summaryrefslogtreecommitdiff
path: root/base/trace_event/memory_usage_estimator.h
blob: 6f02bb93bbbcd155764945f67ab5a1a6056dc6d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_
#define BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_

#include <stdint.h>

#include <array>
#include <deque>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "base/base_export.h"
#include "base/containers/linked_list.h"
#include "base/strings/string16.h"
#include "base/template_util.h"

// Composable memory usage estimators.
//
// This file defines set of EstimateMemoryUsage(object) functions that return
// approximate memory usage of their argument.
//
// The ultimate goal is to make memory usage estimation for a class simply a
// matter of aggregating EstimateMemoryUsage() results over all fields.
//
// That is achieved via composability: if EstimateMemoryUsage() is defined
// for T then EstimateMemoryUsage() is also defined for any combination of
// containers holding T (e.g. std::map<int, std::vector<T>>).
//
// There are two ways of defining EstimateMemoryUsage() for a type:
//
// 1. As a global function 'size_t EstimateMemoryUsage(T)' in
//    in base::trace_event namespace.
//
// 2. As 'size_t T::EstimateMemoryUsage() const' method. In this case
//    EstimateMemoryUsage(T) function in base::trace_event namespace is
//    provided automatically.
//
// Here is an example implementation:
//
// size_t foo::bar::MyClass::EstimateMemoryUsage() const {
//   return base::trace_event::EstimateMemoryUsage(name_) +
//          base::trace_event::EstimateMemoryUsage(id_) +
//          base::trace_event::EstimateMemoryUsage(items_);
// }
//
// The approach is simple: first call EstimateMemoryUsage() on all members,
// then recursively fix compilation errors that are caused by types not
// implementing EstimateMemoryUsage().

namespace base {
namespace trace_event {

// Declarations

// If T declares 'EstimateMemoryUsage() const' member function, then
// global function EstimateMemoryUsage(T) is available, and just calls
// the member function.
template <class T>
auto EstimateMemoryUsage(const T& object)
    -> decltype(object.EstimateMemoryUsage());

// String

template <class C, class T, class A>
size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string);

// Arrays

template <class T, size_t N>
size_t EstimateMemoryUsage(const std::array<T, N>& array);

template <class T, size_t N>
size_t EstimateMemoryUsage(T (&array)[N]);

template <class T>
size_t EstimateMemoryUsage(const T* array, size_t array_length);

// std::unique_ptr

template <class T, class D>
size_t EstimateMemoryUsage(const std::unique_ptr<T, D>& ptr);

template <class T, class D>
size_t EstimateMemoryUsage(const std::unique_ptr<T[], D>& array,
                           size_t array_length);

// std::shared_ptr

template <class T>
size_t EstimateMemoryUsage(const std::shared_ptr<T>& ptr);

// Containers

template <class F, class S>
size_t EstimateMemoryUsage(const std::pair<F, S>& pair);

template <class T, class A>
size_t EstimateMemoryUsage(const std::vector<T, A>& vector);

template <class T, class A>
size_t EstimateMemoryUsage(const std::list<T, A>& list);

template <class T>
size_t EstimateMemoryUsage(const base::LinkedList<T>& list);

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::set<T, C, A>& set);

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set);

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map);

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map);

template <class T, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_set<T, H, KE, A>& set);

template <class T, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multiset<T, H, KE, A>& set);

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map);

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map);

template <class T, class A>
size_t EstimateMemoryUsage(const std::deque<T, A>& deque);

template <class T, class C>
size_t EstimateMemoryUsage(const std::queue<T, C>& queue);

template <class T, class C>
size_t EstimateMemoryUsage(const std::priority_queue<T, C>& queue);

template <class T, class C>
size_t EstimateMemoryUsage(const std::stack<T, C>& stack);

// TODO(dskiba):
//   std::forward_list

// Definitions

namespace internal {

// HasEMU<T>::value is true iff EstimateMemoryUsage(T) is available.
// (This is the default version, which is false.)
template <class T, class X = void>
struct HasEMU : std::false_type {};

// This HasEMU specialization is only picked up if there exists function
// EstimateMemoryUsage(const T&) that returns size_t. Simpler ways to
// achieve this don't work on MSVC.
template <class T>
struct HasEMU<
    T,
    typename std::enable_if<std::is_same<
        size_t,
        decltype(EstimateMemoryUsage(std::declval<const T&>()))>::value>::type>
    : std::true_type {};

// EMUCaller<T> does three things:
// 1. Defines Call() method that calls EstimateMemoryUsage(T) if it's
//    available.
// 2. If EstimateMemoryUsage(T) is not available, but T has trivial dtor
//    (i.e. it's POD, integer, pointer, enum, etc.) then it defines Call()
//    method that returns 0. This is useful for containers, which allocate
//    memory regardless of T (also for cases like std::map<int, MyClass>).
// 3. Finally, if EstimateMemoryUsage(T) is not available, then it triggers
//    a static_assert with a helpful message. That cuts numbers of errors
//    considerably - if you just call EstimateMemoryUsage(T) but it's not
//    available for T, then compiler will helpfully list *all* possible
//    variants of it, with an explanation for each.
template <class T, class X = void>
struct EMUCaller {
  // std::is_same<> below makes static_assert depend on T, in order to
  // prevent it from asserting regardless instantiation.
  static_assert(std::is_same<T, std::false_type>::value,
                "Neither global function 'size_t EstimateMemoryUsage(T)' "
                "nor member function 'size_t T::EstimateMemoryUsage() const' "
                "is defined for the type.");

  static size_t Call(const T&) { return 0; }
};

template <class T>
struct EMUCaller<T, typename std::enable_if<HasEMU<T>::value>::type> {
  static size_t Call(const T& value) { return EstimateMemoryUsage(value); }
};

template <class T>
struct EMUCaller<
    T,
    typename std::enable_if<!HasEMU<T>::value &&
                            is_trivially_destructible<T>::value>::type> {
  static size_t Call(const T& value) { return 0; }
};

// Returns reference to the underlying container of a container adapter.
// Works for std::stack, std::queue and std::priority_queue.
template <class A>
const typename A::container_type& GetUnderlyingContainer(const A& adapter) {
  struct ExposedAdapter : A {
    using A::c;
  };
  return adapter.*&ExposedAdapter::c;
}

}  // namespace internal

// Proxy that deducts T and calls EMUCaller<T>.
// To be used by EstimateMemoryUsage() implementations for containers.
template <class T>
size_t EstimateItemMemoryUsage(const T& value) {
  return internal::EMUCaller<T>::Call(value);
}

template <class I>
size_t EstimateIterableMemoryUsage(const I& iterable) {
  size_t memory_usage = 0;
  for (const auto& item : iterable) {
    memory_usage += EstimateItemMemoryUsage(item);
  }
  return memory_usage;
}

// Global EstimateMemoryUsage(T) that just calls T::EstimateMemoryUsage().
template <class T>
auto EstimateMemoryUsage(const T& object)
    -> decltype(object.EstimateMemoryUsage()) {
  static_assert(
      std::is_same<decltype(object.EstimateMemoryUsage()), size_t>::value,
      "'T::EstimateMemoryUsage() const' must return size_t.");
  return object.EstimateMemoryUsage();
}

// String

template <class C, class T, class A>
size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string) {
  using string_type = std::basic_string<C, T, A>;
  using value_type = typename string_type::value_type;
  // C++11 doesn't leave much room for implementors - std::string can
  // use short string optimization, but that's about it. We detect SSO
  // by checking that c_str() points inside |string|.
  const uint8_t* cstr = reinterpret_cast<const uint8_t*>(string.c_str());
  const uint8_t* inline_cstr = reinterpret_cast<const uint8_t*>(&string);
  if (cstr >= inline_cstr && cstr < inline_cstr + sizeof(string)) {
    // SSO string
    return 0;
  }
  return (string.capacity() + 1) * sizeof(value_type);
}

// Use explicit instantiations from the .cc file (reduces bloat).
extern template BASE_EXPORT size_t EstimateMemoryUsage(const std::string&);
extern template BASE_EXPORT size_t EstimateMemoryUsage(const string16&);

// Arrays

template <class T, size_t N>
size_t EstimateMemoryUsage(const std::array<T, N>& array) {
  return EstimateIterableMemoryUsage(array);
}

template <class T, size_t N>
size_t EstimateMemoryUsage(T (&array)[N]) {
  return EstimateIterableMemoryUsage(array);
}

template <class T>
size_t EstimateMemoryUsage(const T* array, size_t array_length) {
  size_t memory_usage = sizeof(T) * array_length;
  for (size_t i = 0; i != array_length; ++i) {
    memory_usage += EstimateItemMemoryUsage(array[i]);
  }
  return memory_usage;
}

// std::unique_ptr

template <class T, class D>
size_t EstimateMemoryUsage(const std::unique_ptr<T, D>& ptr) {
  return ptr ? (sizeof(T) + EstimateItemMemoryUsage(*ptr)) : 0;
}

template <class T, class D>
size_t EstimateMemoryUsage(const std::unique_ptr<T[], D>& array,
                           size_t array_length) {
  return EstimateMemoryUsage(array.get(), array_length);
}

// std::shared_ptr

template <class T>
size_t EstimateMemoryUsage(const std::shared_ptr<T>& ptr) {
  auto use_count = ptr.use_count();
  if (use_count == 0) {
    return 0;
  }
  // Model shared_ptr after libc++,
  // see __shared_ptr_pointer from include/memory
  struct SharedPointer {
    void* vtbl;
    long shared_owners;
    long shared_weak_owners;
    T* value;
  };
  // If object of size S shared N > S times we prefer to (potentially)
  // overestimate than to return 0.
  return sizeof(SharedPointer) +
         (EstimateItemMemoryUsage(*ptr) + (use_count - 1)) / use_count;
}

// std::pair

template <class F, class S>
size_t EstimateMemoryUsage(const std::pair<F, S>& pair) {
  return EstimateItemMemoryUsage(pair.first) +
         EstimateItemMemoryUsage(pair.second);
}

// std::vector

template <class T, class A>
size_t EstimateMemoryUsage(const std::vector<T, A>& vector) {
  return sizeof(T) * vector.capacity() + EstimateIterableMemoryUsage(vector);
}

// std::list

template <class T, class A>
size_t EstimateMemoryUsage(const std::list<T, A>& list) {
  using value_type = typename std::list<T, A>::value_type;
  struct Node {
    Node* prev;
    Node* next;
    value_type value;
  };
  return sizeof(Node) * list.size() +
         EstimateIterableMemoryUsage(list);
}

template <class T>
size_t EstimateMemoryUsage(const base::LinkedList<T>& list) {
  size_t memory_usage = 0u;
  for (base::LinkNode<T>* node = list.head(); node != list.end();
       node = node->next()) {
    // Since we increment by calling node = node->next() we know that node
    // isn't nullptr.
    memory_usage += EstimateMemoryUsage(*node->value()) + sizeof(T);
  }
  return memory_usage;
}

// Tree containers

template <class V>
size_t EstimateTreeMemoryUsage(size_t size) {
  // Tree containers are modeled after libc++
  // (__tree_node from include/__tree)
  struct Node {
    Node* left;
    Node* right;
    Node* parent;
    bool is_black;
    V value;
  };
  return sizeof(Node) * size;
}

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::set<T, C, A>& set) {
  using value_type = typename std::set<T, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set) {
  using value_type = typename std::multiset<T, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map) {
  using value_type = typename std::map<K, V, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(map.size()) +
         EstimateIterableMemoryUsage(map);
}

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map) {
  using value_type = typename std::multimap<K, V, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(map.size()) +
         EstimateIterableMemoryUsage(map);
}

// HashMap containers

namespace internal {

// While hashtable containers model doesn't depend on STL implementation, one
// detail still crept in: bucket_count. It's used in size estimation, but its
// value after inserting N items is not predictable.
// This function is specialized by unittests to return constant value, thus
// excluding bucket_count from testing.
template <class V>
size_t HashMapBucketCountForTesting(size_t bucket_count) {
  return bucket_count;
}

}  // namespace internal

template <class V>
size_t EstimateHashMapMemoryUsage(size_t bucket_count, size_t size) {
  // Hashtable containers are modeled after libc++
  // (__hash_node from include/__hash_table)
  struct Node {
    void* next;
    size_t hash;
    V value;
  };
  using Bucket = void*;
  bucket_count = internal::HashMapBucketCountForTesting<V>(bucket_count);
  return sizeof(Bucket) * bucket_count + sizeof(Node) * size;
}

template <class K, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_set<K, H, KE, A>& set) {
  using value_type = typename std::unordered_set<K, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(),
                                                set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class K, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multiset<K, H, KE, A>& set) {
  using value_type = typename std::unordered_multiset<K, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(),
                                                set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map) {
  using value_type = typename std::unordered_map<K, V, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(),
                                                map.size()) +
         EstimateIterableMemoryUsage(map);
}

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map) {
  using value_type =
      typename std::unordered_multimap<K, V, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(),
                                                map.size()) +
         EstimateIterableMemoryUsage(map);
}

// std::deque

template <class T, class A>
size_t EstimateMemoryUsage(const std::deque<T, A>& deque) {
// Since std::deque implementations are wildly different
// (see crbug.com/674287), we can't have one "good enough"
// way to estimate.

// kBlockSize      - minimum size of a block, in bytes
// kMinBlockLength - number of elements in a block
//                   if sizeof(T) > kBlockSize
#if defined(_LIBCPP_VERSION)
  size_t kBlockSize = 4096;
  size_t kMinBlockLength = 16;
#elif defined(__GLIBCXX__)
  size_t kBlockSize = 512;
  size_t kMinBlockLength = 1;
#elif defined(_MSC_VER)
  size_t kBlockSize = 16;
  size_t kMinBlockLength = 1;
#else
  size_t kBlockSize = 0;
  size_t kMinBlockLength = 1;
#endif

  size_t block_length =
      (sizeof(T) > kBlockSize) ? kMinBlockLength : kBlockSize / sizeof(T);

  size_t blocks = (deque.size() + block_length - 1) / block_length;

#if defined(__GLIBCXX__)
  // libstdc++: deque always has at least one block
  if (!blocks)
    blocks = 1;
#endif

#if defined(_LIBCPP_VERSION)
  // libc++: deque keeps at most two blocks when it shrinks,
  // so even if the size is zero, deque might be holding up
  // to 4096 * 2 bytes. One way to know whether deque has
  // ever allocated (and hence has 1 or 2 blocks) is to check
  // iterator's pointer. Non-zero value means that deque has
  // at least one block.
  if (!blocks && deque.begin().operator->())
    blocks = 1;
#endif

  return (blocks * block_length * sizeof(T)) +
         EstimateIterableMemoryUsage(deque);
}

// Container adapters

template <class T, class C>
size_t EstimateMemoryUsage(const std::queue<T, C>& queue) {
  return EstimateMemoryUsage(internal::GetUnderlyingContainer(queue));
}

template <class T, class C>
size_t EstimateMemoryUsage(const std::priority_queue<T, C>& queue) {
  return EstimateMemoryUsage(internal::GetUnderlyingContainer(queue));
}

template <class T, class C>
size_t EstimateMemoryUsage(const std::stack<T, C>& stack) {
  return EstimateMemoryUsage(internal::GetUnderlyingContainer(stack));
}

}  // namespace trace_event
}  // namespace base

#endif  // BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_