTOGRAM, name, 0, 0, nullptr, flags, &histogram_ref);
    }

    // Handle the case where no persistent allocator is present or the
    // persistent allocation fails (perhaps because it is full).
    if (!tentative_histogram) {
      DCHECK(!histogram_ref);  // Should never have been set.
      DCHECK(!allocator);      // Shouldn't have failed.
      flags &= ~HistogramBase::kIsPersistent;
      tentative_histogram.reset(new SparseHistogram(name));
      tentative_histogram->SetFlags(flags);
    }

    // Register this histogram with the StatisticsRecorder. Keep a copy of
    // the pointer value to tell later whether the locally created histogram
    // was registered or deleted. The type is "void" because it could point
    // to released memory after the following line.
    const void* tentative_histogram_ptr = tentative_histogram.get();
    histogram = StatisticsRecorder::RegisterOrDeleteDuplicate(
        tentative_histogram.release());

    // Persistent histograms need some follow-up processing.
    if (histogram_ref) {
      allocator->FinalizeHistogram(histogram_ref,
                                   histogram == tentative_histogram_ptr);
    }

    ReportHistogramActivity(*histogram, HISTOGRAM_CREATED);
  } else {
    ReportHistogramActivity(*histogram, HISTOGRAM_LOOKUP);
  }

  CHECK_EQ(SPARSE_HISTOGRAM, histogram->GetHistogramType());
  return histogram;
}

// static
std::unique_ptr<HistogramBase> SparseHistogram::PersistentCreate(
    PersistentHistogramAllocator* allocator,
    const std::string& name,
    HistogramSamples::Metadata* meta,
    HistogramSamples::Metadata* logged_meta) {
  return WrapUnique(
      new SparseHistogram(allocator, name, meta, logged_meta));
}

SparseHistogram::~SparseHistogram() {}

uint64_t SparseHistogram::name_hash() const {
  return samples_->id();
}

HistogramType SparseHistogram::GetHistogramType() const {
  return SPARSE_HISTOGRAM;
}

bool SparseHistogram::HasConstructionArguments(
    Sample expected_minimum,
    Sample expected_maximum,
    uint32_t expected_bucket_count) const {
  // SparseHistogram never has min/max/bucket_count limit.
  return false;
}

void SparseHistogram::Add(Sample value) {
  AddCount(value, 1);
}

void SparseHistogram::AddCount(Sample value, int count) {
  if (count <= 0) {
    NOTREACHED();
    return;
  }
  {
    base::AutoLock auto_lock(lock_);
    samples_->Accumulate(value, count);
  }

  FindAndRunCallback(value);
}

std::unique_ptr<HistogramSamples> SparseHistogram::SnapshotSamples() const {
  std::unique_ptr<SampleMap> snapshot(new SampleMap(name_hash()));

  base::AutoLock auto_lock(lock_);
  snapshot->Add(*samples_);
  return std::move(snapshot);
}

std::unique_ptr<HistogramSamples> SparseHistogram::SnapshotDelta() {
  DCHECK(!final_delta_created_);

  std::unique_ptr<SampleMap> snapshot(new SampleMap(name_hash()));
  base::AutoLock auto_lock(lock_);
  snapshot->Add(*samples_);

  // Subtract what was previously logged and update that information.
  snapshot->Subtract(*logged_samples_);
  logged_samples_->Add(*snapshot);
  return std::move(snapshot);
}

std::unique_ptr<HistogramSamples> SparseHistogram::SnapshotFinalDelta() const {
  DCHECK(!final_delta_created_);
  final_delta_created_ = true;

  std::unique_ptr<SampleMap> snapshot(new SampleMap(name_hash()));
  base::AutoLock auto_lock(lock_);
  snapshot->Add(*samples_);

  // Subtract what was previously logged and then return.
  snapshot->Subtract(*logged_samples_);
  return std::move(snapshot);
}

void SparseHistogram::AddSamples(const HistogramSamples& samples) {
  base::AutoLock auto_lock(lock_);
  samples_->Add(samples);
}

bool SparseHistogram::AddSamplesFromPickle(PickleIterator* iter) {
  base::AutoLock auto_lock(lock_);
  return samples_->AddFromPickle(iter);
}

void SparseHistogram::WriteHTMLGraph(std::string* output) const {
  output->append("<PRE>");
  WriteAsciiImpl(true, "<br>", output);
  output->append("</PRE>");
}

void SparseHistogram::WriteAscii(std::string* output) const {
  WriteAsciiImpl(true, "\n", output);
}

bool SparseHistogram::SerializeInfoImpl(Pickle* pickle) const {
  return pickle->WriteString(histogram_name()) && pickle->WriteInt(flags());
}

SparseHistogram::SparseHistogram(const std::string& name)
    : HistogramBase(name),
      samples_(new SampleMap(HashMetricName(name))),
      logged_samples_(new SampleMap(samples_->id())) {}

SparseHistogram::SparseHistogram(PersistentHistogramAllocator* allocator,
                                 const std::string& name,
                                 HistogramSamples::Metadata* meta,
                                 HistogramSamples::Metadata* logged_meta)
    : HistogramBase(name),
      // While other histogram types maintain a static vector of values with
      // sufficient space for both "active" and "logged" samples, with each
      // SampleVector being given the appropriate half, sparse histograms
      // have no such initial allocation. Each sample has its own record
      // attached to a single PersistentSampleMap by a common 64-bit identifier.
      // Since a sparse histogram has two sample maps (active and logged),
      // there must be two sets of sample records with diffent IDs. The
      // "active" samples use, for convenience purposes, an ID matching
      // that of the histogram while the "logged" samples use that number
      // plus 1.
      samples_(new PersistentSampleMap(HashMetricName(name), allocator, meta)),
      logged_samples_(
          new PersistentSampleMap(samples_->id() + 1, allocator, logged_meta)) {
}

HistogramBase* SparseHistogram::DeserializeInfoImpl(PickleIterator* iter) {
  std::string histogram_name;
  int flags;
  if (!iter->ReadString(&histogram_name) || !iter->ReadInt(&flags)) {
    DLOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name;
    return NULL;
  }

  flags &= ~HistogramBase::kIPCSerializationSourceFlag;

  return SparseHistogram::FactoryGet(histogram_name, flags);
}

void SparseHistogram::GetParameters(DictionaryValue* params) const {
  // TODO(kaiwang): Implement. (See HistogramBase::WriteJSON.)
}

void SparseHistogram::GetCountAndBucketData(Count* count,
                                            int64_t* sum,
                                            ListValue* buckets) const {
  // TODO(kaiwang): Implement. (See HistogramBase::WriteJSON.)
}

void SparseHistogram::WriteAsciiImpl(bool graph_it,
                                     const std::string& newline,
                                     std::string* output) const {
  // Get a local copy of the data so we are consistent.
  std::unique_ptr<HistogramSamples> snapshot = SnapshotSamples();
  Count total_count = snapshot->TotalCount();
  double scaled_total_count = total_count / 100.0;

  WriteAsciiHeader(total_count, output);
  output->append(newline);

  // Determine how wide the largest bucket range is (how many digits to print),
  // so that we'll be able to right-align starts for the graphical bars.
  // Determine which bucket has the largest sample count so that we can
  // normalize the graphical bar-width relative to that sample count.
  Count largest_count = 0;
  Sample largest_sample = 0;
  std::unique_ptr<SampleCountIterator> it = snapshot->Iterator();
  while (!it->Done()) {
    Sample min;
    Sample max;
    Count count;
    it->Get(&min, &max, &count);
    if (min > largest_sample)
      largest_sample = min;
    if (count > largest_count)
      largest_count = count;
    it->Next();
  }
  size_t print_width = GetSimpleAsciiBucketRange(largest_sample).size() + 1;

  // iterate over each item and display them
  it = snapshot->Iterator();
  while (!it->Done()) {
    Sample min;
    Sample max;
    Count count;
    it->Get(&min, &max, &count);

    // value is min, so display it
    std::string range = GetSimpleAsciiBucketRange(min);
    output->append(range);
    for (size_t j = 0; range.size() + j < print_width + 1; ++j)
      output->push_back(' ');

    if (graph_it)
      WriteAsciiBucketGraph(count, largest_count, output);
    WriteAsciiBucketValue(count, scaled_total_count, output);
    output->append(newline);
    it->Next();
  }
}

void SparseHistogram::WriteAsciiHeader(const Count total_count,
                                       std::string* output) const {
  StringAppendF(output,
                "Histogram: %s recorded %d samples",
                histogram_name().c_str(),
                total_count);
  if (flags())
    StringAppendF(output, " (flags = 0x%x)", flags());
}

}  // namespace base