aboutsummaryrefslogtreecommitdiff
path: root/src/intel/compiler/brw_fs.cpp
blob: 64febe25521776a1aeff6b8d27baed47e0dc63d5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
/*
 * Copyright © 2010 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

/** @file brw_fs.cpp
 *
 * This file drives the GLSL IR -> LIR translation, contains the
 * optimizations on the LIR, and drives the generation of native code
 * from the LIR.
 */

#include "brw_eu.h"
#include "brw_fs.h"
#include "brw_fs_builder.h"
#include "brw_fs_live_variables.h"
#include "brw_nir.h"
#include "brw_cfg.h"
#include "brw_dead_control_flow.h"
#include "brw_private.h"
#include "intel_nir.h"
#include "shader_enums.h"
#include "dev/intel_debug.h"
#include "dev/intel_wa.h"
#include "compiler/glsl_types.h"
#include "compiler/nir/nir_builder.h"
#include "util/u_math.h"

#include <memory>

using namespace brw;

void
fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
              const fs_reg *src, unsigned sources)
{
   memset((void*)this, 0, sizeof(*this));

   this->src = new fs_reg[MAX2(sources, 3)];
   for (unsigned i = 0; i < sources; i++)
      this->src[i] = src[i];

   this->opcode = opcode;
   this->dst = dst;
   this->sources = sources;
   this->exec_size = exec_size;
   this->base_mrf = -1;

   assert(dst.file != IMM && dst.file != UNIFORM);

   assert(this->exec_size != 0);

   this->conditional_mod = BRW_CONDITIONAL_NONE;

   /* This will be the case for almost all instructions. */
   switch (dst.file) {
   case VGRF:
   case ARF:
   case FIXED_GRF:
   case MRF:
   case ATTR:
      this->size_written = dst.component_size(exec_size);
      break;
   case BAD_FILE:
      this->size_written = 0;
      break;
   case IMM:
   case UNIFORM:
      unreachable("Invalid destination register file");
   }

   this->writes_accumulator = false;
}

fs_inst::fs_inst()
{
   init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
}

fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
{
   init(opcode, exec_size, reg_undef, NULL, 0);
}

fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
{
   init(opcode, exec_size, dst, NULL, 0);
}

fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
                 const fs_reg &src0)
{
   const fs_reg src[1] = { src0 };
   init(opcode, exec_size, dst, src, 1);
}

fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
                 const fs_reg &src0, const fs_reg &src1)
{
   const fs_reg src[2] = { src0, src1 };
   init(opcode, exec_size, dst, src, 2);
}

fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
                 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
{
   const fs_reg src[3] = { src0, src1, src2 };
   init(opcode, exec_size, dst, src, 3);
}

fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
                 const fs_reg src[], unsigned sources)
{
   init(opcode, exec_width, dst, src, sources);
}

fs_inst::fs_inst(const fs_inst &that)
{
   memcpy((void*)this, &that, sizeof(that));

   this->src = new fs_reg[MAX2(that.sources, 3)];

   for (unsigned i = 0; i < that.sources; i++)
      this->src[i] = that.src[i];
}

fs_inst::~fs_inst()
{
   delete[] this->src;
}

void
fs_inst::resize_sources(uint8_t num_sources)
{
   if (this->sources != num_sources) {
      fs_reg *src = new fs_reg[MAX2(num_sources, 3)];

      for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
         src[i] = this->src[i];

      delete[] this->src;
      this->src = src;
      this->sources = num_sources;
   }
}

void
fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
                                       const fs_reg &dst,
                                       const fs_reg &surface,
                                       const fs_reg &surface_handle,
                                       const fs_reg &varying_offset,
                                       uint32_t const_offset,
                                       uint8_t alignment,
                                       unsigned components)
{
   assert(components <= 4);

   /* We have our constant surface use a pitch of 4 bytes, so our index can
    * be any component of a vector, and then we load 4 contiguous
    * components starting from that.  TODO: Support loading fewer than 4.
    */
   fs_reg total_offset = vgrf(glsl_uint_type());
   bld.ADD(total_offset, varying_offset, brw_imm_ud(const_offset));

   /* The pull load message will load a vec4 (16 bytes). If we are loading
    * a double this means we are only loading 2 elements worth of data.
    * We also want to use a 32-bit data type for the dst of the load operation
    * so other parts of the driver don't get confused about the size of the
    * result.
    */
   fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);

   fs_reg srcs[PULL_VARYING_CONSTANT_SRCS];
   srcs[PULL_VARYING_CONSTANT_SRC_SURFACE]        = surface;
   srcs[PULL_VARYING_CONSTANT_SRC_SURFACE_HANDLE] = surface_handle;
   srcs[PULL_VARYING_CONSTANT_SRC_OFFSET]         = total_offset;
   srcs[PULL_VARYING_CONSTANT_SRC_ALIGNMENT]      = brw_imm_ud(alignment);

   fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
                            vec4_result, srcs, PULL_VARYING_CONSTANT_SRCS);
   inst->size_written = 4 * vec4_result.component_size(inst->exec_size);

   shuffle_from_32bit_read(bld, dst, vec4_result, 0, components);
}

/**
 * A helper for MOV generation for fixing up broken hardware SEND dependency
 * handling.
 */
void
fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
{
   /* The caller always wants uncompressed to emit the minimal extra
    * dependencies, and to avoid having to deal with aligning its regs to 2.
    */
   const fs_builder ubld = bld.annotate("send dependency resolve")
                              .quarter(0);

   ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
}

bool
fs_inst::is_send_from_grf() const
{
   switch (opcode) {
   case SHADER_OPCODE_SEND:
   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
   case SHADER_OPCODE_INTERLOCK:
   case SHADER_OPCODE_MEMORY_FENCE:
   case SHADER_OPCODE_BARRIER:
      return true;
   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
      return src[1].file == VGRF;
   case FS_OPCODE_FB_WRITE:
   case FS_OPCODE_FB_READ:
      return src[0].file == VGRF;
   default:
      return false;
   }
}

bool
fs_inst::is_control_source(unsigned arg) const
{
   switch (opcode) {
   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
      return arg == 0;

   case SHADER_OPCODE_BROADCAST:
   case SHADER_OPCODE_SHUFFLE:
   case SHADER_OPCODE_QUAD_SWIZZLE:
   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
      return arg == 1;

   case SHADER_OPCODE_MOV_INDIRECT:
   case SHADER_OPCODE_CLUSTER_BROADCAST:
   case SHADER_OPCODE_TEX:
   case FS_OPCODE_TXB:
   case SHADER_OPCODE_TXD:
   case SHADER_OPCODE_TXF:
   case SHADER_OPCODE_TXF_LZ:
   case SHADER_OPCODE_TXF_CMS:
   case SHADER_OPCODE_TXF_CMS_W:
   case SHADER_OPCODE_TXF_UMS:
   case SHADER_OPCODE_TXF_MCS:
   case SHADER_OPCODE_TXL:
   case SHADER_OPCODE_TXL_LZ:
   case SHADER_OPCODE_TXS:
   case SHADER_OPCODE_LOD:
   case SHADER_OPCODE_TG4:
   case SHADER_OPCODE_TG4_OFFSET:
   case SHADER_OPCODE_TG4_BIAS:
   case SHADER_OPCODE_TG4_EXPLICIT_LOD:
   case SHADER_OPCODE_TG4_IMPLICIT_LOD:
   case SHADER_OPCODE_TG4_OFFSET_LOD:
   case SHADER_OPCODE_TG4_OFFSET_BIAS:
   case SHADER_OPCODE_SAMPLEINFO:
      return arg == 1 || arg == 2;

   case SHADER_OPCODE_SEND:
      return arg == 0 || arg == 1;

   default:
      return false;
   }
}

bool
fs_inst::is_payload(unsigned arg) const
{
   switch (opcode) {
   case FS_OPCODE_FB_WRITE:
   case FS_OPCODE_FB_READ:
   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
   case SHADER_OPCODE_INTERLOCK:
   case SHADER_OPCODE_MEMORY_FENCE:
   case SHADER_OPCODE_BARRIER:
   case SHADER_OPCODE_TEX:
   case FS_OPCODE_TXB:
   case SHADER_OPCODE_TXD:
   case SHADER_OPCODE_TXF:
   case SHADER_OPCODE_TXF_LZ:
   case SHADER_OPCODE_TXF_CMS:
   case SHADER_OPCODE_TXF_CMS_W:
   case SHADER_OPCODE_TXF_UMS:
   case SHADER_OPCODE_TXF_MCS:
   case SHADER_OPCODE_TXL:
   case SHADER_OPCODE_TXL_LZ:
   case SHADER_OPCODE_TXS:
   case SHADER_OPCODE_LOD:
   case SHADER_OPCODE_TG4:
   case SHADER_OPCODE_TG4_OFFSET:
   case SHADER_OPCODE_TG4_BIAS:
   case SHADER_OPCODE_TG4_EXPLICIT_LOD:
   case SHADER_OPCODE_TG4_IMPLICIT_LOD:
   case SHADER_OPCODE_TG4_OFFSET_LOD:
   case SHADER_OPCODE_TG4_OFFSET_BIAS:
   case SHADER_OPCODE_SAMPLEINFO:
      return arg == 0;

   case SHADER_OPCODE_SEND:
      return arg == 2 || arg == 3;

   default:
      return false;
   }
}

/**
 * Returns true if this instruction's sources and destinations cannot
 * safely be the same register.
 *
 * In most cases, a register can be written over safely by the same
 * instruction that is its last use.  For a single instruction, the
 * sources are dereferenced before writing of the destination starts
 * (naturally).
 *
 * However, there are a few cases where this can be problematic:
 *
 * - Virtual opcodes that translate to multiple instructions in the
 *   code generator: if src == dst and one instruction writes the
 *   destination before a later instruction reads the source, then
 *   src will have been clobbered.
 *
 * - SIMD16 compressed instructions with certain regioning (see below).
 *
 * The register allocator uses this information to set up conflicts between
 * GRF sources and the destination.
 */
bool
fs_inst::has_source_and_destination_hazard() const
{
   switch (opcode) {
   case FS_OPCODE_PACK_HALF_2x16_SPLIT:
      /* Multiple partial writes to the destination */
      return true;
   case SHADER_OPCODE_SHUFFLE:
      /* This instruction returns an arbitrary channel from the source and
       * gets split into smaller instructions in the generator.  It's possible
       * that one of the instructions will read from a channel corresponding
       * to an earlier instruction.
       */
   case SHADER_OPCODE_SEL_EXEC:
      /* This is implemented as
       *
       * mov(16)      g4<1>D      0D            { align1 WE_all 1H };
       * mov(16)      g4<1>D      g5<8,8,1>D    { align1 1H }
       *
       * Because the source is only read in the second instruction, the first
       * may stomp all over it.
       */
      return true;
   case SHADER_OPCODE_QUAD_SWIZZLE:
      switch (src[1].ud) {
      case BRW_SWIZZLE_XXXX:
      case BRW_SWIZZLE_YYYY:
      case BRW_SWIZZLE_ZZZZ:
      case BRW_SWIZZLE_WWWW:
      case BRW_SWIZZLE_XXZZ:
      case BRW_SWIZZLE_YYWW:
      case BRW_SWIZZLE_XYXY:
      case BRW_SWIZZLE_ZWZW:
         /* These can be implemented as a single Align1 region on all
          * platforms, so there's never a hazard between source and
          * destination.  C.f. fs_generator::generate_quad_swizzle().
          */
         return false;
      default:
         return !is_uniform(src[0]);
      }
   case BRW_OPCODE_DPAS:
      /* This is overly conservative. The actual hazard is more complicated to
       * describe. When the repeat count is N, the single instruction behaves
       * like N instructions with a repeat count of one, but the destination
       * and source registers are incremented (in somewhat complex ways) for
       * each instruction.
       *
       * This means the source and destination register is actually a range of
       * registers. The hazard exists of an earlier iteration would write a
       * register that should be read by a later iteration.
       *
       * There may be some advantage to properly modeling this, but for now,
       * be overly conservative.
       */
      return rcount > 1;
   default:
      /* The SIMD16 compressed instruction
       *
       * add(16)      g4<1>F      g4<8,8,1>F   g6<8,8,1>F
       *
       * is actually decoded in hardware as:
       *
       * add(8)       g4<1>F      g4<8,8,1>F   g6<8,8,1>F
       * add(8)       g5<1>F      g5<8,8,1>F   g7<8,8,1>F
       *
       * Which is safe.  However, if we have uniform accesses
       * happening, we get into trouble:
       *
       * add(8)       g4<1>F      g4<0,1,0>F   g6<8,8,1>F
       * add(8)       g5<1>F      g4<0,1,0>F   g7<8,8,1>F
       *
       * Now our destination for the first instruction overwrote the
       * second instruction's src0, and we get garbage for those 8
       * pixels.  There's a similar issue for the pre-gfx6
       * pixel_x/pixel_y, which are registers of 16-bit values and thus
       * would get stomped by the first decode as well.
       */
      if (exec_size == 16) {
         for (int i = 0; i < sources; i++) {
            if (src[i].file == VGRF && (src[i].stride == 0 ||
                                        src[i].type == BRW_REGISTER_TYPE_UW ||
                                        src[i].type == BRW_REGISTER_TYPE_W ||
                                        src[i].type == BRW_REGISTER_TYPE_UB ||
                                        src[i].type == BRW_REGISTER_TYPE_B)) {
               return true;
            }
         }
      }
      return false;
   }
}

bool
fs_inst::can_do_source_mods(const struct intel_device_info *devinfo) const
{
   if (devinfo->ver == 6 && is_math())
      return false;

   if (is_send_from_grf())
      return false;

   /* From Wa_1604601757:
    *
    * "When multiplying a DW and any lower precision integer, source modifier
    *  is not supported."
    */
   if (devinfo->ver >= 12 && (opcode == BRW_OPCODE_MUL ||
                              opcode == BRW_OPCODE_MAD)) {
      const brw_reg_type exec_type = get_exec_type(this);
      const unsigned min_type_sz = opcode == BRW_OPCODE_MAD ?
         MIN2(type_sz(src[1].type), type_sz(src[2].type)) :
         MIN2(type_sz(src[0].type), type_sz(src[1].type));

      if (brw_reg_type_is_integer(exec_type) &&
          type_sz(exec_type) >= 4 &&
          type_sz(exec_type) != min_type_sz)
         return false;
   }

   if (!backend_instruction::can_do_source_mods())
      return false;

   return true;
}

bool
fs_inst::can_do_cmod()
{
   if (!backend_instruction::can_do_cmod())
      return false;

   /* The accumulator result appears to get used for the conditional modifier
    * generation.  When negating a UD value, there is a 33rd bit generated for
    * the sign in the accumulator value, so now you can't check, for example,
    * equality with a 32-bit value.  See piglit fs-op-neg-uvec4.
    */
   for (unsigned i = 0; i < sources; i++) {
      if (brw_reg_type_is_unsigned_integer(src[i].type) && src[i].negate)
         return false;
   }

   return true;
}

bool
fs_inst::can_change_types() const
{
   return dst.type == src[0].type &&
          !src[0].abs && !src[0].negate && !saturate && src[0].file != ATTR &&
          (opcode == BRW_OPCODE_MOV ||
           (opcode == BRW_OPCODE_SEL &&
            dst.type == src[1].type &&
            predicate != BRW_PREDICATE_NONE &&
            !src[1].abs && !src[1].negate && src[1].file != ATTR));
}

void
fs_reg::init()
{
   memset((void*)this, 0, sizeof(*this));
   type = BRW_REGISTER_TYPE_UD;
   stride = 1;
}

/** Generic unset register constructor. */
fs_reg::fs_reg()
{
   init();
   this->file = BAD_FILE;
}

fs_reg::fs_reg(struct ::brw_reg reg) :
   backend_reg(reg)
{
   this->offset = 0;
   this->stride = 1;
   if (this->file == IMM &&
       (this->type != BRW_REGISTER_TYPE_V &&
        this->type != BRW_REGISTER_TYPE_UV &&
        this->type != BRW_REGISTER_TYPE_VF)) {
      this->stride = 0;
   }
}

bool
fs_reg::equals(const fs_reg &r) const
{
   return (this->backend_reg::equals(r) &&
           stride == r.stride);
}

bool
fs_reg::negative_equals(const fs_reg &r) const
{
   return (this->backend_reg::negative_equals(r) &&
           stride == r.stride);
}

bool
fs_reg::is_contiguous() const
{
   switch (file) {
   case ARF:
   case FIXED_GRF:
      return hstride == BRW_HORIZONTAL_STRIDE_1 &&
             vstride == width + hstride;
   case MRF:
   case VGRF:
   case ATTR:
      return stride == 1;
   case UNIFORM:
   case IMM:
   case BAD_FILE:
      return true;
   }

   unreachable("Invalid register file");
}

unsigned
fs_reg::component_size(unsigned width) const
{
   if (file == ARF || file == FIXED_GRF) {
      const unsigned w = MIN2(width, 1u << this->width);
      const unsigned h = width >> this->width;
      const unsigned vs = vstride ? 1 << (vstride - 1) : 0;
      const unsigned hs = hstride ? 1 << (hstride - 1) : 0;
      assert(w > 0);
      return ((MAX2(1, h) - 1) * vs + (w - 1) * hs + 1) * type_sz(type);
   } else {
      return MAX2(width * stride, 1) * type_sz(type);
   }
}

void
fs_visitor::vfail(const char *format, va_list va)
{
   char *msg;

   if (failed)
      return;

   failed = true;

   msg = ralloc_vasprintf(mem_ctx, format, va);
   msg = ralloc_asprintf(mem_ctx, "SIMD%d %s compile failed: %s\n",
         dispatch_width, _mesa_shader_stage_to_abbrev(stage), msg);

   this->fail_msg = msg;

   if (unlikely(debug_enabled)) {
      fprintf(stderr, "%s",  msg);
   }
}

void
fs_visitor::fail(const char *format, ...)
{
   va_list va;

   va_start(va, format);
   vfail(format, va);
   va_end(va);
}

/**
 * Mark this program as impossible to compile with dispatch width greater
 * than n.
 *
 * During the SIMD8 compile (which happens first), we can detect and flag
 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
 * SIMD16+ compile altogether.
 *
 * During a compile of dispatch width greater than n (if one happens anyway),
 * this just calls fail().
 */
void
fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
{
   if (dispatch_width > n) {
      fail("%s", msg);
   } else {
      max_dispatch_width = MIN2(max_dispatch_width, n);
      brw_shader_perf_log(compiler, log_data,
                          "Shader dispatch width limited to SIMD%d: %s\n",
                          n, msg);
   }
}

/**
 * Returns true if the instruction has a flag that means it won't
 * update an entire destination register.
 *
 * For example, dead code elimination and live variable analysis want to know
 * when a write to a variable screens off any preceding values that were in
 * it.
 */
bool
fs_inst::is_partial_write() const
{
   if (this->predicate && !this->predicate_trivial &&
       this->opcode != BRW_OPCODE_SEL)
      return true;

   if (this->dst.offset % REG_SIZE != 0)
      return true;

   /* SEND instructions always write whole registers */
   if (this->opcode == SHADER_OPCODE_SEND)
      return false;

   /* Special case UNDEF since a lot of places in the backend do things like this :
    *
    *  fs_builder ubld = bld.exec_all().group(1, 0);
    *  fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD);
    *  ubld.UNDEF(tmp); <- partial write, even if the whole register is concerned
    */
   if (this->opcode == SHADER_OPCODE_UNDEF) {
      assert(this->dst.is_contiguous());
      return this->size_written < 32;
   }

   return this->exec_size * type_sz(this->dst.type) < 32 ||
          !this->dst.is_contiguous();
}

unsigned
fs_inst::components_read(unsigned i) const
{
   /* Return zero if the source is not present. */
   if (src[i].file == BAD_FILE)
      return 0;

   switch (opcode) {
   case FS_OPCODE_LINTERP:
      if (i == 0)
         return 2;
      else
         return 1;

   case FS_OPCODE_PIXEL_X:
   case FS_OPCODE_PIXEL_Y:
      assert(i < 2);
      if (i == 0)
         return 2;
      else
         return 1;

   case FS_OPCODE_FB_WRITE_LOGICAL:
      assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
      /* First/second FB write color. */
      if (i < 2)
         return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
      else
         return 1;

   case SHADER_OPCODE_TEX_LOGICAL:
   case SHADER_OPCODE_TXD_LOGICAL:
   case SHADER_OPCODE_TXF_LOGICAL:
   case SHADER_OPCODE_TXL_LOGICAL:
   case SHADER_OPCODE_TXS_LOGICAL:
   case SHADER_OPCODE_IMAGE_SIZE_LOGICAL:
   case FS_OPCODE_TXB_LOGICAL:
   case SHADER_OPCODE_TXF_CMS_LOGICAL:
   case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
   case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
   case SHADER_OPCODE_TXF_UMS_LOGICAL:
   case SHADER_OPCODE_TXF_MCS_LOGICAL:
   case SHADER_OPCODE_LOD_LOGICAL:
   case SHADER_OPCODE_TG4_LOGICAL:
   case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
   case SHADER_OPCODE_TG4_BIAS_LOGICAL:
   case SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL:
   case SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL:
   case SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL:
   case SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL:
   case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
      assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
             src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM &&
             src[TEX_LOGICAL_SRC_RESIDENCY].file == IMM);
      /* Texture coordinates. */
      if (i == TEX_LOGICAL_SRC_COORDINATE)
         return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
      /* Texture derivatives. */
      else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
               opcode == SHADER_OPCODE_TXD_LOGICAL)
         return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
      /* Texture offset. */
      else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
         return 2;
      /* MCS */
      else if (i == TEX_LOGICAL_SRC_MCS) {
         if (opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
            return 2;
         else if (opcode == SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL)
            return 4;
         else
            return 1;
      } else
         return 1;

   case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
   case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM);
      /* Surface coordinates. */
      if (i == SURFACE_LOGICAL_SRC_ADDRESS)
         return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
      /* Surface operation source (ignored for reads). */
      else if (i == SURFACE_LOGICAL_SRC_DATA)
         return 0;
      else
         return 1;

   case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
   case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
      /* Surface coordinates. */
      if (i == SURFACE_LOGICAL_SRC_ADDRESS)
         return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
      /* Surface operation source. */
      else if (i == SURFACE_LOGICAL_SRC_DATA)
         return src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
      else
         return 1;

   case SHADER_OPCODE_A64_UNTYPED_READ_LOGICAL:
   case SHADER_OPCODE_A64_OWORD_BLOCK_READ_LOGICAL:
   case SHADER_OPCODE_A64_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
      assert(src[A64_LOGICAL_ARG].file == IMM);
      return 1;

   case SHADER_OPCODE_A64_OWORD_BLOCK_WRITE_LOGICAL:
      assert(src[A64_LOGICAL_ARG].file == IMM);
      if (i == A64_LOGICAL_SRC) { /* data to write */
         const unsigned comps = src[A64_LOGICAL_ARG].ud / exec_size;
         assert(comps > 0);
         return comps;
      } else {
         return 1;
      }

   case SHADER_OPCODE_UNALIGNED_OWORD_BLOCK_READ_LOGICAL:
      assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
      return 1;

   case SHADER_OPCODE_OWORD_BLOCK_WRITE_LOGICAL:
      assert(src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
      if (i == SURFACE_LOGICAL_SRC_DATA) {
         const unsigned comps = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud / exec_size;
         assert(comps > 0);
         return comps;
      } else {
         return 1;
      }

   case SHADER_OPCODE_A64_UNTYPED_WRITE_LOGICAL:
      assert(src[A64_LOGICAL_ARG].file == IMM);
      return i == A64_LOGICAL_SRC ? src[A64_LOGICAL_ARG].ud : 1;

   case SHADER_OPCODE_A64_UNTYPED_ATOMIC_LOGICAL:
      assert(src[A64_LOGICAL_ARG].file == IMM);
      return i == A64_LOGICAL_SRC ?
             lsc_op_num_data_values(src[A64_LOGICAL_ARG].ud) : 1;

   case SHADER_OPCODE_BYTE_SCATTERED_READ_LOGICAL:
   case SHADER_OPCODE_DWORD_SCATTERED_READ_LOGICAL:
      /* Scattered logical opcodes use the following params:
       * src[0] Surface coordinates
       * src[1] Surface operation source (ignored for reads)
       * src[2] Surface
       * src[3] IMM with always 1 dimension.
       * src[4] IMM with arg bitsize for scattered read/write 8, 16, 32
       */
      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
      return i == SURFACE_LOGICAL_SRC_DATA ? 0 : 1;

   case SHADER_OPCODE_BYTE_SCATTERED_WRITE_LOGICAL:
   case SHADER_OPCODE_DWORD_SCATTERED_WRITE_LOGICAL:
      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
      return 1;

   case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
   case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
      assert(src[SURFACE_LOGICAL_SRC_IMM_DIMS].file == IMM &&
             src[SURFACE_LOGICAL_SRC_IMM_ARG].file == IMM);
      const unsigned op = src[SURFACE_LOGICAL_SRC_IMM_ARG].ud;
      /* Surface coordinates. */
      if (i == SURFACE_LOGICAL_SRC_ADDRESS)
         return src[SURFACE_LOGICAL_SRC_IMM_DIMS].ud;
      /* Surface operation source. */
      else if (i == SURFACE_LOGICAL_SRC_DATA)
         return lsc_op_num_data_values(op);
      else
         return 1;
   }
   case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
      return (i == 0 ? 2 : 1);

   case SHADER_OPCODE_URB_WRITE_LOGICAL:
      assert(src[URB_LOGICAL_SRC_COMPONENTS].file == IMM);

      if (i == URB_LOGICAL_SRC_DATA)
         return src[URB_LOGICAL_SRC_COMPONENTS].ud;
      else
         return 1;

   case BRW_OPCODE_DPAS:
      unreachable("Do not use components_read() for DPAS.");

   default:
      return 1;
   }
}

unsigned
fs_inst::size_read(int arg) const
{
   switch (opcode) {
   case SHADER_OPCODE_SEND:
      if (arg == 2) {
         return mlen * REG_SIZE;
      } else if (arg == 3) {
         return ex_mlen * REG_SIZE;
      }
      break;

   case FS_OPCODE_FB_WRITE:
   case FS_OPCODE_REP_FB_WRITE:
      if (arg == 0) {
         if (base_mrf >= 0)
            return src[0].file == BAD_FILE ? 0 : 2 * REG_SIZE;
         else
            return mlen * REG_SIZE;
      }
      break;

   case FS_OPCODE_FB_READ:
   case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
   case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
      if (arg == 0)
         return mlen * REG_SIZE;
      break;

   case FS_OPCODE_SET_SAMPLE_ID:
      if (arg == 1)
         return 1;
      break;

   case FS_OPCODE_LINTERP:
      if (arg == 1)
         return 16;
      break;

   case SHADER_OPCODE_LOAD_PAYLOAD:
      if (arg < this->header_size)
         return retype(src[arg], BRW_REGISTER_TYPE_UD).component_size(8);
      break;

   case CS_OPCODE_CS_TERMINATE:
   case SHADER_OPCODE_BARRIER:
      return REG_SIZE;

   case SHADER_OPCODE_MOV_INDIRECT:
      if (arg == 0) {
         assert(src[2].file == IMM);
         return src[2].ud;
      }
      break;

   case BRW_OPCODE_DPAS:
      switch (arg) {
      case 0:
         if (src[0].type == BRW_REGISTER_TYPE_HF) {
            return rcount * REG_SIZE / 2;
         } else {
            return rcount * REG_SIZE;
         }
      case 1:
         return sdepth * REG_SIZE;
      case 2:
         /* This is simpler than the formula described in the Bspec, but it
          * covers all of the cases that we support on DG2.
          */
         return rcount * REG_SIZE;
      default:
         unreachable("Invalid source number.");
      }
      break;

   case SHADER_OPCODE_TEX:
   case FS_OPCODE_TXB:
   case SHADER_OPCODE_TXD:
   case SHADER_OPCODE_TXF:
   case SHADER_OPCODE_TXF_LZ:
   case SHADER_OPCODE_TXF_CMS:
   case SHADER_OPCODE_TXF_CMS_W:
   case SHADER_OPCODE_TXF_UMS:
   case SHADER_OPCODE_TXF_MCS:
   case SHADER_OPCODE_TXL:
   case SHADER_OPCODE_TXL_LZ:
   case SHADER_OPCODE_TXS:
   case SHADER_OPCODE_LOD:
   case SHADER_OPCODE_TG4:
   case SHADER_OPCODE_TG4_OFFSET:
   case SHADER_OPCODE_TG4_BIAS:
   case SHADER_OPCODE_TG4_EXPLICIT_LOD:
   case SHADER_OPCODE_TG4_IMPLICIT_LOD:
   case SHADER_OPCODE_TG4_OFFSET_LOD:
   case SHADER_OPCODE_TG4_OFFSET_BIAS:
   case SHADER_OPCODE_SAMPLEINFO:
      if (arg == 0 && src[0].file == VGRF)
         return mlen * REG_SIZE;
      break;

   default:
      break;
   }

   switch (src[arg].file) {
   case UNIFORM:
   case IMM:
      return components_read(arg) * type_sz(src[arg].type);
   case BAD_FILE:
   case ARF:
   case FIXED_GRF:
   case VGRF:
   case ATTR:
      return components_read(arg) * src[arg].component_size(exec_size);
   case MRF:
      unreachable("MRF registers are not allowed as sources");
   }
   return 0;
}

namespace {
   unsigned
   predicate_width(const intel_device_info *devinfo, brw_predicate predicate)
   {
      if (devinfo->ver >= 20) {
         return 1;
      } else {
         switch (predicate) {
         case BRW_PREDICATE_NONE:            return 1;
         case BRW_PREDICATE_NORMAL:          return 1;
         case BRW_PREDICATE_ALIGN1_ANY2H:    return 2;
         case BRW_PREDICATE_ALIGN1_ALL2H:    return 2;
         case BRW_PREDICATE_ALIGN1_ANY4H:    return 4;
         case BRW_PREDICATE_ALIGN1_ALL4H:    return 4;
         case BRW_PREDICATE_ALIGN1_ANY8H:    return 8;
         case BRW_PREDICATE_ALIGN1_ALL8H:    return 8;
         case BRW_PREDICATE_ALIGN1_ANY16H:   return 16;
         case BRW_PREDICATE_ALIGN1_ALL16H:   return 16;
         case BRW_PREDICATE_ALIGN1_ANY32H:   return 32;
         case BRW_PREDICATE_ALIGN1_ALL32H:   return 32;
         default: unreachable("Unsupported predicate");
         }
      }
   }
}

unsigned
fs_inst::flags_read(const intel_device_info *devinfo) const
{
   if (devinfo->ver < 20 && (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
                             predicate == BRW_PREDICATE_ALIGN1_ALLV)) {
      /* The vertical predication modes combine corresponding bits from
       * f0.0 and f1.0 on Gfx7+, and f0.0 and f0.1 on older hardware.
       */
      const unsigned shift = devinfo->ver >= 7 ? 4 : 2;
      return brw_fs_flag_mask(this, 1) << shift | brw_fs_flag_mask(this, 1);
   } else if (predicate) {
      return brw_fs_flag_mask(this, predicate_width(devinfo, predicate));
   } else {
      unsigned mask = 0;
      for (int i = 0; i < sources; i++) {
         mask |= brw_fs_flag_mask(src[i], size_read(i));
      }
      return mask;
   }
}

unsigned
fs_inst::flags_written(const intel_device_info *devinfo) const
{
   /* On Gfx4 and Gfx5, sel.l (for min) and sel.ge (for max) are implemented
    * using a separate cmpn and sel instruction.  This lowering occurs in
    * fs_vistor::lower_minmax which is called very, very late.
    */
   if ((conditional_mod && ((opcode != BRW_OPCODE_SEL || devinfo->ver <= 5) &&
                            opcode != BRW_OPCODE_CSEL &&
                            opcode != BRW_OPCODE_IF &&
                            opcode != BRW_OPCODE_WHILE)) ||
       opcode == FS_OPCODE_FB_WRITE) {
      return brw_fs_flag_mask(this, 1);
   } else if (opcode == SHADER_OPCODE_FIND_LIVE_CHANNEL ||
              opcode == SHADER_OPCODE_FIND_LAST_LIVE_CHANNEL ||
              opcode == FS_OPCODE_LOAD_LIVE_CHANNELS) {
      return brw_fs_flag_mask(this, 32);
   } else {
      return brw_fs_flag_mask(dst, size_written);
   }
}

/**
 * Returns how many MRFs an FS opcode will write over.
 *
 * Note that this is not the 0 or 1 implied writes in an actual gen
 * instruction -- the FS opcodes often generate MOVs in addition.
 */
unsigned
fs_inst::implied_mrf_writes() const
{
   if (mlen == 0)
      return 0;

   if (base_mrf == -1)
      return 0;

   switch (opcode) {
   case SHADER_OPCODE_RCP:
   case SHADER_OPCODE_RSQ:
   case SHADER_OPCODE_SQRT:
   case SHADER_OPCODE_EXP2:
   case SHADER_OPCODE_LOG2:
   case SHADER_OPCODE_SIN:
   case SHADER_OPCODE_COS:
      return 1 * exec_size / 8;
   case SHADER_OPCODE_POW:
   case SHADER_OPCODE_INT_QUOTIENT:
   case SHADER_OPCODE_INT_REMAINDER:
      return 2 * exec_size / 8;
   case SHADER_OPCODE_TEX:
   case FS_OPCODE_TXB:
   case SHADER_OPCODE_TXD:
   case SHADER_OPCODE_TXF:
   case SHADER_OPCODE_TXF_CMS:
   case SHADER_OPCODE_TXF_MCS:
   case SHADER_OPCODE_TG4:
   case SHADER_OPCODE_TG4_OFFSET:
   case SHADER_OPCODE_TG4_BIAS:
   case SHADER_OPCODE_TG4_EXPLICIT_LOD:
   case SHADER_OPCODE_TG4_IMPLICIT_LOD:
   case SHADER_OPCODE_TG4_OFFSET_LOD:
   case SHADER_OPCODE_TG4_OFFSET_BIAS:
   case SHADER_OPCODE_TXL:
   case SHADER_OPCODE_TXS:
   case SHADER_OPCODE_LOD:
   case SHADER_OPCODE_SAMPLEINFO:
      return 1;
   case FS_OPCODE_FB_WRITE:
   case FS_OPCODE_REP_FB_WRITE:
      return src[0].file == BAD_FILE ? 0 : 2;
   case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
   case SHADER_OPCODE_GFX4_SCRATCH_READ:
      return 1;
   case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GFX4:
      return mlen;
   case SHADER_OPCODE_GFX4_SCRATCH_WRITE:
      return mlen;
   default:
      unreachable("not reached");
   }
}

bool
fs_inst::has_sampler_residency() const
{
   switch (opcode) {
   case SHADER_OPCODE_TEX_LOGICAL:
   case FS_OPCODE_TXB_LOGICAL:
   case SHADER_OPCODE_TXL_LOGICAL:
   case SHADER_OPCODE_TXD_LOGICAL:
   case SHADER_OPCODE_TXF_LOGICAL:
   case SHADER_OPCODE_TXF_CMS_W_GFX12_LOGICAL:
   case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
   case SHADER_OPCODE_TXF_CMS_LOGICAL:
   case SHADER_OPCODE_TXS_LOGICAL:
   case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
   case SHADER_OPCODE_TG4_LOGICAL:
   case SHADER_OPCODE_TG4_BIAS_LOGICAL:
   case SHADER_OPCODE_TG4_EXPLICIT_LOD_LOGICAL:
   case SHADER_OPCODE_TG4_IMPLICIT_LOD_LOGICAL:
   case SHADER_OPCODE_TG4_OFFSET_LOD_LOGICAL:
   case SHADER_OPCODE_TG4_OFFSET_BIAS_LOGICAL:
      assert(src[TEX_LOGICAL_SRC_RESIDENCY].file == IMM);
      return src[TEX_LOGICAL_SRC_RESIDENCY].ud != 0;
   default:
      return false;
   }
}

fs_reg
fs_visitor::vgrf(const glsl_type *const type)
{
   int reg_width = dispatch_width / 8;
   return fs_reg(VGRF,
                 alloc.allocate(glsl_count_dword_slots(type, false) * reg_width),
                 brw_type_for_base_type(type));
}

fs_reg::fs_reg(enum brw_reg_file file, unsigned nr)
{
   init();
   this->file = file;
   this->nr = nr;
   this->type = BRW_REGISTER_TYPE_F;
   this->stride = (file == UNIFORM ? 0 : 1);
}

fs_reg::fs_reg(enum brw_reg_file file, unsigned nr, enum brw_reg_type type)
{
   init();
   this->file = file;
   this->nr = nr;
   this->type = type;
   this->stride = (file == UNIFORM ? 0 : 1);
}

/* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
 * This brings in those uniform definitions
 */
void
fs_visitor::import_uniforms(fs_visitor *v)
{
   this->push_constant_loc = v->push_constant_loc;
   this->uniforms = v->uniforms;
}

enum brw_barycentric_mode
brw_barycentric_mode(nir_intrinsic_instr *intr)
{
   const glsl_interp_mode mode =
      (enum glsl_interp_mode) nir_intrinsic_interp_mode(intr);

   /* Barycentric modes don't make sense for flat inputs. */
   assert(mode != INTERP_MODE_FLAT);

   unsigned bary;
   switch (intr->intrinsic) {
   case nir_intrinsic_load_barycentric_pixel:
   case nir_intrinsic_load_barycentric_at_offset:
      bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
      break;
   case nir_intrinsic_load_barycentric_centroid:
      bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
      break;
   case nir_intrinsic_load_barycentric_sample:
   case nir_intrinsic_load_barycentric_at_sample:
      bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
      break;
   default:
      unreachable("invalid intrinsic");
   }

   if (mode == INTERP_MODE_NOPERSPECTIVE)
      bary += 3;

   return (enum brw_barycentric_mode) bary;
}

/**
 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
 */
static enum brw_barycentric_mode
centroid_to_pixel(enum brw_barycentric_mode bary)
{
   assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
          bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
   return (enum brw_barycentric_mode) ((unsigned) bary - 1);
}

/**
 * Walk backwards from the end of the program looking for a URB write that
 * isn't in control flow, and mark it with EOT.
 *
 * Return true if successful or false if a separate EOT write is needed.
 */
bool
fs_visitor::mark_last_urb_write_with_eot()
{
   foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
      if (prev->opcode == SHADER_OPCODE_URB_WRITE_LOGICAL) {
         prev->eot = true;

         /* Delete now dead instructions. */
         foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
            if (dead == prev)
               break;
            dead->remove();
         }
         return true;
      } else if (prev->is_control_flow() || prev->has_side_effects()) {
         break;
      }
   }

   return false;
}

void
fs_visitor::emit_gs_thread_end()
{
   assert(stage == MESA_SHADER_GEOMETRY);

   struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);

   if (gs_compile->control_data_header_size_bits > 0) {
      emit_gs_control_data_bits(this->final_gs_vertex_count);
   }

   const fs_builder abld = fs_builder(this).at_end().annotate("thread end");
   fs_inst *inst;

   if (gs_prog_data->static_vertex_count != -1) {
      /* Try and tag the last URB write with EOT instead of emitting a whole
       * separate write just to finish the thread.
       */
      if (mark_last_urb_write_with_eot())
         return;

      fs_reg srcs[URB_LOGICAL_NUM_SRCS];
      srcs[URB_LOGICAL_SRC_HANDLE] = gs_payload().urb_handles;
      srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(0);
      inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
                       srcs, ARRAY_SIZE(srcs));
   } else {
      fs_reg srcs[URB_LOGICAL_NUM_SRCS];
      srcs[URB_LOGICAL_SRC_HANDLE] = gs_payload().urb_handles;
      srcs[URB_LOGICAL_SRC_DATA] = this->final_gs_vertex_count;
      srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1);
      inst = abld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL, reg_undef,
                       srcs, ARRAY_SIZE(srcs));
   }
   inst->eot = true;
   inst->offset = 0;
}

void
fs_visitor::assign_curb_setup()
{
   unsigned uniform_push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);

   unsigned ubo_push_length = 0;
   unsigned ubo_push_start[4];
   for (int i = 0; i < 4; i++) {
      ubo_push_start[i] = 8 * (ubo_push_length + uniform_push_length);
      ubo_push_length += stage_prog_data->ubo_ranges[i].length;
   }

   prog_data->curb_read_length = uniform_push_length + ubo_push_length;

   uint64_t used = 0;
   bool is_compute = gl_shader_stage_is_compute(stage);

   if (is_compute && brw_cs_prog_data(prog_data)->uses_inline_data) {
      /* With COMPUTE_WALKER, we can push up to one register worth of data via
       * the inline data parameter in the COMPUTE_WALKER command itself.
       *
       * TODO: Support inline data and push at the same time.
       */
      assert(devinfo->verx10 >= 125);
      assert(uniform_push_length <= reg_unit(devinfo));
   } else if (is_compute && devinfo->verx10 >= 125) {
      assert(devinfo->has_lsc);
      fs_builder ubld = fs_builder(this, 1).exec_all().at(
         cfg->first_block(), cfg->first_block()->start());

      /* The base offset for our push data is passed in as R0.0[31:6]. We have
       * to mask off the bottom 6 bits.
       */
      fs_reg base_addr = ubld.vgrf(BRW_REGISTER_TYPE_UD);
      ubld.AND(base_addr,
               retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
               brw_imm_ud(INTEL_MASK(31, 6)));

      /* On Gfx12-HP we load constants at the start of the program using A32
       * stateless messages.
       */
      for (unsigned i = 0; i < uniform_push_length;) {
         /* Limit ourselves to LSC HW limit of 8 GRFs (256bytes D32V64). */
         unsigned num_regs = MIN2(uniform_push_length - i, 8);
         assert(num_regs > 0);
         num_regs = 1 << util_logbase2(num_regs);

         fs_reg addr = ubld.vgrf(BRW_REGISTER_TYPE_UD);
         ubld.ADD(addr, base_addr, brw_imm_ud(i * REG_SIZE));

         fs_reg srcs[4] = {
            brw_imm_ud(0), /* desc */
            brw_imm_ud(0), /* ex_desc */
            addr,          /* payload */
            fs_reg(),      /* payload2 */
         };

         fs_reg dest = retype(brw_vec8_grf(payload().num_regs + i, 0),
                              BRW_REGISTER_TYPE_UD);
         fs_inst *send = ubld.emit(SHADER_OPCODE_SEND, dest, srcs, 4);

         send->sfid = GFX12_SFID_UGM;
         send->desc = lsc_msg_desc(devinfo, LSC_OP_LOAD,
                                   1 /* exec_size */,
                                   LSC_ADDR_SURFTYPE_FLAT,
                                   LSC_ADDR_SIZE_A32,
                                   1 /* num_coordinates */,
                                   LSC_DATA_SIZE_D32,
                                   num_regs * 8 /* num_channels */,
                                   true /* transpose */,
                                   LSC_CACHE(devinfo, LOAD, L1STATE_L3MOCS),
                                   true /* has_dest */);
         send->header_size = 0;
         send->mlen = lsc_msg_desc_src0_len(devinfo, send->desc);
         send->size_written =
            lsc_msg_desc_dest_len(devinfo, send->desc) * REG_SIZE;
         send->send_is_volatile = true;

         i += num_regs;
      }

      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
   }

   /* Map the offsets in the UNIFORM file to fixed HW regs. */
   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      for (unsigned int i = 0; i < inst->sources; i++) {
	 if (inst->src[i].file == UNIFORM) {
            int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
            int constant_nr;
            if (inst->src[i].nr >= UBO_START) {
               /* constant_nr is in 32-bit units, the rest are in bytes */
               constant_nr = ubo_push_start[inst->src[i].nr - UBO_START] +
                             inst->src[i].offset / 4;
            } else if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
               constant_nr = push_constant_loc[uniform_nr];
            } else {
               /* Section 5.11 of the OpenGL 4.1 spec says:
                * "Out-of-bounds reads return undefined values, which include
                *  values from other variables of the active program or zero."
                * Just return the first push constant.
                */
               constant_nr = 0;
            }

            assert(constant_nr / 8 < 64);
            used |= BITFIELD64_BIT(constant_nr / 8);

	    struct brw_reg brw_reg = brw_vec1_grf(payload().num_regs +
						  constant_nr / 8,
						  constant_nr % 8);
            brw_reg.abs = inst->src[i].abs;
            brw_reg.negate = inst->src[i].negate;

            assert(inst->src[i].stride == 0);
            inst->src[i] = byte_offset(
               retype(brw_reg, inst->src[i].type),
               inst->src[i].offset % 4);
	 }
      }
   }

   uint64_t want_zero = used & stage_prog_data->zero_push_reg;
   if (want_zero) {
      fs_builder ubld = fs_builder(this, 8).exec_all().at(
         cfg->first_block(), cfg->first_block()->start());

      /* push_reg_mask_param is in 32-bit units */
      unsigned mask_param = stage_prog_data->push_reg_mask_param;
      struct brw_reg mask = brw_vec1_grf(payload().num_regs + mask_param / 8,
                                                              mask_param % 8);

      fs_reg b32;
      for (unsigned i = 0; i < 64; i++) {
         if (i % 16 == 0 && (want_zero & BITFIELD64_RANGE(i, 16))) {
            fs_reg shifted = ubld.vgrf(BRW_REGISTER_TYPE_W, 2);
            ubld.SHL(horiz_offset(shifted, 8),
                     byte_offset(retype(mask, BRW_REGISTER_TYPE_W), i / 8),
                     brw_imm_v(0x01234567));
            ubld.SHL(shifted, horiz_offset(shifted, 8), brw_imm_w(8));

            fs_builder ubld16 = ubld.group(16, 0);
            b32 = ubld16.vgrf(BRW_REGISTER_TYPE_D);
            ubld16.group(16, 0).ASR(b32, shifted, brw_imm_w(15));
         }

         if (want_zero & BITFIELD64_BIT(i)) {
            assert(i < prog_data->curb_read_length);
            struct brw_reg push_reg =
               retype(brw_vec8_grf(payload().num_regs + i, 0),
                      BRW_REGISTER_TYPE_D);

            ubld.AND(push_reg, push_reg, component(b32, i % 16));
         }
      }

      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
   }

   /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
   this->first_non_payload_grf = payload().num_regs + prog_data->curb_read_length;
}

/*
 * Build up an array of indices into the urb_setup array that
 * references the active entries of the urb_setup array.
 * Used to accelerate walking the active entries of the urb_setup array
 * on each upload.
 */
void
brw_compute_urb_setup_index(struct brw_wm_prog_data *wm_prog_data)
{
   /* TODO(mesh): Review usage of this in the context of Mesh, we may want to
    * skip per-primitive attributes here.
    */

   /* Make sure uint8_t is sufficient */
   STATIC_ASSERT(VARYING_SLOT_MAX <= 0xff);
   uint8_t index = 0;
   for (uint8_t attr = 0; attr < VARYING_SLOT_MAX; attr++) {
      if (wm_prog_data->urb_setup[attr] >= 0) {
         wm_prog_data->urb_setup_attribs[index++] = attr;
      }
   }
   wm_prog_data->urb_setup_attribs_count = index;
}

static void
calculate_urb_setup(const struct intel_device_info *devinfo,
                    const struct brw_wm_prog_key *key,
                    struct brw_wm_prog_data *prog_data,
                    const nir_shader *nir,
                    const struct brw_mue_map *mue_map)
{
   memset(prog_data->urb_setup, -1, sizeof(prog_data->urb_setup));
   memset(prog_data->urb_setup_channel, 0, sizeof(prog_data->urb_setup_channel));

   int urb_next = 0; /* in vec4s */

   const uint64_t inputs_read =
      nir->info.inputs_read & ~nir->info.per_primitive_inputs;

   /* Figure out where each of the incoming setup attributes lands. */
   if (key->mesh_input != BRW_NEVER) {
      /* Per-Primitive Attributes are laid out by Hardware before the regular
       * attributes, so order them like this to make easy later to map setup
       * into real HW registers.
       */
      if (nir->info.per_primitive_inputs) {
         uint64_t per_prim_inputs_read =
               nir->info.inputs_read & nir->info.per_primitive_inputs;

         /* In Mesh, PRIMITIVE_SHADING_RATE, VIEWPORT and LAYER slots
          * are always at the beginning, because they come from MUE
          * Primitive Header, not Per-Primitive Attributes.
          */
         const uint64_t primitive_header_bits = VARYING_BIT_VIEWPORT |
                                                VARYING_BIT_LAYER |
                                                VARYING_BIT_PRIMITIVE_SHADING_RATE;

         if (mue_map) {
            unsigned per_prim_start_dw = mue_map->per_primitive_start_dw;
            unsigned per_prim_size_dw = mue_map->per_primitive_pitch_dw;

            bool reads_header = (per_prim_inputs_read & primitive_header_bits) != 0;

            if (reads_header || mue_map->user_data_in_primitive_header) {
               /* Primitive Shading Rate, Layer and Viewport live in the same
                * 4-dwords slot (psr is dword 0, layer is dword 1, and viewport
                * is dword 2).
                */
               if (per_prim_inputs_read & VARYING_BIT_PRIMITIVE_SHADING_RATE)
                  prog_data->urb_setup[VARYING_SLOT_PRIMITIVE_SHADING_RATE] = 0;

               if (per_prim_inputs_read & VARYING_BIT_LAYER)
                  prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;

               if (per_prim_inputs_read & VARYING_BIT_VIEWPORT)
                  prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = 0;

               per_prim_inputs_read &= ~primitive_header_bits;
            } else {
               /* If fs doesn't need primitive header, then it won't be made
                * available through SBE_MESH, so we have to skip them when
                * calculating offset from start of per-prim data.
                */
               per_prim_start_dw += mue_map->per_primitive_header_size_dw;
               per_prim_size_dw -= mue_map->per_primitive_header_size_dw;
            }

            u_foreach_bit64(i, per_prim_inputs_read) {
               int start = mue_map->start_dw[i];

               assert(start >= 0);
               assert(mue_map->len_dw[i] > 0);

               assert(unsigned(start) >= per_prim_start_dw);
               unsigned pos_dw = unsigned(start) - per_prim_start_dw;

               prog_data->urb_setup[i] = urb_next + pos_dw / 4;
               prog_data->urb_setup_channel[i] = pos_dw % 4;
            }

            urb_next = per_prim_size_dw / 4;
         } else {
            /* With no MUE map, we never read the primitive header, and
             * per-primitive attributes won't be packed either, so just lay
             * them in varying order.
             */
            per_prim_inputs_read &= ~primitive_header_bits;

            for (unsigned i = 0; i < VARYING_SLOT_MAX; i++) {
               if (per_prim_inputs_read & BITFIELD64_BIT(i)) {
                  prog_data->urb_setup[i] = urb_next++;
               }
            }

            /* The actual setup attributes later must be aligned to a full GRF. */
            urb_next = ALIGN(urb_next, 2);
         }

         prog_data->num_per_primitive_inputs = urb_next;
      }

      const uint64_t clip_dist_bits = VARYING_BIT_CLIP_DIST0 |
                                      VARYING_BIT_CLIP_DIST1;

      uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK;

      if (inputs_read & clip_dist_bits) {
         assert(!mue_map || mue_map->per_vertex_header_size_dw > 8);
         unique_fs_attrs &= ~clip_dist_bits;
      }

      if (mue_map) {
         unsigned per_vertex_start_dw = mue_map->per_vertex_start_dw;
         unsigned per_vertex_size_dw = mue_map->per_vertex_pitch_dw;

         /* Per-Vertex header is available to fragment shader only if there's
          * user data there.
          */
         if (!mue_map->user_data_in_vertex_header) {
            per_vertex_start_dw += 8;
            per_vertex_size_dw -= 8;
         }

         /* In Mesh, CLIP_DIST slots are always at the beginning, because
          * they come from MUE Vertex Header, not Per-Vertex Attributes.
          */
         if (inputs_read & clip_dist_bits) {
            prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] = urb_next;
            prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] = urb_next + 1;
         } else if (mue_map && mue_map->per_vertex_header_size_dw > 8) {
            /* Clip distances are in MUE, but we are not reading them in FS. */
            per_vertex_start_dw += 8;
            per_vertex_size_dw -= 8;
         }

         /* Per-Vertex attributes are laid out ordered.  Because we always link
          * Mesh and Fragment shaders, the which slots are written and read by
          * each of them will match. */
         u_foreach_bit64(i, unique_fs_attrs) {
            int start = mue_map->start_dw[i];

            assert(start >= 0);
            assert(mue_map->len_dw[i] > 0);

            assert(unsigned(start) >= per_vertex_start_dw);
            unsigned pos_dw = unsigned(start) - per_vertex_start_dw;

            prog_data->urb_setup[i] = urb_next + pos_dw / 4;
            prog_data->urb_setup_channel[i] = pos_dw % 4;
         }

         urb_next += per_vertex_size_dw / 4;
      } else {
         /* If we don't have an MUE map, just lay down the inputs the FS reads
          * in varying order, as we do for the legacy pipeline.
          */
         if (inputs_read & clip_dist_bits) {
            prog_data->urb_setup[VARYING_SLOT_CLIP_DIST0] = urb_next++;
            prog_data->urb_setup[VARYING_SLOT_CLIP_DIST1] = urb_next++;
         }

         for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
            if (unique_fs_attrs & BITFIELD64_BIT(i))
               prog_data->urb_setup[i] = urb_next++;
         }
      }
   } else if (devinfo->ver >= 6) {
      assert(!nir->info.per_primitive_inputs);

      uint64_t vue_header_bits =
         VARYING_BIT_PSIZ | VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT;

      uint64_t unique_fs_attrs = inputs_read & BRW_FS_VARYING_INPUT_MASK;

      /* VUE header fields all live in the same URB slot, so we pass them
       * as a single FS input attribute.  We want to only count them once.
       */
      if (inputs_read & vue_header_bits) {
         unique_fs_attrs &= ~vue_header_bits;
         unique_fs_attrs |= VARYING_BIT_PSIZ;
      }

      if (util_bitcount64(unique_fs_attrs) <= 16) {
         /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
          * first 16 varying inputs, so we can put them wherever we want.
          * Just put them in order.
          *
          * This is useful because it means that (a) inputs not used by the
          * fragment shader won't take up valuable register space, and (b) we
          * won't have to recompile the fragment shader if it gets paired with
          * a different vertex (or geometry) shader.
          *
          * VUE header fields share the same FS input attribute.
          */
         if (inputs_read & vue_header_bits) {
            if (inputs_read & VARYING_BIT_PSIZ)
               prog_data->urb_setup[VARYING_SLOT_PSIZ] = urb_next;
            if (inputs_read & VARYING_BIT_LAYER)
               prog_data->urb_setup[VARYING_SLOT_LAYER] = urb_next;
            if (inputs_read & VARYING_BIT_VIEWPORT)
               prog_data->urb_setup[VARYING_SLOT_VIEWPORT] = urb_next;

            urb_next++;
         }

         for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
            if (inputs_read & BRW_FS_VARYING_INPUT_MASK & ~vue_header_bits &
                BITFIELD64_BIT(i)) {
               prog_data->urb_setup[i] = urb_next++;
            }
         }
      } else {
         /* We have enough input varyings that the SF/SBE pipeline stage can't
          * arbitrarily rearrange them to suit our whim; we have to put them
          * in an order that matches the output of the previous pipeline stage
          * (geometry or vertex shader).
          */

         /* Re-compute the VUE map here in the case that the one coming from
          * geometry has more than one position slot (used for Primitive
          * Replication).
          */
         struct intel_vue_map prev_stage_vue_map;
         brw_compute_vue_map(devinfo, &prev_stage_vue_map,
                             key->input_slots_valid,
                             nir->info.separate_shader, 1);

         int first_slot =
            brw_compute_first_urb_slot_required(inputs_read,
                                                &prev_stage_vue_map);

         assert(prev_stage_vue_map.num_slots <= first_slot + 32);
         for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
              slot++) {
            int varying = prev_stage_vue_map.slot_to_varying[slot];
            if (varying != BRW_VARYING_SLOT_PAD &&
                (inputs_read & BRW_FS_VARYING_INPUT_MASK &
                 BITFIELD64_BIT(varying))) {
               prog_data->urb_setup[varying] = slot - first_slot;
            }
         }
         urb_next = prev_stage_vue_map.num_slots - first_slot;
      }
   } else {
      /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
      for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
         /* Point size is packed into the header, not as a general attribute */
         if (i == VARYING_SLOT_PSIZ)
            continue;

	 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
	    /* The back color slot is skipped when the front color is
	     * also written to.  In addition, some slots can be
	     * written in the vertex shader and not read in the
	     * fragment shader.  So the register number must always be
	     * incremented, mapped or not.
	     */
	    if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
	       prog_data->urb_setup[i] = urb_next;
            urb_next++;
	 }
      }

      /*
       * It's a FS only attribute, and we did interpolation for this attribute
       * in SF thread. So, count it here, too.
       *
       * See compile_sf_prog() for more info.
       */
      if (inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
         prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
   }

   prog_data->num_varying_inputs = urb_next - prog_data->num_per_primitive_inputs;
   prog_data->inputs = inputs_read;

   brw_compute_urb_setup_index(prog_data);
}

void
fs_visitor::assign_urb_setup()
{
   assert(stage == MESA_SHADER_FRAGMENT);
   struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);

   int urb_start = payload().num_regs + prog_data->base.curb_read_length;

   /* Offset all the urb_setup[] index by the actual position of the
    * setup regs, now that the location of the constants has been chosen.
    */
   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      for (int i = 0; i < inst->sources; i++) {
         if (inst->src[i].file == ATTR) {
            /* ATTR fs_reg::nr in the FS is in units of logical scalar
             * inputs each of which consumes 16B on Gfx4-Gfx12.  In
             * single polygon mode this leads to the following layout
             * of the vertex setup plane parameters in the ATTR
             * register file:
             *
             *  fs_reg::nr   Input   Comp0  Comp1  Comp2  Comp3
             *      0       Attr0.x  a1-a0  a2-a0   N/A    a0
             *      1       Attr0.y  a1-a0  a2-a0   N/A    a0
             *      2       Attr0.z  a1-a0  a2-a0   N/A    a0
             *      3       Attr0.w  a1-a0  a2-a0   N/A    a0
             *      4       Attr1.x  a1-a0  a2-a0   N/A    a0
             *     ...
             *
             * In multipolygon mode that no longer works since
             * different channels may be processing polygons with
             * different plane parameters, so each parameter above is
             * represented as a dispatch_width-wide vector:
             *
             *  fs_reg::nr     fs_reg::offset    Input      Comp0     ...    CompN
             *      0                 0          Attr0.x  a1[0]-a0[0] ... a1[N]-a0[N]
             *      0        4 * dispatch_width  Attr0.x  a2[0]-a0[0] ... a2[N]-a0[N]
             *      0        8 * dispatch_width  Attr0.x     N/A      ...     N/A
             *      0       12 * dispatch_width  Attr0.x    a0[0]     ...    a0[N]
             *      1                 0          Attr0.y  a1[0]-a0[0] ... a1[N]-a0[N]
             *     ...
             *
             * Note that many of the components on a single row above
             * are likely to be replicated multiple times (if, say, a
             * single SIMD thread is only processing 2 different
             * polygons), so plane parameters aren't actually stored
             * in GRF memory with that layout to avoid wasting space.
             * Instead we compose ATTR register regions with a 2D
             * region that walks through the parameters of each
             * polygon with the correct stride, reading the parameter
             * corresponding to each channel directly from the PS
             * thread payload.
             *
             * The latter layout corresponds to a param_width equal to
             * dispatch_width, while the former (scalar parameter)
             * layout has a param_width of 1.
             *
             * Gfx20+ represent plane parameters in a format similar
             * to the above, except the parameters are packed in 12B
             * and ordered like "a0, a1-a0, a2-a0" instead of the
             * above vec4 representation with a missing component.
             */
            const unsigned param_width = (max_polygons > 1 ? dispatch_width : 1);

            /* Size of a single scalar component of a plane parameter
             * in bytes.
             */
            const unsigned chan_sz = 4;
            struct brw_reg reg;
            assert(max_polygons > 0);

            /* Calculate the base register on the thread payload of
             * either the block of vertex setup data or the block of
             * per-primitive constant data depending on whether we're
             * accessing a primitive or vertex input.  Also calculate
             * the index of the input within that block.
             */
            const bool per_prim = inst->src[i].nr < prog_data->num_per_primitive_inputs;
            const unsigned base = urb_start +
               (per_prim ? 0 :
                ALIGN(prog_data->num_per_primitive_inputs / 2,
                      reg_unit(devinfo)) * max_polygons);
            const unsigned idx = per_prim ? inst->src[i].nr :
               inst->src[i].nr - prog_data->num_per_primitive_inputs;

            /* Translate the offset within the param_width-wide
             * representation described above into an offset and a
             * grf, which contains the plane parameters for the first
             * polygon processed by the thread.
             */
            if (devinfo->ver >= 20 && !per_prim) {
               /* Gfx20+ is able to pack 5 logical input components
                * per 64B register for vertex setup data.
                */
               const unsigned grf = base + idx / 5 * 2 * max_polygons;
               assert(inst->src[i].offset / param_width < 12);
               const unsigned delta = idx % 5 * 12 +
                  inst->src[i].offset / (param_width * chan_sz) * chan_sz +
                  inst->src[i].offset % chan_sz;
               reg = byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
                                 delta);
            } else {
               /* Earlier platforms and per-primitive block pack 2 logical
                * input components per 32B register.
                */
               const unsigned grf = base + idx / 2 * max_polygons;
               assert(inst->src[i].offset / param_width < REG_SIZE / 2);
               const unsigned delta = (idx % 2) * (REG_SIZE / 2) +
                  inst->src[i].offset / (param_width * chan_sz) * chan_sz +
                  inst->src[i].offset % chan_sz;
               reg = byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
                                 delta);
            }

            if (max_polygons > 1) {
               assert(devinfo->ver >= 12);
               /* Misaligned channel strides that would lead to
                * cross-channel access in the representation above are
                * disallowed.
                */
               assert(inst->src[i].stride * type_sz(inst->src[i].type) == chan_sz);

               /* Number of channels processing the same polygon. */
               const unsigned poly_width = dispatch_width / max_polygons;
               assert(dispatch_width % max_polygons == 0);

               /* Accessing a subset of channels of a parameter vector
                * starting from "chan" is necessary to handle
                * SIMD-lowered instructions though.
                */
               const unsigned chan = inst->src[i].offset %
                  (param_width * chan_sz) / chan_sz;
               assert(chan < dispatch_width);
               assert(chan % poly_width == 0);
               const unsigned reg_size = reg_unit(devinfo) * REG_SIZE;
               reg = byte_offset(reg, chan / poly_width * reg_size);

               if (inst->exec_size > poly_width) {
                  /* Accessing the parameters for multiple polygons.
                   * Corresponding parameters for different polygons
                   * are stored a GRF apart on the thread payload, so
                   * use that as vertical stride.
                   */
                  const unsigned vstride = reg_size / type_sz(inst->src[i].type);
                  assert(vstride <= 32);
                  assert(chan % poly_width == 0);
                  reg = stride(reg, vstride, poly_width, 0);
               } else {
                  /* Accessing one parameter for a single polygon --
                   * Translate to a scalar region.
                   */
                  assert(chan % poly_width + inst->exec_size <= poly_width);
                  reg = stride(reg, 0, 1, 0);
               }

            } else {
               const unsigned width = inst->src[i].stride == 0 ?
                  1 : MIN2(inst->exec_size, 8);
               reg = stride(reg, width * inst->src[i].stride,
                            width, inst->src[i].stride);
            }

            reg.abs = inst->src[i].abs;
            reg.negate = inst->src[i].negate;
            inst->src[i] = reg;
         }
      }
   }

   /* Each attribute is 4 setup channels, each of which is half a reg,
    * but they may be replicated multiple times for multipolygon
    * dispatch.
    */
   this->first_non_payload_grf += prog_data->num_varying_inputs * 2 * max_polygons;

   /* Unlike regular attributes, per-primitive attributes have all 4 channels
    * in the same slot, so each GRF can store two slots.
    */
   assert(prog_data->num_per_primitive_inputs % 2 == 0);
   this->first_non_payload_grf += prog_data->num_per_primitive_inputs / 2 * max_polygons;
}

void
fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
{
   for (int i = 0; i < inst->sources; i++) {
      if (inst->src[i].file == ATTR) {
         assert(inst->src[i].nr == 0);
         int grf = payload().num_regs +
                   prog_data->curb_read_length +
                   inst->src[i].offset / REG_SIZE;

         /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
          *
          * VertStride must be used to cross GRF register boundaries. This
          * rule implies that elements within a 'Width' cannot cross GRF
          * boundaries.
          *
          * So, for registers that are large enough, we have to split the exec
          * size in two and trust the compression state to sort it out.
          */
         unsigned total_size = inst->exec_size *
                               inst->src[i].stride *
                               type_sz(inst->src[i].type);

         assert(total_size <= 2 * REG_SIZE);
         const unsigned exec_size =
            (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;

         unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
         struct brw_reg reg =
            stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
                               inst->src[i].offset % REG_SIZE),
                   exec_size * inst->src[i].stride,
                   width, inst->src[i].stride);
         reg.abs = inst->src[i].abs;
         reg.negate = inst->src[i].negate;

         inst->src[i] = reg;
      }
   }
}

void
fs_visitor::assign_vs_urb_setup()
{
   struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);

   assert(stage == MESA_SHADER_VERTEX);

   /* Each attribute is 4 regs. */
   this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;

   assert(vs_prog_data->base.urb_read_length <= 15);

   /* Rewrite all ATTR file references to the hw grf that they land in. */
   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      convert_attr_sources_to_hw_regs(inst);
   }
}

void
fs_visitor::assign_tcs_urb_setup()
{
   assert(stage == MESA_SHADER_TESS_CTRL);

   /* Rewrite all ATTR file references to HW_REGs. */
   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      convert_attr_sources_to_hw_regs(inst);
   }
}

void
fs_visitor::assign_tes_urb_setup()
{
   assert(stage == MESA_SHADER_TESS_EVAL);

   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);

   first_non_payload_grf += 8 * vue_prog_data->urb_read_length;

   /* Rewrite all ATTR file references to HW_REGs. */
   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      convert_attr_sources_to_hw_regs(inst);
   }
}

void
fs_visitor::assign_gs_urb_setup()
{
   assert(stage == MESA_SHADER_GEOMETRY);

   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);

   first_non_payload_grf +=
      8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;

   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      /* Rewrite all ATTR file references to GRFs. */
      convert_attr_sources_to_hw_regs(inst);
   }
}

int
brw_get_subgroup_id_param_index(const intel_device_info *devinfo,
                                const brw_stage_prog_data *prog_data)
{
   if (prog_data->nr_params == 0)
      return -1;

   if (devinfo->verx10 >= 125)
      return -1;

   /* The local thread id is always the last parameter in the list */
   uint32_t last_param = prog_data->param[prog_data->nr_params - 1];
   if (last_param == BRW_PARAM_BUILTIN_SUBGROUP_ID)
      return prog_data->nr_params - 1;

   return -1;
}

/**
 * Assign UNIFORM file registers to either push constants or pull constants.
 *
 * We allow a fragment shader to have more than the specified minimum
 * maximum number of fragment shader uniform components (64).  If
 * there are too many of these, they'd fill up all of register space.
 * So, this will push some of them out to the pull constant buffer and
 * update the program to load them.
 */
void
fs_visitor::assign_constant_locations()
{
   /* Only the first compile gets to decide on locations. */
   if (push_constant_loc)
      return;

   push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
   for (unsigned u = 0; u < uniforms; u++)
      push_constant_loc[u] = u;

   /* Now that we know how many regular uniforms we'll push, reduce the
    * UBO push ranges so we don't exceed the 3DSTATE_CONSTANT limits.
    */
   /* For gen4/5:
    * Only allow 16 registers (128 uniform components) as push constants.
    *
    * If changing this value, note the limitation about total_regs in
    * brw_curbe.c/crocus_state.c
    */
   const unsigned max_push_length = compiler->devinfo->ver < 6 ? 16 : 64;
   unsigned push_length = DIV_ROUND_UP(stage_prog_data->nr_params, 8);
   for (int i = 0; i < 4; i++) {
      struct brw_ubo_range *range = &prog_data->ubo_ranges[i];

      if (push_length + range->length > max_push_length)
         range->length = max_push_length - push_length;

      push_length += range->length;
   }
   assert(push_length <= max_push_length);
}

bool
fs_visitor::get_pull_locs(const fs_reg &src,
                          unsigned *out_surf_index,
                          unsigned *out_pull_index)
{
   assert(src.file == UNIFORM);

   if (src.nr < UBO_START)
      return false;

   const struct brw_ubo_range *range =
      &prog_data->ubo_ranges[src.nr - UBO_START];

   /* If this access is in our (reduced) range, use the push data. */
   if (src.offset / 32 < range->length)
      return false;

   *out_surf_index = range->block;
   *out_pull_index = (32 * range->start + src.offset) / 4;

   prog_data->has_ubo_pull = true;

   return true;
}

/**
 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
 * instructions to FS_OPCODE_REP_FB_WRITE.
 */
void
fs_visitor::emit_repclear_shader()
{
   brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
   fs_inst *write = NULL;

   assert(uniforms == 0);
   assume(key->nr_color_regions > 0);

   fs_reg color_output, header;
   if (devinfo->ver >= 7) {
      color_output = retype(brw_vec4_grf(127, 0), BRW_REGISTER_TYPE_UD);
      header = retype(brw_vec8_grf(125, 0), BRW_REGISTER_TYPE_UD);
   } else {
      color_output = retype(brw_vec4_reg(MRF, 2, 0), BRW_REGISTER_TYPE_UD);
      header = retype(brw_vec8_reg(MRF, 0, 0), BRW_REGISTER_TYPE_UD);
   }

   /* We pass the clear color as a flat input.  Copy it to the output. */
   fs_reg color_input =
      brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_UD,
              BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
              BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);

   const fs_builder bld = fs_builder(this).at_end();
   bld.exec_all().group(4, 0).MOV(color_output, color_input);

   if (key->nr_color_regions > 1) {
      /* Copy g0..g1 as the message header */
      bld.exec_all().group(16, 0)
         .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
   }

   for (int i = 0; i < key->nr_color_regions; ++i) {
      if (i > 0)
         bld.exec_all().group(1, 0).MOV(component(header, 2), brw_imm_ud(i));

      if (devinfo->ver >= 7) {
         write = bld.emit(SHADER_OPCODE_SEND);
         write->resize_sources(3);
         write->sfid = GFX6_SFID_DATAPORT_RENDER_CACHE;
         write->src[0] = brw_imm_ud(0);
         write->src[1] = brw_imm_ud(0);
         write->src[2] = i == 0 ? color_output : header;
         write->check_tdr = true;
         write->send_has_side_effects = true;
         write->desc = brw_fb_write_desc(devinfo, i,
            BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED,
            i == key->nr_color_regions - 1, false);
      } else {
         write = bld.emit(FS_OPCODE_REP_FB_WRITE);
         write->target = i;
         write->base_mrf = i == 0 ? color_output.nr : header.nr;
      }

      /* We can use a headerless message for the first render target */
      write->header_size = i == 0 ? 0 : 2;
      write->mlen = 1 + write->header_size;
   }
   write->eot = true;
   write->last_rt = true;

   calculate_cfg();

   this->first_non_payload_grf = payload().num_regs;

   brw_fs_lower_scoreboard(*this);
}

/**
 * Get the mask of SIMD channels enabled during dispatch and not yet disabled
 * by discard.  Due to the layout of the sample mask in the fragment shader
 * thread payload, \p bld is required to have a dispatch_width() not greater
 * than 16 for fragment shaders.
 */
fs_reg
brw_sample_mask_reg(const fs_builder &bld)
{
   const fs_visitor &s = *bld.shader;

   if (s.stage != MESA_SHADER_FRAGMENT) {
      return brw_imm_ud(0xffffffff);
   } else if (brw_wm_prog_data(s.stage_prog_data)->uses_kill) {
      assert(bld.dispatch_width() <= 16);
      return brw_flag_subreg(sample_mask_flag_subreg(s) + bld.group() / 16);
   } else {
      assert(s.devinfo->ver >= 6 && bld.dispatch_width() <= 16);
      assert(s.devinfo->ver < 20);
      return retype(brw_vec1_grf((bld.group() >= 16 ? 2 : 1), 7),
                    BRW_REGISTER_TYPE_UW);
   }
}

uint32_t
brw_fb_write_msg_control(const fs_inst *inst,
                         const struct brw_wm_prog_data *prog_data)
{
   uint32_t mctl;

   if (inst->opcode == FS_OPCODE_REP_FB_WRITE) {
      assert(inst->group == 0 && inst->exec_size == 16);
      mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE_REPLICATED;
   } else if (prog_data->dual_src_blend) {
      assert(inst->exec_size == 8);

      if (inst->group % 16 == 0)
         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN01;
      else if (inst->group % 16 == 8)
         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_DUAL_SOURCE_SUBSPAN23;
      else
         unreachable("Invalid dual-source FB write instruction group");
   } else {
      assert(inst->group == 0 || (inst->group == 16 && inst->exec_size == 16));

      if (inst->exec_size == 16)
         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD16_SINGLE_SOURCE;
      else if (inst->exec_size == 8)
         mctl = BRW_DATAPORT_RENDER_TARGET_WRITE_SIMD8_SINGLE_SOURCE_SUBSPAN01;
      else
         unreachable("Invalid FB write execution size");
   }

   return mctl;
}

 /**
 * Predicate the specified instruction on the sample mask.
 */
void
brw_emit_predicate_on_sample_mask(const fs_builder &bld, fs_inst *inst)
{
   assert(bld.shader->stage == MESA_SHADER_FRAGMENT &&
          bld.group() == inst->group &&
          bld.dispatch_width() == inst->exec_size);

   const fs_visitor &s = *bld.shader;
   const fs_reg sample_mask = brw_sample_mask_reg(bld);
   const unsigned subreg = sample_mask_flag_subreg(s);

   if (brw_wm_prog_data(s.stage_prog_data)->uses_kill) {
      assert(sample_mask.file == ARF &&
             sample_mask.nr == brw_flag_subreg(subreg).nr &&
             sample_mask.subnr == brw_flag_subreg(
                subreg + inst->group / 16).subnr);
   } else {
      bld.group(1, 0).exec_all()
         .MOV(brw_flag_subreg(subreg + inst->group / 16), sample_mask);
   }

   if (inst->predicate) {
      assert(inst->predicate == BRW_PREDICATE_NORMAL);
      assert(!inst->predicate_inverse);
      assert(inst->flag_subreg == 0);
      assert(s.devinfo->ver < 20);
      /* Combine the sample mask with the existing predicate by using a
       * vertical predication mode.
       */
      inst->predicate = BRW_PREDICATE_ALIGN1_ALLV;
   } else {
      inst->flag_subreg = subreg;
      inst->predicate = BRW_PREDICATE_NORMAL;
      inst->predicate_inverse = false;
   }
}

void
fs_visitor::dump_instructions_to_file(FILE *file) const
{
   if (cfg) {
      const register_pressure &rp = regpressure_analysis.require();
      unsigned ip = 0, max_pressure = 0;
      unsigned cf_count = 0;
      foreach_block_and_inst(block, backend_instruction, inst, cfg) {
         if (inst->is_control_flow_end())
            cf_count -= 1;

         max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
         fprintf(file, "{%3d} %4d: ", rp.regs_live_at_ip[ip], ip);
         for (unsigned i = 0; i < cf_count; i++)
            fprintf(file, "  ");
         dump_instruction(inst, file);
         ip++;

         if (inst->is_control_flow_begin())
            cf_count += 1;
      }
      fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
   } else {
      int ip = 0;
      foreach_in_list(backend_instruction, inst, &instructions) {
         fprintf(file, "%4d: ", ip++);
         dump_instruction(inst, file);
      }
   }
}

void
fs_visitor::dump_instruction_to_file(const backend_instruction *be_inst, FILE *file) const
{
   const fs_inst *inst = (const fs_inst *)be_inst;

   if (inst->predicate) {
      fprintf(file, "(%cf%d.%d) ",
              inst->predicate_inverse ? '-' : '+',
              inst->flag_subreg / 2,
              inst->flag_subreg % 2);
   }

   fprintf(file, "%s", brw_instruction_name(&compiler->isa, inst->opcode));
   if (inst->saturate)
      fprintf(file, ".sat");
   if (inst->conditional_mod) {
      fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
      if (!inst->predicate &&
          (inst->opcode != BRW_OPCODE_SEL &&
           inst->opcode != BRW_OPCODE_CSEL &&
           inst->opcode != BRW_OPCODE_IF &&
           inst->opcode != BRW_OPCODE_WHILE)) {
         fprintf(file, ".f%d.%d", inst->flag_subreg / 2,
                 inst->flag_subreg % 2);
      }
   }
   fprintf(file, "(%d) ", inst->exec_size);

   if (inst->mlen) {
      fprintf(file, "(mlen: %d) ", inst->mlen);
   }

   if (inst->ex_mlen) {
      fprintf(file, "(ex_mlen: %d) ", inst->ex_mlen);
   }

   if (inst->eot) {
      fprintf(file, "(EOT) ");
   }

   switch (inst->dst.file) {
   case VGRF:
      fprintf(file, "vgrf%d", inst->dst.nr);
      break;
   case FIXED_GRF:
      fprintf(file, "g%d", inst->dst.nr);
      break;
   case MRF:
      fprintf(file, "m%d", inst->dst.nr);
      break;
   case BAD_FILE:
      fprintf(file, "(null)");
      break;
   case UNIFORM:
      fprintf(file, "***u%d***", inst->dst.nr);
      break;
   case ATTR:
      fprintf(file, "***attr%d***", inst->dst.nr);
      break;
   case ARF:
      switch (inst->dst.nr) {
      case BRW_ARF_NULL:
         fprintf(file, "null");
         break;
      case BRW_ARF_ADDRESS:
         fprintf(file, "a0.%d", inst->dst.subnr);
         break;
      case BRW_ARF_ACCUMULATOR:
         fprintf(file, "acc%d", inst->dst.subnr);
         break;
      case BRW_ARF_FLAG:
         fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
         break;
      default:
         fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
         break;
      }
      break;
   case IMM:
      unreachable("not reached");
   }

   if (inst->dst.offset ||
       (inst->dst.file == VGRF &&
        alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
      const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
      fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
              inst->dst.offset % reg_size);
   }

   if (inst->dst.stride != 1)
      fprintf(file, "<%u>", inst->dst.stride);
   fprintf(file, ":%s, ", brw_reg_type_to_letters(inst->dst.type));

   for (int i = 0; i < inst->sources; i++) {
      if (inst->src[i].negate)
         fprintf(file, "-");
      if (inst->src[i].abs)
         fprintf(file, "|");
      switch (inst->src[i].file) {
      case VGRF:
         fprintf(file, "vgrf%d", inst->src[i].nr);
         break;
      case FIXED_GRF:
         fprintf(file, "g%d", inst->src[i].nr);
         break;
      case MRF:
         fprintf(file, "***m%d***", inst->src[i].nr);
         break;
      case ATTR:
         fprintf(file, "attr%d", inst->src[i].nr);
         break;
      case UNIFORM:
         fprintf(file, "u%d", inst->src[i].nr);
         break;
      case BAD_FILE:
         fprintf(file, "(null)");
         break;
      case IMM:
         switch (inst->src[i].type) {
         case BRW_REGISTER_TYPE_HF:
            fprintf(file, "%-ghf", _mesa_half_to_float(inst->src[i].ud & 0xffff));
            break;
         case BRW_REGISTER_TYPE_F:
            fprintf(file, "%-gf", inst->src[i].f);
            break;
         case BRW_REGISTER_TYPE_DF:
            fprintf(file, "%fdf", inst->src[i].df);
            break;
         case BRW_REGISTER_TYPE_W:
         case BRW_REGISTER_TYPE_D:
            fprintf(file, "%dd", inst->src[i].d);
            break;
         case BRW_REGISTER_TYPE_UW:
         case BRW_REGISTER_TYPE_UD:
            fprintf(file, "%uu", inst->src[i].ud);
            break;
         case BRW_REGISTER_TYPE_Q:
            fprintf(file, "%" PRId64 "q", inst->src[i].d64);
            break;
         case BRW_REGISTER_TYPE_UQ:
            fprintf(file, "%" PRIu64 "uq", inst->src[i].u64);
            break;
         case BRW_REGISTER_TYPE_VF:
            fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
                    brw_vf_to_float((inst->src[i].ud >>  0) & 0xff),
                    brw_vf_to_float((inst->src[i].ud >>  8) & 0xff),
                    brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
                    brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
            break;
         case BRW_REGISTER_TYPE_V:
         case BRW_REGISTER_TYPE_UV:
            fprintf(file, "%08x%s", inst->src[i].ud,
                    inst->src[i].type == BRW_REGISTER_TYPE_V ? "V" : "UV");
            break;
         default:
            fprintf(file, "???");
            break;
         }
         break;
      case ARF:
         switch (inst->src[i].nr) {
         case BRW_ARF_NULL:
            fprintf(file, "null");
            break;
         case BRW_ARF_ADDRESS:
            fprintf(file, "a0.%d", inst->src[i].subnr);
            break;
         case BRW_ARF_ACCUMULATOR:
            fprintf(file, "acc%d", inst->src[i].subnr);
            break;
         case BRW_ARF_FLAG:
            fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
            break;
         default:
            fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
            break;
         }
         break;
      }

      if (inst->src[i].offset ||
          (inst->src[i].file == VGRF &&
           alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
         const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
         fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
                 inst->src[i].offset % reg_size);
      }

      if (inst->src[i].abs)
         fprintf(file, "|");

      if (inst->src[i].file != IMM) {
         unsigned stride;
         if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
            unsigned hstride = inst->src[i].hstride;
            stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
         } else {
            stride = inst->src[i].stride;
         }
         if (stride != 1)
            fprintf(file, "<%u>", stride);

         fprintf(file, ":%s", brw_reg_type_to_letters(inst->src[i].type));
      }

      if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
         fprintf(file, ", ");
   }

   fprintf(file, " ");

   if (inst->force_writemask_all)
      fprintf(file, "NoMask ");

   if (inst->exec_size != dispatch_width)
      fprintf(file, "group%d ", inst->group);

   fprintf(file, "\n");
}

brw::register_pressure::register_pressure(const fs_visitor *v)
{
   const fs_live_variables &live = v->live_analysis.require();
   const unsigned num_instructions = v->cfg->num_blocks ?
      v->cfg->blocks[v->cfg->num_blocks - 1]->end_ip + 1 : 0;

   regs_live_at_ip = new unsigned[num_instructions]();

   for (unsigned reg = 0; reg < v->alloc.count; reg++) {
      for (int ip = live.vgrf_start[reg]; ip <= live.vgrf_end[reg]; ip++)
         regs_live_at_ip[ip] += v->alloc.sizes[reg];
   }

   const unsigned payload_count = v->first_non_payload_grf;

   int *payload_last_use_ip = new int[payload_count];
   v->calculate_payload_ranges(payload_count, payload_last_use_ip);

   for (unsigned reg = 0; reg < payload_count; reg++) {
      for (int ip = 0; ip < payload_last_use_ip[reg]; ip++)
         ++regs_live_at_ip[ip];
   }

   delete[] payload_last_use_ip;
}

brw::register_pressure::~register_pressure()
{
   delete[] regs_live_at_ip;
}

void
fs_visitor::invalidate_analysis(brw::analysis_dependency_class c)
{
   backend_shader::invalidate_analysis(c);
   live_analysis.invalidate(c);
   regpressure_analysis.invalidate(c);
}

void
fs_visitor::debug_optimizer(const nir_shader *nir,
                            const char *pass_name,
                            int iteration, int pass_num) const
{
   if (!brw_should_print_shader(nir, DEBUG_OPTIMIZER))
      return;

   char *filename;
   int ret = asprintf(&filename, "%s/%s%d-%s-%02d-%02d-%s",
                      debug_get_option("INTEL_SHADER_OPTIMIZER_PATH", "./"),
                      _mesa_shader_stage_to_abbrev(stage), dispatch_width, nir->info.name,
                      iteration, pass_num, pass_name);
   if (ret == -1)
      return;
   dump_instructions(filename);
   free(filename);
}

uint32_t
fs_visitor::compute_max_register_pressure()
{
   const register_pressure &rp = regpressure_analysis.require();
   uint32_t ip = 0, max_pressure = 0;
   foreach_block_and_inst(block, backend_instruction, inst, cfg) {
      max_pressure = MAX2(max_pressure, rp.regs_live_at_ip[ip]);
      ip++;
   }
   return max_pressure;
}

static fs_inst **
save_instruction_order(const struct cfg_t *cfg)
{
   /* Before we schedule anything, stash off the instruction order as an array
    * of fs_inst *.  This way, we can reset it between scheduling passes to
    * prevent dependencies between the different scheduling modes.
    */
   int num_insts = cfg->last_block()->end_ip + 1;
   fs_inst **inst_arr = new fs_inst * [num_insts];

   int ip = 0;
   foreach_block_and_inst(block, fs_inst, inst, cfg) {
      assert(ip >= block->start_ip && ip <= block->end_ip);
      inst_arr[ip++] = inst;
   }
   assert(ip == num_insts);

   return inst_arr;
}

static void
restore_instruction_order(struct cfg_t *cfg, fs_inst **inst_arr)
{
   ASSERTED int num_insts = cfg->last_block()->end_ip + 1;

   int ip = 0;
   foreach_block (block, cfg) {
      block->instructions.make_empty();

      assert(ip == block->start_ip);
      for (; ip <= block->end_ip; ip++)
         block->instructions.push_tail(inst_arr[ip]);
   }
   assert(ip == num_insts);
}

void
fs_visitor::allocate_registers(bool allow_spilling)
{
   bool allocated;

   static const enum instruction_scheduler_mode pre_modes[] = {
      SCHEDULE_PRE,
      SCHEDULE_PRE_NON_LIFO,
      SCHEDULE_NONE,
      SCHEDULE_PRE_LIFO,
   };

   static const char *scheduler_mode_name[] = {
      [SCHEDULE_PRE] = "top-down",
      [SCHEDULE_PRE_NON_LIFO] = "non-lifo",
      [SCHEDULE_PRE_LIFO] = "lifo",
      [SCHEDULE_POST] = "post",
      [SCHEDULE_NONE] = "none",
   };

   uint32_t best_register_pressure = UINT32_MAX;
   enum instruction_scheduler_mode best_sched = SCHEDULE_NONE;

   brw_fs_opt_compact_virtual_grfs(*this);

   if (needs_register_pressure)
      shader_stats.max_register_pressure = compute_max_register_pressure();

   debug_optimizer(nir, "pre_register_allocate", 90, 90);

   bool spill_all = allow_spilling && INTEL_DEBUG(DEBUG_SPILL_FS);

   /* Before we schedule anything, stash off the instruction order as an array
    * of fs_inst *.  This way, we can reset it between scheduling passes to
    * prevent dependencies between the different scheduling modes.
    */
   fs_inst **orig_order = save_instruction_order(cfg);
   fs_inst **best_pressure_order = NULL;

   void *scheduler_ctx = ralloc_context(NULL);
   fs_instruction_scheduler *sched = prepare_scheduler(scheduler_ctx);

   /* Try each scheduling heuristic to see if it can successfully register
    * allocate without spilling.  They should be ordered by decreasing
    * performance but increasing likelihood of allocating.
    */
   for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
      enum instruction_scheduler_mode sched_mode = pre_modes[i];

      schedule_instructions_pre_ra(sched, sched_mode);
      this->shader_stats.scheduler_mode = scheduler_mode_name[sched_mode];

      debug_optimizer(nir, shader_stats.scheduler_mode, 95, i);

      if (0) {
         assign_regs_trivial();
         allocated = true;
         break;
      }

      /* We should only spill registers on the last scheduling. */
      assert(!spilled_any_registers);

      allocated = assign_regs(false, spill_all);
      if (allocated)
         break;

      /* Save the maximum register pressure */
      uint32_t this_pressure = compute_max_register_pressure();

      if (0) {
         fprintf(stderr, "Scheduler mode \"%s\" spilled, max pressure = %u\n",
                 scheduler_mode_name[sched_mode], this_pressure);
      }

      if (this_pressure < best_register_pressure) {
         best_register_pressure = this_pressure;
         best_sched = sched_mode;
         delete[] best_pressure_order;
         best_pressure_order = save_instruction_order(cfg);
      }

      /* Reset back to the original order before trying the next mode */
      restore_instruction_order(cfg, orig_order);
      invalidate_analysis(DEPENDENCY_INSTRUCTIONS);
   }

   ralloc_free(scheduler_ctx);

   if (!allocated) {
      if (0) {
         fprintf(stderr, "Spilling - using lowest-pressure mode \"%s\"\n",
                 scheduler_mode_name[best_sched]);
      }
      restore_instruction_order(cfg, best_pressure_order);
      shader_stats.scheduler_mode = scheduler_mode_name[best_sched];

      allocated = assign_regs(allow_spilling, spill_all);
   }

   delete[] orig_order;
   delete[] best_pressure_order;

   if (!allocated) {
      fail("Failure to register allocate.  Reduce number of "
           "live scalar values to avoid this.");
   } else if (spilled_any_registers) {
      brw_shader_perf_log(compiler, log_data,
                          "%s shader triggered register spilling.  "
                          "Try reducing the number of live scalar "
                          "values to improve performance.\n",
                          _mesa_shader_stage_to_string(stage));
   }

   if (failed)
      return;

   brw_fs_opt_bank_conflicts(*this);

   schedule_instructions_post_ra();

   if (last_scratch > 0) {
      ASSERTED unsigned max_scratch_size = 2 * 1024 * 1024;

      /* Take the max of any previously compiled variant of the shader. In the
       * case of bindless shaders with return parts, this will also take the
       * max of all parts.
       */
      prog_data->total_scratch = MAX2(brw_get_scratch_size(last_scratch),
                                      prog_data->total_scratch);

      if (gl_shader_stage_is_compute(stage)) {
         if (devinfo->platform == INTEL_PLATFORM_HSW) {
            /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
             * field documentation, Haswell supports a minimum of 2kB of
             * scratch space for compute shaders, unlike every other stage
             * and platform.
             */
            prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
         } else if (devinfo->ver <= 7) {
            /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
             * field documentation, platforms prior to Haswell measure scratch
             * size linearly with a range of [1kB, 12kB] and 1kB granularity.
             */
            prog_data->total_scratch = ALIGN(last_scratch, 1024);
            max_scratch_size = 12 * 1024;
         }
      }

      /* We currently only support up to 2MB of scratch space.  If we
       * need to support more eventually, the documentation suggests
       * that we could allocate a larger buffer, and partition it out
       * ourselves.  We'd just have to undo the hardware's address
       * calculation by subtracting (FFTID * Per Thread Scratch Space)
       * and then add FFTID * (Larger Per Thread Scratch Space).
       *
       * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
       * Thread Group Tracking > Local Memory/Scratch Space.
       */
      assert(prog_data->total_scratch < max_scratch_size);
   }

   brw_fs_lower_scoreboard(*this);
}

bool
fs_visitor::run_vs()
{
   assert(stage == MESA_SHADER_VERTEX);

   payload_ = new vs_thread_payload(*this);

   nir_to_brw(this);

   if (failed)
      return false;

   emit_urb_writes();

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();
   assign_vs_urb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(true /* allow_spilling */);

   return !failed;
}

void
fs_visitor::set_tcs_invocation_id()
{
   struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
   struct brw_vue_prog_data *vue_prog_data = &tcs_prog_data->base;
   const fs_builder bld = fs_builder(this).at_end();

   const unsigned instance_id_mask =
      (devinfo->verx10 >= 125) ? INTEL_MASK(7, 0) :
      (devinfo->ver >= 11)     ? INTEL_MASK(22, 16) :
                                 INTEL_MASK(23, 17);
   const unsigned instance_id_shift =
      (devinfo->verx10 >= 125) ? 0 : (devinfo->ver >= 11) ? 16 : 17;

   /* Get instance number from g0.2 bits:
    *  * 7:0 on DG2+
    *  * 22:16 on gfx11+
    *  * 23:17 otherwise
    */
   fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
   bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
           brw_imm_ud(instance_id_mask));

   invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);

   if (vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH) {
      /* gl_InvocationID is just the thread number */
      bld.SHR(invocation_id, t, brw_imm_ud(instance_id_shift));
      return;
   }

   assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH);

   fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
   fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
   bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
   bld.MOV(channels_ud, channels_uw);

   if (tcs_prog_data->instances == 1) {
      invocation_id = channels_ud;
   } else {
      fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
      bld.SHR(instance_times_8, t, brw_imm_ud(instance_id_shift - 3));
      bld.ADD(invocation_id, instance_times_8, channels_ud);
   }
}

void
fs_visitor::emit_tcs_thread_end()
{
   /* Try and tag the last URB write with EOT instead of emitting a whole
    * separate write just to finish the thread.  There isn't guaranteed to
    * be one, so this may not succeed.
    */
   if (devinfo->ver != 8 && mark_last_urb_write_with_eot())
      return;

   const fs_builder bld = fs_builder(this).at_end();

   /* Emit a URB write to end the thread.  On Broadwell, we use this to write
    * zero to the "TR DS Cache Disable" bit (we haven't implemented a fancy
    * algorithm to set it optimally).  On other platforms, we simply write
    * zero to a reserved/MBZ patch header DWord which has no consequence.
    */
   fs_reg srcs[URB_LOGICAL_NUM_SRCS];
   srcs[URB_LOGICAL_SRC_HANDLE] = tcs_payload().patch_urb_output;
   srcs[URB_LOGICAL_SRC_CHANNEL_MASK] = brw_imm_ud(WRITEMASK_X << 16);
   srcs[URB_LOGICAL_SRC_DATA] = brw_imm_ud(0);
   srcs[URB_LOGICAL_SRC_COMPONENTS] = brw_imm_ud(1);
   fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_LOGICAL,
                            reg_undef, srcs, ARRAY_SIZE(srcs));
   inst->eot = true;
}

bool
fs_visitor::run_tcs()
{
   assert(stage == MESA_SHADER_TESS_CTRL);

   struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
   const fs_builder bld = fs_builder(this).at_end();

   assert(vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH ||
          vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_MULTI_PATCH);

   payload_ = new tcs_thread_payload(*this);

   /* Initialize gl_InvocationID */
   set_tcs_invocation_id();

   const bool fix_dispatch_mask =
      vue_prog_data->dispatch_mode == INTEL_DISPATCH_MODE_TCS_SINGLE_PATCH &&
      (nir->info.tess.tcs_vertices_out % 8) != 0;

   /* Fix the disptach mask */
   if (fix_dispatch_mask) {
      bld.CMP(bld.null_reg_ud(), invocation_id,
              brw_imm_ud(nir->info.tess.tcs_vertices_out), BRW_CONDITIONAL_L);
      bld.IF(BRW_PREDICATE_NORMAL);
   }

   nir_to_brw(this);

   if (fix_dispatch_mask) {
      bld.emit(BRW_OPCODE_ENDIF);
   }

   emit_tcs_thread_end();

   if (failed)
      return false;

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();
   assign_tcs_urb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(true /* allow_spilling */);

   return !failed;
}

bool
fs_visitor::run_tes()
{
   assert(stage == MESA_SHADER_TESS_EVAL);

   payload_ = new tes_thread_payload(*this);

   nir_to_brw(this);

   if (failed)
      return false;

   emit_urb_writes();

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();
   assign_tes_urb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(true /* allow_spilling */);

   return !failed;
}

bool
fs_visitor::run_gs()
{
   assert(stage == MESA_SHADER_GEOMETRY);

   payload_ = new gs_thread_payload(*this);

   this->final_gs_vertex_count = vgrf(glsl_uint_type());

   if (gs_compile->control_data_header_size_bits > 0) {
      /* Create a VGRF to store accumulated control data bits. */
      this->control_data_bits = vgrf(glsl_uint_type());

      /* If we're outputting more than 32 control data bits, then EmitVertex()
       * will set control_data_bits to 0 after emitting the first vertex.
       * Otherwise, we need to initialize it to 0 here.
       */
      if (gs_compile->control_data_header_size_bits <= 32) {
         const fs_builder bld = fs_builder(this).at_end();
         const fs_builder abld = bld.annotate("initialize control data bits");
         abld.MOV(this->control_data_bits, brw_imm_ud(0u));
      }
   }

   nir_to_brw(this);

   emit_gs_thread_end();

   if (failed)
      return false;

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();
   assign_gs_urb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(true /* allow_spilling */);

   return !failed;
}

/* From the SKL PRM, Volume 16, Workarounds:
 *
 *   0877  3D   Pixel Shader Hang possible when pixel shader dispatched with
 *              only header phases (R0-R2)
 *
 *   WA: Enable a non-header phase (e.g. push constant) when dispatch would
 *       have been header only.
 *
 * Instead of enabling push constants one can alternatively enable one of the
 * inputs. Here one simply chooses "layer" which shouldn't impose much
 * overhead.
 */
static void
gfx9_ps_header_only_workaround(struct brw_wm_prog_data *wm_prog_data)
{
   if (wm_prog_data->num_varying_inputs)
      return;

   if (wm_prog_data->base.curb_read_length)
      return;

   wm_prog_data->urb_setup[VARYING_SLOT_LAYER] = 0;
   wm_prog_data->num_varying_inputs = 1;

   brw_compute_urb_setup_index(wm_prog_data);
}

bool
fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
{
   struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
   brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
   const fs_builder bld = fs_builder(this).at_end();

   assert(stage == MESA_SHADER_FRAGMENT);

   payload_ = new fs_thread_payload(*this, source_depth_to_render_target,
                                    runtime_check_aads_emit);

   if (do_rep_send) {
      assert(dispatch_width == 16);
      emit_repclear_shader();
   } else {
      if (nir->info.inputs_read > 0 ||
          BITSET_TEST(nir->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
          (nir->info.outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
         if (devinfo->ver < 6)
            emit_interpolation_setup_gfx4();
         else
            emit_interpolation_setup_gfx6();
      }

      /* We handle discards by keeping track of the still-live pixels in f0.1.
       * Initialize it with the dispatched pixels.
       */
      if (wm_prog_data->uses_kill) {
         const unsigned lower_width = MIN2(dispatch_width, 16);
         for (unsigned i = 0; i < dispatch_width / lower_width; i++) {
            /* According to the "PS Thread Payload for Normal
             * Dispatch" pages on the BSpec, the dispatch mask is
             * stored in R0.15/R1.15 on gfx20+ and in R1.7/R2.7 on
             * gfx6+.
             */
            const fs_reg dispatch_mask =
               devinfo->ver >= 20 ? xe2_vec1_grf(i, 15) :
               devinfo->ver >= 6 ? brw_vec1_grf(i + 1, 7) :
               brw_vec1_grf(0, 0);
            bld.exec_all().group(1, 0)
               .MOV(brw_sample_mask_reg(bld.group(lower_width, i)),
                    retype(dispatch_mask, BRW_REGISTER_TYPE_UW));
         }
      }

      if (nir->info.writes_memory)
         wm_prog_data->has_side_effects = true;

      nir_to_brw(this);

      if (failed)
	 return false;

      if (wm_key->emit_alpha_test)
         emit_alpha_test();

      emit_fb_writes();

      calculate_cfg();

      brw_fs_optimize(*this);

      assign_curb_setup();

      if (devinfo->ver == 9)
         gfx9_ps_header_only_workaround(wm_prog_data);

      assign_urb_setup();

      brw_fs_lower_3src_null_dest(*this);
      brw_fs_workaround_memory_fence_before_eot(*this);
      brw_fs_workaround_emit_dummy_mov_instruction(*this);

      allocate_registers(allow_spilling);
   }

   return !failed;
}

bool
fs_visitor::run_cs(bool allow_spilling)
{
   assert(gl_shader_stage_is_compute(stage));
   assert(devinfo->ver >= 7);
   const fs_builder bld = fs_builder(this).at_end();

   payload_ = new cs_thread_payload(*this);

   if (devinfo->platform == INTEL_PLATFORM_HSW && prog_data->total_shared > 0) {
      /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
      const fs_builder abld = bld.exec_all().group(1, 0);
      abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
               suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
   }

   nir_to_brw(this);

   if (failed)
      return false;

   emit_cs_terminate();

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(allow_spilling);

   return !failed;
}

bool
fs_visitor::run_bs(bool allow_spilling)
{
   assert(stage >= MESA_SHADER_RAYGEN && stage <= MESA_SHADER_CALLABLE);

   payload_ = new bs_thread_payload(*this);

   nir_to_brw(this);

   if (failed)
      return false;

   /* TODO(RT): Perhaps rename this? */
   emit_cs_terminate();

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(allow_spilling);

   return !failed;
}

bool
fs_visitor::run_task(bool allow_spilling)
{
   assert(stage == MESA_SHADER_TASK);

   payload_ = new task_mesh_thread_payload(*this);

   nir_to_brw(this);

   if (failed)
      return false;

   emit_urb_fence();

   emit_cs_terminate();

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(allow_spilling);

   return !failed;
}

bool
fs_visitor::run_mesh(bool allow_spilling)
{
   assert(stage == MESA_SHADER_MESH);

   payload_ = new task_mesh_thread_payload(*this);

   nir_to_brw(this);

   if (failed)
      return false;

   emit_urb_fence();

   emit_cs_terminate();

   calculate_cfg();

   brw_fs_optimize(*this);

   assign_curb_setup();

   brw_fs_lower_3src_null_dest(*this);
   brw_fs_workaround_memory_fence_before_eot(*this);
   brw_fs_workaround_emit_dummy_mov_instruction(*this);

   allocate_registers(allow_spilling);

   return !failed;
}

static bool
is_used_in_not_interp_frag_coord(nir_def *def)
{
   nir_foreach_use_including_if(src, def) {
      if (nir_src_is_if(src))
         return true;

      if (nir_src_parent_instr(src)->type != nir_instr_type_intrinsic)
         return true;

      nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(nir_src_parent_instr(src));
      if (intrin->intrinsic != nir_intrinsic_load_frag_coord)
         return true;
   }

   return false;
}

/**
 * Return a bitfield where bit n is set if barycentric interpolation mode n
 * (see enum brw_barycentric_mode) is needed by the fragment shader.
 *
 * We examine the load_barycentric intrinsics rather than looking at input
 * variables so that we catch interpolateAtCentroid() messages too, which
 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
 */
static unsigned
brw_compute_barycentric_interp_modes(const struct intel_device_info *devinfo,
                                     const nir_shader *shader)
{
   unsigned barycentric_interp_modes = 0;

   nir_foreach_function_impl(impl, shader) {
      nir_foreach_block(block, impl) {
         nir_foreach_instr(instr, block) {
            if (instr->type != nir_instr_type_intrinsic)
               continue;

            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
            switch (intrin->intrinsic) {
            case nir_intrinsic_load_barycentric_pixel:
            case nir_intrinsic_load_barycentric_centroid:
            case nir_intrinsic_load_barycentric_sample:
            case nir_intrinsic_load_barycentric_at_sample:
            case nir_intrinsic_load_barycentric_at_offset:
               break;
            default:
               continue;
            }

            /* Ignore WPOS; it doesn't require interpolation. */
            if (!is_used_in_not_interp_frag_coord(&intrin->def))
               continue;

            nir_intrinsic_op bary_op = intrin->intrinsic;
            enum brw_barycentric_mode bary =
               brw_barycentric_mode(intrin);

            barycentric_interp_modes |= 1 << bary;

            if (devinfo->needs_unlit_centroid_workaround &&
                bary_op == nir_intrinsic_load_barycentric_centroid)
               barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
         }
      }
   }

   return barycentric_interp_modes;
}

static void
brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
                        const nir_shader *shader)
{
   prog_data->flat_inputs = 0;

   nir_foreach_shader_in_variable(var, shader) {
      /* flat shading */
      if (var->data.interpolation != INTERP_MODE_FLAT)
         continue;

      if (var->data.per_primitive)
         continue;

      unsigned slots = glsl_count_attribute_slots(var->type, false);
      for (unsigned s = 0; s < slots; s++) {
         int input_index = prog_data->urb_setup[var->data.location + s];

         if (input_index >= 0)
            prog_data->flat_inputs |= 1 << input_index;
      }
   }
}

static uint8_t
computed_depth_mode(const nir_shader *shader)
{
   if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
      switch (shader->info.fs.depth_layout) {
      case FRAG_DEPTH_LAYOUT_NONE:
      case FRAG_DEPTH_LAYOUT_ANY:
         return BRW_PSCDEPTH_ON;
      case FRAG_DEPTH_LAYOUT_GREATER:
         return BRW_PSCDEPTH_ON_GE;
      case FRAG_DEPTH_LAYOUT_LESS:
         return BRW_PSCDEPTH_ON_LE;
      case FRAG_DEPTH_LAYOUT_UNCHANGED:
         /* We initially set this to OFF, but having the shader write the
          * depth means we allocate register space in the SEND message. The
          * difference between the SEND register count and the OFF state
          * programming makes the HW hang.
          *
          * Removing the depth writes also leads to test failures. So use
          * LesserThanOrEqual, which fits writing the same value
          * (unchanged/equal).
          *
          */
         return BRW_PSCDEPTH_ON_LE;
      }
   }
   return BRW_PSCDEPTH_OFF;
}

/**
 * Move load_interpolated_input with simple (payload-based) barycentric modes
 * to the top of the program so we don't emit multiple PLNs for the same input.
 *
 * This works around CSE not being able to handle non-dominating cases
 * such as:
 *
 *    if (...) {
 *       interpolate input
 *    } else {
 *       interpolate the same exact input
 *    }
 *
 * This should be replaced by global value numbering someday.
 */
bool
brw_nir_move_interpolation_to_top(nir_shader *nir)
{
   bool progress = false;

   nir_foreach_function_impl(impl, nir) {
      nir_block *top = nir_start_block(impl);
      nir_cursor cursor = nir_before_instr(nir_block_first_instr(top));
      bool impl_progress = false;

      for (nir_block *block = nir_block_cf_tree_next(top);
           block != NULL;
           block = nir_block_cf_tree_next(block)) {

         nir_foreach_instr_safe(instr, block) {
            if (instr->type != nir_instr_type_intrinsic)
               continue;

            nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
            if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
               continue;
            nir_intrinsic_instr *bary_intrinsic =
               nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
            nir_intrinsic_op op = bary_intrinsic->intrinsic;

            /* Leave interpolateAtSample/Offset() where they are. */
            if (op == nir_intrinsic_load_barycentric_at_sample ||
                op == nir_intrinsic_load_barycentric_at_offset)
               continue;

            nir_instr *move[3] = {
               &bary_intrinsic->instr,
               intrin->src[1].ssa->parent_instr,
               instr
            };

            for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
               if (move[i]->block != top) {
                  nir_instr_move(cursor, move[i]);
                  impl_progress = true;
               }
            }
         }
      }

      progress = progress || impl_progress;

      nir_metadata_preserve(impl, impl_progress ? (nir_metadata_block_index |
                                                      nir_metadata_dominance)
                                                   : nir_metadata_all);
   }

   return progress;
}

static void
brw_nir_populate_wm_prog_data(nir_shader *shader,
                              const struct intel_device_info *devinfo,
                              const struct brw_wm_prog_key *key,
                              struct brw_wm_prog_data *prog_data,
                              const struct brw_mue_map *mue_map)
{
   /* key->alpha_test_func means simulating alpha testing via discards,
    * so the shader definitely kills pixels.
    */
   prog_data->uses_kill = shader->info.fs.uses_discard ||
                          shader->info.fs.uses_demote ||
                          key->emit_alpha_test;
   prog_data->uses_omask = !key->ignore_sample_mask_out &&
      (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK));
   prog_data->color_outputs_written = key->color_outputs_valid;
   prog_data->max_polygons = 1;
   prog_data->computed_depth_mode = computed_depth_mode(shader);
   prog_data->computed_stencil =
      shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);

   prog_data->sample_shading =
      shader->info.fs.uses_sample_shading ||
      shader->info.outputs_read;

   assert(key->multisample_fbo != BRW_NEVER ||
          key->persample_interp == BRW_NEVER);

   prog_data->persample_dispatch = key->persample_interp;
   if (prog_data->sample_shading)
      prog_data->persample_dispatch = BRW_ALWAYS;

   /* We can only persample dispatch if we have a multisample FBO */
   prog_data->persample_dispatch = MIN2(prog_data->persample_dispatch,
                                        key->multisample_fbo);

   /* Currently only the Vulkan API allows alpha_to_coverage to be dynamic. If
    * persample_dispatch & multisample_fbo are not dynamic, Anv should be able
    * to definitively tell whether alpha_to_coverage is on or off.
    */
   prog_data->alpha_to_coverage = key->alpha_to_coverage;
   assert(prog_data->alpha_to_coverage != BRW_SOMETIMES ||
          prog_data->persample_dispatch == BRW_SOMETIMES);

   if (devinfo->ver >= 6) {
      prog_data->uses_sample_mask =
         BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_SAMPLE_MASK_IN);

      /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
       *
       *    "MSDISPMODE_PERSAMPLE is required in order to select
       *    POSOFFSET_SAMPLE"
       *
       * So we can only really get sample positions if we are doing real
       * per-sample dispatch.  If we need gl_SamplePosition and we don't have
       * persample dispatch, we hard-code it to 0.5.
       */
      prog_data->uses_pos_offset =
         prog_data->persample_dispatch != BRW_NEVER &&
         (BITSET_TEST(shader->info.system_values_read,
                      SYSTEM_VALUE_SAMPLE_POS) ||
          BITSET_TEST(shader->info.system_values_read,
                      SYSTEM_VALUE_SAMPLE_POS_OR_CENTER));
   }

   prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
   prog_data->post_depth_coverage = shader->info.fs.post_depth_coverage;
   prog_data->inner_coverage = shader->info.fs.inner_coverage;

   prog_data->barycentric_interp_modes =
      brw_compute_barycentric_interp_modes(devinfo, shader);

   /* From the BDW PRM documentation for 3DSTATE_WM:
    *
    *    "MSDISPMODE_PERSAMPLE is required in order to select Perspective
    *     Sample or Non- perspective Sample barycentric coordinates."
    *
    * So cleanup any potentially set sample barycentric mode when not in per
    * sample dispatch.
    */
   if (prog_data->persample_dispatch == BRW_NEVER) {
      prog_data->barycentric_interp_modes &=
         ~BITFIELD_BIT(BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE);
   }

   prog_data->uses_nonperspective_interp_modes |=
      (prog_data->barycentric_interp_modes &
      BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0;

   /* The current VK_EXT_graphics_pipeline_library specification requires
    * coarse to specified at compile time. But per sample interpolation can be
    * dynamic. So we should never be in a situation where coarse &
    * persample_interp are both respectively true & BRW_ALWAYS.
    *
    * Coarse will dynamically turned off when persample_interp is active.
    */
   assert(!key->coarse_pixel || key->persample_interp != BRW_ALWAYS);

   prog_data->coarse_pixel_dispatch =
      brw_sometimes_invert(prog_data->persample_dispatch);
   if (!key->coarse_pixel ||
       prog_data->uses_omask ||
       prog_data->sample_shading ||
       prog_data->uses_sample_mask ||
       (prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) ||
       prog_data->computed_stencil) {
      prog_data->coarse_pixel_dispatch = BRW_NEVER;
   }

   /* ICL PRMs, Volume 9: Render Engine, Shared Functions Pixel Interpolater,
    * Message Descriptor :
    *
    *    "Message Type. Specifies the type of message being sent when
    *     pixel-rate evaluation is requested :
    *
    *     Format = U2
    *       0: Per Message Offset (eval_snapped with immediate offset)
    *       1: Sample Position Offset (eval_sindex)
    *       2: Centroid Position Offset (eval_centroid)
    *       3: Per Slot Offset (eval_snapped with register offset)
    *
    *     Message Type. Specifies the type of message being sent when
    *     coarse-rate evaluation is requested :
    *
    *     Format = U2
    *       0: Coarse to Pixel Mapping Message (internal message)
    *       1: Reserved
    *       2: Coarse Centroid Position (eval_centroid)
    *       3: Per Slot Coarse Pixel Offset (eval_snapped with register offset)"
    *
    * The Sample Position Offset is marked as reserved for coarse rate
    * evaluation and leads to hangs if we try to use it. So disable coarse
    * pixel shading if we have any intrinsic that will result in a pixel
    * interpolater message at sample.
    */
   if (intel_nir_pulls_at_sample(shader))
      prog_data->coarse_pixel_dispatch = BRW_NEVER;

   /* We choose to always enable VMask prior to XeHP, as it would cause
    * us to lose out on the eliminate_find_live_channel() optimization.
    */
   prog_data->uses_vmask = devinfo->verx10 < 125 ||
                           shader->info.fs.needs_quad_helper_invocations ||
                           shader->info.uses_wide_subgroup_intrinsics ||
                           prog_data->coarse_pixel_dispatch != BRW_NEVER;

   prog_data->uses_src_w =
      BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD);
   prog_data->uses_src_depth =
      BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
      prog_data->coarse_pixel_dispatch != BRW_ALWAYS;
   prog_data->uses_depth_w_coefficients =
      BITSET_TEST(shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) &&
      prog_data->coarse_pixel_dispatch != BRW_NEVER;

   calculate_urb_setup(devinfo, key, prog_data, shader, mue_map);
   brw_compute_flat_inputs(prog_data, shader);
}

/**
 * Pre-gfx6, the register file of the EUs was shared between threads,
 * and each thread used some subset allocated on a 16-register block
 * granularity.  The unit states wanted these block counts.
 */
static inline int
brw_register_blocks(int reg_count)
{
   return ALIGN(reg_count, 16) / 16 - 1;
}

const unsigned *
brw_compile_fs(const struct brw_compiler *compiler,
               struct brw_compile_fs_params *params)
{
   struct nir_shader *nir = params->base.nir;
   const struct brw_wm_prog_key *key = params->key;
   struct brw_wm_prog_data *prog_data = params->prog_data;
   bool allow_spilling = params->allow_spilling;
   const bool debug_enabled =
      brw_should_print_shader(nir, params->base.debug_flag ?
                                   params->base.debug_flag : DEBUG_WM);

   prog_data->base.stage = MESA_SHADER_FRAGMENT;
   prog_data->base.ray_queries = nir->info.ray_queries;
   prog_data->base.total_scratch = 0;

   const struct intel_device_info *devinfo = compiler->devinfo;
   const unsigned max_subgroup_size = 32;

   brw_nir_apply_key(nir, compiler, &key->base, max_subgroup_size);
   brw_nir_lower_fs_inputs(nir, devinfo, key);
   brw_nir_lower_fs_outputs(nir);

   /* From the SKL PRM, Volume 7, "Alpha Coverage":
    *  "If Pixel Shader outputs oMask, AlphaToCoverage is disabled in
    *   hardware, regardless of the state setting for this feature."
    */
   if (key->alpha_to_coverage != BRW_NEVER) {
      /* Run constant fold optimization in order to get the correct source
       * offset to determine render target 0 store instruction in
       * emit_alpha_to_coverage pass.
       */
      NIR_PASS(_, nir, nir_opt_constant_folding);
      NIR_PASS(_, nir, brw_nir_lower_alpha_to_coverage, key, prog_data);
   }

   NIR_PASS(_, nir, brw_nir_move_interpolation_to_top);
   brw_postprocess_nir(nir, compiler, debug_enabled,
                       key->base.robust_flags);

   brw_nir_populate_wm_prog_data(nir, compiler->devinfo, key, prog_data,
                                 params->mue_map);

   std::unique_ptr<fs_visitor> v8, v16, v32, vmulti;
   cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL, *simd32_cfg = NULL,
      *multi_cfg = NULL;
   float throughput = 0;
   bool has_spilled = false;

   if (devinfo->ver < 20) {
      v8 = std::make_unique<fs_visitor>(compiler, &params->base, key,
                                        prog_data, nir, 8, 1,
                                        params->base.stats != NULL,
                                        debug_enabled);
      if (!v8->run_fs(allow_spilling, false /* do_rep_send */)) {
         params->base.error_str = ralloc_strdup(params->base.mem_ctx,
                                                v8->fail_msg);
         return NULL;
      } else if (INTEL_SIMD(FS, 8)) {
         simd8_cfg = v8->cfg;

         assert(v8->payload().num_regs % reg_unit(devinfo) == 0);
         prog_data->base.dispatch_grf_start_reg = v8->payload().num_regs / reg_unit(devinfo);

         prog_data->reg_blocks_8 = brw_register_blocks(v8->grf_used);
         const performance &perf = v8->performance_analysis.require();
         throughput = MAX2(throughput, perf.throughput);
         has_spilled = v8->spilled_any_registers;
         allow_spilling = false;
      }
   }

   if (key->coarse_pixel && devinfo->ver < 20) {
      if (prog_data->dual_src_blend) {
         v8->limit_dispatch_width(8, "SIMD16 coarse pixel shading cannot"
                                  " use SIMD8 messages.\n");
      }
      v8->limit_dispatch_width(16, "SIMD32 not supported with coarse"
                               " pixel shading.\n");
   }

   if (nir->info.ray_queries > 0 && v8)
      v8->limit_dispatch_width(16, "SIMD32 with ray queries.\n");

   if (!has_spilled &&
       (!v8 || v8->max_dispatch_width >= 16) &&
       (INTEL_SIMD(FS, 16) || params->use_rep_send)) {
      /* Try a SIMD16 compile */
      v16 = std::make_unique<fs_visitor>(compiler, &params->base, key,
                                         prog_data, nir, 16, 1,
                                         params->base.stats != NULL,
                                         debug_enabled);
      if (v8)
         v16->import_uniforms(v8.get());
      if (!v16->run_fs(allow_spilling, params->use_rep_send)) {
         brw_shader_perf_log(compiler, params->base.log_data,
                             "SIMD16 shader failed to compile: %s\n",
                             v16->fail_msg);
      } else {
         simd16_cfg = v16->cfg;

         assert(v16->payload().num_regs % reg_unit(devinfo) == 0);
         prog_data->dispatch_grf_start_reg_16 = v16->payload().num_regs / reg_unit(devinfo);

         prog_data->reg_blocks_16 = brw_register_blocks(v16->grf_used);
         const performance &perf = v16->performance_analysis.require();
         throughput = MAX2(throughput, perf.throughput);
         has_spilled = v16->spilled_any_registers;
         allow_spilling = false;
      }
   }

   const bool simd16_failed = v16 && !simd16_cfg;

   /* Currently, the compiler only supports SIMD32 on SNB+ */
   if (!has_spilled &&
       (!v8 || v8->max_dispatch_width >= 32) &&
       (!v16 || v16->max_dispatch_width >= 32) && !params->use_rep_send &&
       !simd16_failed &&
       INTEL_SIMD(FS, 32)) {
      /* Try a SIMD32 compile */
      v32 = std::make_unique<fs_visitor>(compiler, &params->base, key,
                                         prog_data, nir, 32, 1,
                                         params->base.stats != NULL,
                                         debug_enabled);
      if (v8)
         v32->import_uniforms(v8.get());
      else if (v16)
         v32->import_uniforms(v16.get());

      if (!v32->run_fs(allow_spilling, false)) {
         brw_shader_perf_log(compiler, params->base.log_data,
                             "SIMD32 shader failed to compile: %s\n",
                             v32->fail_msg);
      } else {
         const performance &perf = v32->performance_analysis.require();

         if (!INTEL_DEBUG(DEBUG_DO32) && throughput >= perf.throughput) {
            brw_shader_perf_log(compiler, params->base.log_data,
                                "SIMD32 shader inefficient\n");
         } else {
            simd32_cfg = v32->cfg;

            assert(v32->payload().num_regs % reg_unit(devinfo) == 0);
            prog_data->dispatch_grf_start_reg_32 = v32->payload().num_regs / reg_unit(devinfo);

            prog_data->reg_blocks_32 = brw_register_blocks(v32->grf_used);
            throughput = MAX2(throughput, perf.throughput);
         }
      }
   }

   if (devinfo->ver >= 12 && !has_spilled &&
       params->max_polygons >= 2 && !key->coarse_pixel) {
      fs_visitor *vbase = v8 ? v8.get() : v16 ? v16.get() : v32.get();
      assert(vbase);

      if (devinfo->ver >= 20 &&
          params->max_polygons >= 4 &&
          vbase->max_dispatch_width >= 32 &&
          4 * prog_data->num_varying_inputs <= MAX_VARYING &&
          INTEL_SIMD(FS, 4X8)) {
         /* Try a quad-SIMD8 compile */
         vmulti = std::make_unique<fs_visitor>(compiler, &params->base, key,
                                               prog_data, nir, 32, 4,
                                               params->base.stats != NULL,
                                               debug_enabled);
         vmulti->import_uniforms(vbase);
         if (!vmulti->run_fs(false, params->use_rep_send)) {
            brw_shader_perf_log(compiler, params->base.log_data,
                                "Quad-SIMD8 shader failed to compile: %s\n",
                                vmulti->fail_msg);
         } else {
            multi_cfg = vmulti->cfg;
            assert(!vmulti->spilled_any_registers);
         }
      }

      if (!multi_cfg && devinfo->ver >= 20 &&
          vbase->max_dispatch_width >= 32 &&
          2 * prog_data->num_varying_inputs <= MAX_VARYING &&
          INTEL_SIMD(FS, 2X16)) {
         /* Try a dual-SIMD16 compile */
         vmulti = std::make_unique<fs_visitor>(compiler, &params->base, key,
                                               prog_data, nir, 32, 2,
                                               params->base.stats != NULL,
                                               debug_enabled);
         vmulti->import_uniforms(vbase);
         if (!vmulti->run_fs(false, params->use_rep_send)) {
            brw_shader_perf_log(compiler, params->base.log_data,
                                "Dual-SIMD16 shader failed to compile: %s\n",
                                vmulti->fail_msg);
         } else {
            multi_cfg = vmulti->cfg;
            assert(!vmulti->spilled_any_registers);
         }
      }

      if (!multi_cfg && vbase->max_dispatch_width >= 16 &&
          2 * prog_data->num_varying_inputs <= MAX_VARYING &&
          INTEL_SIMD(FS, 2X8)) {
         /* Try a dual-SIMD8 compile */
         vmulti = std::make_unique<fs_visitor>(compiler, &params->base, key,
                                               prog_data, nir, 16, 2,
                                               params->base.stats != NULL,
                                               debug_enabled);
         vmulti->import_uniforms(vbase);
         if (!vmulti->run_fs(allow_spilling, params->use_rep_send)) {
            brw_shader_perf_log(compiler, params->base.log_data,
                                "Dual-SIMD8 shader failed to compile: %s\n",
                                vmulti->fail_msg);
         } else {
            multi_cfg = vmulti->cfg;
         }
      }

      if (multi_cfg) {
         assert(vmulti->payload().num_regs % reg_unit(devinfo) == 0);
         prog_data->base.dispatch_grf_start_reg = vmulti->payload().num_regs / reg_unit(devinfo);

         prog_data->reg_blocks_8 = brw_register_blocks(vmulti->grf_used);
      }
   }

   /* When the caller requests a repclear shader, they want SIMD16-only */
   if (params->use_rep_send)
      simd8_cfg = NULL;

   fs_generator g(compiler, &params->base, &prog_data->base,
                  v8 && v8->runtime_check_aads_emit, MESA_SHADER_FRAGMENT);

   if (unlikely(debug_enabled)) {
      g.enable_debug(ralloc_asprintf(params->base.mem_ctx,
                                     "%s fragment shader %s",
                                     nir->info.label ?
                                        nir->info.label : "unnamed",
                                     nir->info.name));
   }

   struct brw_compile_stats *stats = params->base.stats;
   uint32_t max_dispatch_width = 0;

   if (multi_cfg) {
      prog_data->dispatch_multi = vmulti->dispatch_width;
      prog_data->max_polygons = vmulti->max_polygons;
      g.generate_code(multi_cfg, vmulti->dispatch_width, vmulti->shader_stats,
                      vmulti->performance_analysis.require(),
                      stats, vmulti->max_polygons);
      stats = stats ? stats + 1 : NULL;
      max_dispatch_width = vmulti->dispatch_width;

   } else if (simd8_cfg) {
      prog_data->dispatch_8 = true;
      g.generate_code(simd8_cfg, 8, v8->shader_stats,
                      v8->performance_analysis.require(), stats, 1);
      stats = stats ? stats + 1 : NULL;
      max_dispatch_width = 8;
   }

   if (simd16_cfg) {
      prog_data->dispatch_16 = true;
      prog_data->prog_offset_16 = g.generate_code(
         simd16_cfg, 16, v16->shader_stats,
         v16->performance_analysis.require(), stats, 1);
      stats = stats ? stats + 1 : NULL;
      max_dispatch_width = 16;
   }

   if (simd32_cfg) {
      prog_data->dispatch_32 = true;
      prog_data->prog_offset_32 = g.generate_code(
         simd32_cfg, 32, v32->shader_stats,
         v32->performance_analysis.require(), stats, 1);
      stats = stats ? stats + 1 : NULL;
      max_dispatch_width = 32;
   }

   for (struct brw_compile_stats *s = params->base.stats; s != NULL && s != stats; s++)
      s->max_dispatch_width = max_dispatch_width;

   g.add_const_data(nir->constant_data, nir->constant_data_size);
   return g.get_assembly();
}

unsigned
brw_cs_push_const_total_size(const struct brw_cs_prog_data *cs_prog_data,
                             unsigned threads)
{
   assert(cs_prog_data->push.per_thread.size % REG_SIZE == 0);
   assert(cs_prog_data->push.cross_thread.size % REG_SIZE == 0);
   return cs_prog_data->push.per_thread.size * threads +
          cs_prog_data->push.cross_thread.size;
}

static void
fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
{
   block->dwords = dwords;
   block->regs = DIV_ROUND_UP(dwords, 8);
   block->size = block->regs * 32;
}

static void
cs_fill_push_const_info(const struct intel_device_info *devinfo,
                        struct brw_cs_prog_data *cs_prog_data)
{
   const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
   int subgroup_id_index = brw_get_subgroup_id_param_index(devinfo, prog_data);
   bool cross_thread_supported = devinfo->verx10 >= 75;

   /* The thread ID should be stored in the last param dword */
   assert(subgroup_id_index == -1 ||
          subgroup_id_index == (int)prog_data->nr_params - 1);

   unsigned cross_thread_dwords, per_thread_dwords;
   if (!cross_thread_supported) {
      cross_thread_dwords = 0u;
      per_thread_dwords = prog_data->nr_params;
   } else if (subgroup_id_index >= 0) {
      /* Fill all but the last register with cross-thread payload */
      cross_thread_dwords = 8 * (subgroup_id_index / 8);
      per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
      assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
   } else {
      /* Fill all data using cross-thread payload */
      cross_thread_dwords = prog_data->nr_params;
      per_thread_dwords = 0u;
   }

   fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
   fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);

   assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
          cs_prog_data->push.per_thread.size == 0);
   assert(cs_prog_data->push.cross_thread.dwords +
          cs_prog_data->push.per_thread.dwords ==
             prog_data->nr_params);
}

static bool
filter_simd(const nir_instr *instr, const void * /* options */)
{
   if (instr->type != nir_instr_type_intrinsic)
      return false;

   switch (nir_instr_as_intrinsic(instr)->intrinsic) {
   case nir_intrinsic_load_simd_width_intel:
   case nir_intrinsic_load_subgroup_id:
      return true;

   default:
      return false;
   }
}

static nir_def *
lower_simd(nir_builder *b, nir_instr *instr, void *options)
{
   uintptr_t simd_width = (uintptr_t)options;

   switch (nir_instr_as_intrinsic(instr)->intrinsic) {
   case nir_intrinsic_load_simd_width_intel:
      return nir_imm_int(b, simd_width);

   case nir_intrinsic_load_subgroup_id:
      /* If the whole workgroup fits in one thread, we can lower subgroup_id
       * to a constant zero.
       */
      if (!b->shader->info.workgroup_size_variable) {
         unsigned local_workgroup_size = b->shader->info.workgroup_size[0] *
                                         b->shader->info.workgroup_size[1] *
                                         b->shader->info.workgroup_size[2];
         if (local_workgroup_size <= simd_width)
            return nir_imm_int(b, 0);
      }
      return NULL;

   default:
      return NULL;
   }
}

bool
brw_nir_lower_simd(nir_shader *nir, unsigned dispatch_width)
{
   return nir_shader_lower_instructions(nir, filter_simd, lower_simd,
                                 (void *)(uintptr_t)dispatch_width);
}

const unsigned *
brw_compile_cs(const struct brw_compiler *compiler,
               struct brw_compile_cs_params *params)
{
   const nir_shader *nir = params->base.nir;
   const struct brw_cs_prog_key *key = params->key;
   struct brw_cs_prog_data *prog_data = params->prog_data;

   const bool debug_enabled =
      brw_should_print_shader(nir, params->base.debug_flag ?
                                   params->base.debug_flag : DEBUG_CS);

   prog_data->base.stage = MESA_SHADER_COMPUTE;
   prog_data->base.total_shared = nir->info.shared_size;
   prog_data->base.ray_queries = nir->info.ray_queries;
   prog_data->base.total_scratch = 0;

   if (!nir->info.workgroup_size_variable) {
      prog_data->local_size[0] = nir->info.workgroup_size[0];
      prog_data->local_size[1] = nir->info.workgroup_size[1];
      prog_data->local_size[2] = nir->info.workgroup_size[2];
   }

   brw_simd_selection_state simd_state{
      .devinfo = compiler->devinfo,
      .prog_data = prog_data,
      .required_width = brw_required_dispatch_width(&nir->info),
   };

   std::unique_ptr<fs_visitor> v[3];

   for (unsigned simd = 0; simd < 3; simd++) {
      if (!brw_simd_should_compile(simd_state, simd))
         continue;

      const unsigned dispatch_width = 8u << simd;

      nir_shader *shader = nir_shader_clone(params->base.mem_ctx, nir);
      brw_nir_apply_key(shader, compiler, &key->base,
                        dispatch_width);

      NIR_PASS(_, shader, brw_nir_lower_simd, dispatch_width);

      /* Clean up after the local index and ID calculations. */
      NIR_PASS(_, shader, nir_opt_constant_folding);
      NIR_PASS(_, shader, nir_opt_dce);

      brw_postprocess_nir(shader, compiler, debug_enabled,
                          key->base.robust_flags);

      v[simd] = std::make_unique<fs_visitor>(compiler, &params->base,
                                             &key->base,
                                             &prog_data->base,
                                             shader, dispatch_width,
                                             params->base.stats != NULL,
                                             debug_enabled);

      const int first = brw_simd_first_compiled(simd_state);
      if (first >= 0)
         v[simd]->import_uniforms(v[first].get());

      const bool allow_spilling = first < 0 || nir->info.workgroup_size_variable;

      if (v[simd]->run_cs(allow_spilling)) {
         cs_fill_push_const_info(compiler->devinfo, prog_data);

         brw_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers);
      } else {
         simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx, v[simd]->fail_msg);
         if (simd > 0) {
            brw_shader_perf_log(compiler, params->base.log_data,
                                "SIMD%u shader failed to compile: %s\n",
                                dispatch_width, v[simd]->fail_msg);
         }
      }
   }

   const int selected_simd = brw_simd_select(simd_state);
   if (selected_simd < 0) {
      params->base.error_str =
         ralloc_asprintf(params->base.mem_ctx,
                         "Can't compile shader: "
                         "SIMD8 '%s', SIMD16 '%s' and SIMD32 '%s'.\n",
                         simd_state.error[0], simd_state.error[1],
                         simd_state.error[2]);
      return NULL;
   }

   assert(selected_simd < 3);
   fs_visitor *selected = v[selected_simd].get();

   if (!nir->info.workgroup_size_variable)
      prog_data->prog_mask = 1 << selected_simd;

   fs_generator g(compiler, &params->base, &prog_data->base,
                  selected->runtime_check_aads_emit, MESA_SHADER_COMPUTE);
   if (unlikely(debug_enabled)) {
      char *name = ralloc_asprintf(params->base.mem_ctx,
                                   "%s compute shader %s",
                                   nir->info.label ?
                                   nir->info.label : "unnamed",
                                   nir->info.name);
      g.enable_debug(name);
   }

   uint32_t max_dispatch_width = 8u << (util_last_bit(prog_data->prog_mask) - 1);

   struct brw_compile_stats *stats = params->base.stats;
   for (unsigned simd = 0; simd < 3; simd++) {
      if (prog_data->prog_mask & (1u << simd)) {
         assert(v[simd]);
         prog_data->prog_offset[simd] =
            g.generate_code(v[simd]->cfg, 8u << simd, v[simd]->shader_stats,
                            v[simd]->performance_analysis.require(), stats);
         if (stats)
            stats->max_dispatch_width = max_dispatch_width;
         stats = stats ? stats + 1 : NULL;
         max_dispatch_width = 8u << simd;
      }
   }

   g.add_const_data(nir->constant_data, nir->constant_data_size);

   return g.get_assembly();
}

struct intel_cs_dispatch_info
brw_cs_get_dispatch_info(const struct intel_device_info *devinfo,
                         const struct brw_cs_prog_data *prog_data,
                         const unsigned *override_local_size)
{
   struct intel_cs_dispatch_info info = {};

   const unsigned *sizes =
      override_local_size ? override_local_size :
                            prog_data->local_size;

   const int simd = brw_simd_select_for_workgroup_size(devinfo, prog_data, sizes);
   assert(simd >= 0 && simd < 3);

   info.group_size = sizes[0] * sizes[1] * sizes[2];
   info.simd_size = 8u << simd;
   info.threads = DIV_ROUND_UP(info.group_size, info.simd_size);

   const uint32_t remainder = info.group_size & (info.simd_size - 1);
   if (remainder > 0)
      info.right_mask = ~0u >> (32 - remainder);
   else
      info.right_mask = ~0u >> (32 - info.simd_size);

   return info;
}

static uint8_t
compile_single_bs(const struct brw_compiler *compiler,
                  struct brw_compile_bs_params *params,
                  const struct brw_bs_prog_key *key,
                  struct brw_bs_prog_data *prog_data,
                  nir_shader *shader,
                  fs_generator *g,
                  struct brw_compile_stats *stats,
                  int *prog_offset)
{
   const bool debug_enabled = brw_should_print_shader(shader, DEBUG_RT);

   prog_data->base.stage = shader->info.stage;
   prog_data->max_stack_size = MAX2(prog_data->max_stack_size,
                                    shader->scratch_size);

   const unsigned max_dispatch_width = 16;
   brw_nir_apply_key(shader, compiler, &key->base, max_dispatch_width);
   brw_postprocess_nir(shader, compiler, debug_enabled,
                       key->base.robust_flags);

   brw_simd_selection_state simd_state{
      .devinfo = compiler->devinfo,
      .prog_data = prog_data,

      /* Since divergence is a lot more likely in RT than compute, it makes
       * sense to limit ourselves to the smallest available SIMD for now.
       */
      .required_width = compiler->devinfo->ver >= 20 ? 16u : 8u,
   };

   std::unique_ptr<fs_visitor> v[2];

   for (unsigned simd = 0; simd < ARRAY_SIZE(v); simd++) {
      if (!brw_simd_should_compile(simd_state, simd))
         continue;

      const unsigned dispatch_width = 8u << simd;

      if (dispatch_width == 8 && compiler->devinfo->ver >= 20)
         continue;

      v[simd] = std::make_unique<fs_visitor>(compiler, &params->base,
                                             &key->base,
                                             &prog_data->base, shader,
                                             dispatch_width,
                                             stats != NULL,
                                             debug_enabled);

      const bool allow_spilling = !brw_simd_any_compiled(simd_state);
      if (v[simd]->run_bs(allow_spilling)) {
         brw_simd_mark_compiled(simd_state, simd, v[simd]->spilled_any_registers);
      } else {
         simd_state.error[simd] = ralloc_strdup(params->base.mem_ctx,
                                                v[simd]->fail_msg);
         if (simd > 0) {
            brw_shader_perf_log(compiler, params->base.log_data,
                                "SIMD%u shader failed to compile: %s",
                                dispatch_width, v[simd]->fail_msg);
         }
      }
   }

   const int selected_simd = brw_simd_select(simd_state);
   if (selected_simd < 0) {
      params->base.error_str =
         ralloc_asprintf(params->base.mem_ctx,
                         "Can't compile shader: "
                         "SIMD8 '%s' and SIMD16 '%s'.\n",
                         simd_state.error[0], simd_state.error[1]);
      return 0;
   }

   assert(selected_simd < int(ARRAY_SIZE(v)));
   fs_visitor *selected = v[selected_simd].get();
   assert(selected);

   const unsigned dispatch_width = selected->dispatch_width;

   int offset = g->generate_code(selected->cfg, dispatch_width, selected->shader_stats,
                                 selected->performance_analysis.require(), stats);
   if (prog_offset)
      *prog_offset = offset;
   else
      assert(offset == 0);

   return dispatch_width;
}

uint64_t
brw_bsr(const struct intel_device_info *devinfo,
        uint32_t offset, uint8_t simd_size, uint8_t local_arg_offset)
{
   assert(offset % 64 == 0);
   assert(simd_size == 8 || simd_size == 16);
   assert(local_arg_offset % 8 == 0);

   return offset |
          SET_BITS(simd_size == 8, 4, 4) |
          SET_BITS(local_arg_offset / 8, 2, 0);
}

const unsigned *
brw_compile_bs(const struct brw_compiler *compiler,
               struct brw_compile_bs_params *params)
{
   nir_shader *shader = params->base.nir;
   struct brw_bs_prog_data *prog_data = params->prog_data;
   unsigned num_resume_shaders = params->num_resume_shaders;
   nir_shader **resume_shaders = params->resume_shaders;
   const bool debug_enabled = brw_should_print_shader(shader, DEBUG_RT);

   prog_data->base.stage = shader->info.stage;
   prog_data->base.ray_queries = shader->info.ray_queries;
   prog_data->base.total_scratch = 0;

   prog_data->max_stack_size = 0;
   prog_data->num_resume_shaders = num_resume_shaders;

   fs_generator g(compiler, &params->base, &prog_data->base,
                  false, shader->info.stage);
   if (unlikely(debug_enabled)) {
      char *name = ralloc_asprintf(params->base.mem_ctx,
                                   "%s %s shader %s",
                                   shader->info.label ?
                                      shader->info.label : "unnamed",
                                   gl_shader_stage_name(shader->info.stage),
                                   shader->info.name);
      g.enable_debug(name);
   }

   prog_data->simd_size =
      compile_single_bs(compiler, params, params->key, prog_data,
                        shader, &g, params->base.stats, NULL);
   if (prog_data->simd_size == 0)
      return NULL;

   uint64_t *resume_sbt = ralloc_array(params->base.mem_ctx,
                                       uint64_t, num_resume_shaders);
   for (unsigned i = 0; i < num_resume_shaders; i++) {
      if (INTEL_DEBUG(DEBUG_RT)) {
         char *name = ralloc_asprintf(params->base.mem_ctx,
                                      "%s %s resume(%u) shader %s",
                                      shader->info.label ?
                                         shader->info.label : "unnamed",
                                      gl_shader_stage_name(shader->info.stage),
                                      i, shader->info.name);
         g.enable_debug(name);
      }

      /* TODO: Figure out shader stats etc. for resume shaders */
      int offset = 0;
      uint8_t simd_size =
         compile_single_bs(compiler, params, params->key,
                           prog_data, resume_shaders[i], &g, NULL, &offset);
      if (simd_size == 0)
         return NULL;

      assert(offset > 0);
      resume_sbt[i] = brw_bsr(compiler->devinfo, offset, simd_size, 0);
   }

   /* We only have one constant data so we want to make sure they're all the
    * same.
    */
   for (unsigned i = 0; i < num_resume_shaders; i++) {
      assert(resume_shaders[i]->constant_data_size ==
             shader->constant_data_size);
      assert(memcmp(resume_shaders[i]->constant_data,
                    shader->constant_data,
                    shader->constant_data_size) == 0);
   }

   g.add_const_data(shader->constant_data, shader->constant_data_size);
   g.add_resume_sbt(num_resume_shaders, resume_sbt);

   return g.get_assembly();
}

/**
 * Test the dispatch mask packing assumptions of
 * brw_stage_has_packed_dispatch().  Call this from e.g. the top of
 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
 * executed with an unexpected dispatch mask.
 */
static UNUSED void
brw_fs_test_dispatch_packing(const fs_builder &bld)
{
   const fs_visitor *shader = static_cast<const fs_visitor *>(bld.shader);
   const gl_shader_stage stage = shader->stage;
   const bool uses_vmask =
      stage == MESA_SHADER_FRAGMENT &&
      brw_wm_prog_data(shader->stage_prog_data)->uses_vmask;

   if (brw_stage_has_packed_dispatch(shader->devinfo, stage,
                                     shader->max_polygons,
                                     shader->stage_prog_data)) {
      const fs_builder ubld = bld.exec_all().group(1, 0);
      const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
      const fs_reg mask = uses_vmask ? brw_vmask_reg() : brw_dmask_reg();

      ubld.ADD(tmp, mask, brw_imm_ud(1));
      ubld.AND(tmp, mask, tmp);

      /* This will loop forever if the dispatch mask doesn't have the expected
       * form '2^n-1', in which case tmp will be non-zero.
       */
      bld.emit(BRW_OPCODE_DO);
      bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
      set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
   }
}

unsigned
fs_visitor::workgroup_size() const
{
   assert(gl_shader_stage_uses_workgroup(stage));
   const struct brw_cs_prog_data *cs = brw_cs_prog_data(prog_data);
   return cs->local_size[0] * cs->local_size[1] * cs->local_size[2];
}

bool brw_should_print_shader(const nir_shader *shader, uint64_t debug_flag)
{
   return INTEL_DEBUG(debug_flag) && (!shader->info.internal || NIR_DEBUG(PRINT_INTERNAL));
}

namespace brw {
   fs_reg
   fetch_payload_reg(const brw::fs_builder &bld, uint8_t regs[2],
                     brw_reg_type type, unsigned n)
   {
      if (!regs[0])
         return fs_reg();

      if (bld.dispatch_width() > 16) {
         const fs_reg tmp = bld.vgrf(type, n);
         const brw::fs_builder hbld = bld.exec_all().group(16, 0);
         const unsigned m = bld.dispatch_width() / hbld.dispatch_width();
         fs_reg *const components = new fs_reg[m * n];

         for (unsigned c = 0; c < n; c++) {
            for (unsigned g = 0; g < m; g++)
               components[c * m + g] =
                  offset(retype(brw_vec8_grf(regs[g], 0), type), hbld, c);
         }

         hbld.LOAD_PAYLOAD(tmp, components, m * n, 0);

         delete[] components;
         return tmp;

      } else {
         return fs_reg(retype(brw_vec8_grf(regs[0], 0), type));
      }
   }

   fs_reg
   fetch_barycentric_reg(const brw::fs_builder &bld, uint8_t regs[2])
   {
      if (!regs[0])
         return fs_reg();
      else if (bld.shader->devinfo->ver >= 20)
         return fetch_payload_reg(bld, regs, BRW_REGISTER_TYPE_F, 2);

      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
      const brw::fs_builder hbld = bld.exec_all().group(8, 0);
      const unsigned m = bld.dispatch_width() / hbld.dispatch_width();
      fs_reg *const components = new fs_reg[2 * m];

      for (unsigned c = 0; c < 2; c++) {
         for (unsigned g = 0; g < m; g++)
            components[c * m + g] = offset(brw_vec8_grf(regs[g / 2], 0),
                                           hbld, c + 2 * (g % 2));
      }

      hbld.LOAD_PAYLOAD(tmp, components, 2 * m, 0);

      delete[] components;
      return tmp;
   }

   void
   check_dynamic_msaa_flag(const fs_builder &bld,
                           const struct brw_wm_prog_data *wm_prog_data,
                           enum intel_msaa_flags flag)
   {
      fs_inst *inst = bld.AND(bld.null_reg_ud(),
                              dynamic_msaa_flags(wm_prog_data),
                              brw_imm_ud(flag));
      inst->conditional_mod = BRW_CONDITIONAL_NZ;
   }
}