aboutsummaryrefslogtreecommitdiff
path: root/src/intel/vulkan_hasvk/genX_state.c
blob: ea9b9026e8913eae6f2bab61ea8878cb5429531c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
/*
 * Copyright © 2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <assert.h>
#include <stdbool.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>

#include "anv_private.h"

#include "common/intel_aux_map.h"
#include "common/intel_sample_positions.h"
#include "common/intel_pixel_hash.h"
#include "genxml/gen_macros.h"
#include "genxml/genX_pack.h"

#include "vk_standard_sample_locations.h"
#include "vk_util.h"
#include "vk_format.h"

static VkResult
init_render_queue_state(struct anv_queue *queue)
{
   struct anv_device *device = queue->device;
   uint32_t cmds[128];
   struct anv_batch batch = {
      .start = cmds,
      .next = cmds,
      .end = (void *) cmds + sizeof(cmds),
   };

   anv_batch_emit(&batch, GENX(PIPELINE_SELECT), ps) {
      ps.PipelineSelection = _3D;
   }

   anv_batch_emit(&batch, GENX(3DSTATE_AA_LINE_PARAMETERS), aa);

   anv_batch_emit(&batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
      rect.ClippedDrawingRectangleYMin = 0;
      rect.ClippedDrawingRectangleXMin = 0;
      rect.ClippedDrawingRectangleYMax = UINT16_MAX;
      rect.ClippedDrawingRectangleXMax = UINT16_MAX;
      rect.DrawingRectangleOriginY = 0;
      rect.DrawingRectangleOriginX = 0;
   }

#if GFX_VER >= 8
   anv_batch_emit(&batch, GENX(3DSTATE_WM_CHROMAKEY), ck);

   genX(emit_sample_pattern)(&batch, NULL);

   /* The BDW+ docs describe how to use the 3DSTATE_WM_HZ_OP instruction in the
    * section titled, "Optimized Depth Buffer Clear and/or Stencil Buffer
    * Clear." It mentions that the packet overrides GPU state for the clear
    * operation and needs to be reset to 0s to clear the overrides. Depending
    * on the kernel, we may not get a context with the state for this packet
    * zeroed. Do it ourselves just in case. We've observed this to prevent a
    * number of GPU hangs on ICL.
    */
   anv_batch_emit(&batch, GENX(3DSTATE_WM_HZ_OP), hzp);
#endif

   /* Set the "CONSTANT_BUFFER Address Offset Disable" bit, so
    * 3DSTATE_CONSTANT_XS buffer 0 is an absolute address.
    *
    * This is only safe on kernels with context isolation support.
    */
   if (GFX_VER >= 8 && device->physical->info.has_context_isolation) {
#if GFX_VER == 8
      anv_batch_write_reg(&batch, GENX(INSTPM), instpm) {
         instpm.CONSTANT_BUFFERAddressOffsetDisable = true;
         instpm.CONSTANT_BUFFERAddressOffsetDisableMask = true;
      }
#endif
   }

   anv_batch_emit(&batch, GENX(MI_BATCH_BUFFER_END), bbe);

   assert(batch.next <= batch.end);

   return anv_queue_submit_simple_batch(queue, &batch);
}

void
genX(init_physical_device_state)(ASSERTED struct anv_physical_device *pdevice)
{
   assert(pdevice->info.verx10 == GFX_VERx10);
}

VkResult
genX(init_device_state)(struct anv_device *device)
{
   VkResult res;

   device->slice_hash = (struct anv_state) { 0 };
   for (uint32_t i = 0; i < device->queue_count; i++) {
      struct anv_queue *queue = &device->queues[i];
      switch (queue->family->engine_class) {
      case INTEL_ENGINE_CLASS_RENDER:
         res = init_render_queue_state(queue);
         break;
      default:
         res = vk_error(device, VK_ERROR_INITIALIZATION_FAILED);
         break;
      }
      if (res != VK_SUCCESS)
         return res;
   }

   return res;
}

void
genX(emit_l3_config)(struct anv_batch *batch,
                     const struct anv_device *device,
                     const struct intel_l3_config *cfg)
{
   UNUSED const struct intel_device_info *devinfo = device->info;

#if GFX_VER >= 8

#define L3_ALLOCATION_REG GENX(L3CNTLREG)
#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)

   anv_batch_write_reg(batch, L3_ALLOCATION_REG, l3cr) {
      if (cfg == NULL) {
         unreachable("Invalid L3$ config");
      } else {
         l3cr.SLMEnable = cfg->n[INTEL_L3P_SLM];
         assert(cfg->n[INTEL_L3P_IS] == 0);
         assert(cfg->n[INTEL_L3P_C] == 0);
         assert(cfg->n[INTEL_L3P_T] == 0);
         l3cr.URBAllocation = cfg->n[INTEL_L3P_URB];
         l3cr.ROAllocation = cfg->n[INTEL_L3P_RO];
         l3cr.DCAllocation = cfg->n[INTEL_L3P_DC];
         l3cr.AllAllocation = cfg->n[INTEL_L3P_ALL];
      }
   }

#else /* GFX_VER < 8 */

   const bool has_dc = cfg->n[INTEL_L3P_DC] || cfg->n[INTEL_L3P_ALL];
   const bool has_is = cfg->n[INTEL_L3P_IS] || cfg->n[INTEL_L3P_RO] ||
                       cfg->n[INTEL_L3P_ALL];
   const bool has_c = cfg->n[INTEL_L3P_C] || cfg->n[INTEL_L3P_RO] ||
                      cfg->n[INTEL_L3P_ALL];
   const bool has_t = cfg->n[INTEL_L3P_T] || cfg->n[INTEL_L3P_RO] ||
                      cfg->n[INTEL_L3P_ALL];

   assert(!cfg->n[INTEL_L3P_ALL]);

   /* When enabled SLM only uses a portion of the L3 on half of the banks,
    * the matching space on the remaining banks has to be allocated to a
    * client (URB for all validated configurations) set to the
    * lower-bandwidth 2-bank address hashing mode.
    */
   const bool urb_low_bw = cfg->n[INTEL_L3P_SLM] && devinfo->platform != INTEL_PLATFORM_BYT;
   assert(!urb_low_bw || cfg->n[INTEL_L3P_URB] == cfg->n[INTEL_L3P_SLM]);

   /* Minimum number of ways that can be allocated to the URB. */
   const unsigned n0_urb = devinfo->platform == INTEL_PLATFORM_BYT ? 32 : 0;
   assert(cfg->n[INTEL_L3P_URB] >= n0_urb);

   anv_batch_write_reg(batch, GENX(L3SQCREG1), l3sqc) {
      l3sqc.ConvertDC_UC = !has_dc;
      l3sqc.ConvertIS_UC = !has_is;
      l3sqc.ConvertC_UC = !has_c;
      l3sqc.ConvertT_UC = !has_t;
#if GFX_VERx10 == 75
      l3sqc.L3SQGeneralPriorityCreditInitialization = SQGPCI_DEFAULT;
#else
      l3sqc.L3SQGeneralPriorityCreditInitialization =
         devinfo->platform == INTEL_PLATFORM_BYT ? BYT_SQGPCI_DEFAULT : SQGPCI_DEFAULT;
#endif
      l3sqc.L3SQHighPriorityCreditInitialization = SQHPCI_DEFAULT;
   }

   anv_batch_write_reg(batch, GENX(L3CNTLREG2), l3cr2) {
      l3cr2.SLMEnable = cfg->n[INTEL_L3P_SLM];
      l3cr2.URBLowBandwidth = urb_low_bw;
      l3cr2.URBAllocation = cfg->n[INTEL_L3P_URB] - n0_urb;
#if !GFX_VERx10 == 75
      l3cr2.ALLAllocation = cfg->n[INTEL_L3P_ALL];
#endif
      l3cr2.ROAllocation = cfg->n[INTEL_L3P_RO];
      l3cr2.DCAllocation = cfg->n[INTEL_L3P_DC];
   }

   anv_batch_write_reg(batch, GENX(L3CNTLREG3), l3cr3) {
      l3cr3.ISAllocation = cfg->n[INTEL_L3P_IS];
      l3cr3.ISLowBandwidth = 0;
      l3cr3.CAllocation = cfg->n[INTEL_L3P_C];
      l3cr3.CLowBandwidth = 0;
      l3cr3.TAllocation = cfg->n[INTEL_L3P_T];
      l3cr3.TLowBandwidth = 0;
   }

#if GFX_VERx10 == 75
   if (device->physical->cmd_parser_version >= 4) {
      /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
       * them disabled to avoid crashing the system hard.
       */
      anv_batch_write_reg(batch, GENX(SCRATCH1), s1) {
         s1.L3AtomicDisable = !has_dc;
      }
      anv_batch_write_reg(batch, GENX(CHICKEN3), c3) {
         c3.L3AtomicDisableMask = true;
         c3.L3AtomicDisable = !has_dc;
      }
   }
#endif /* GFX_VERx10 == 75 */

#endif /* GFX_VER < 8 */
}

void
genX(emit_multisample)(struct anv_batch *batch, uint32_t samples,
                       const struct vk_sample_locations_state *sl)
{
   if (sl != NULL) {
      assert(sl->per_pixel == samples);
      assert(sl->grid_size.width == 1);
      assert(sl->grid_size.height == 1);
   } else {
      sl = vk_standard_sample_locations_state(samples);
   }

   anv_batch_emit(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
      ms.NumberofMultisamples       = __builtin_ffs(samples) - 1;

      ms.PixelLocation              = CENTER;
#if GFX_VER < 8
      switch (samples) {
      case 1:
         INTEL_SAMPLE_POS_1X_ARRAY(ms.Sample, sl->locations);
         break;
      case 2:
         INTEL_SAMPLE_POS_2X_ARRAY(ms.Sample, sl->locations);
         break;
      case 4:
         INTEL_SAMPLE_POS_4X_ARRAY(ms.Sample, sl->locations);
         break;
      case 8:
         INTEL_SAMPLE_POS_8X_ARRAY(ms.Sample, sl->locations);
         break;
      default:
            break;
      }
#endif
   }
}

#if GFX_VER >= 8
void
genX(emit_sample_pattern)(struct anv_batch *batch,
                          const struct vk_sample_locations_state *sl)
{
   assert(sl == NULL || sl->grid_size.width == 1);
   assert(sl == NULL || sl->grid_size.height == 1);

   /* See the Vulkan 1.0 spec Table 24.1 "Standard sample locations" and
    * VkPhysicalDeviceFeatures::standardSampleLocations.
    */
   anv_batch_emit(batch, GENX(3DSTATE_SAMPLE_PATTERN), sp) {
      /* The Skylake PRM Vol. 2a "3DSTATE_SAMPLE_PATTERN" says:
       *
       *    "When programming the sample offsets (for NUMSAMPLES_4 or _8
       *    and MSRASTMODE_xxx_PATTERN), the order of the samples 0 to 3
       *    (or 7 for 8X, or 15 for 16X) must have monotonically increasing
       *    distance from the pixel center. This is required to get the
       *    correct centroid computation in the device."
       *
       * However, the Vulkan spec seems to require that the the samples occur
       * in the order provided through the API. The standard sample patterns
       * have the above property that they have monotonically increasing
       * distances from the center but client-provided ones do not. As long as
       * this only affects centroid calculations as the docs say, we should be
       * ok because OpenGL and Vulkan only require that the centroid be some
       * lit sample and that it's the same for all samples in a pixel; they
       * have no requirement that it be the one closest to center.
       */
      for (uint32_t i = 1; i <= 8; i *= 2) {
         switch (i) {
         case VK_SAMPLE_COUNT_1_BIT:
            if (sl && sl->per_pixel == i) {
               INTEL_SAMPLE_POS_1X_ARRAY(sp._1xSample, sl->locations);
            } else {
               INTEL_SAMPLE_POS_1X(sp._1xSample);
            }
            break;
         case VK_SAMPLE_COUNT_2_BIT:
            if (sl && sl->per_pixel == i) {
               INTEL_SAMPLE_POS_2X_ARRAY(sp._2xSample, sl->locations);
            } else {
               INTEL_SAMPLE_POS_2X(sp._2xSample);
            }
            break;
         case VK_SAMPLE_COUNT_4_BIT:
            if (sl && sl->per_pixel == i) {
               INTEL_SAMPLE_POS_4X_ARRAY(sp._4xSample, sl->locations);
            } else {
               INTEL_SAMPLE_POS_4X(sp._4xSample);
            }
            break;
         case VK_SAMPLE_COUNT_8_BIT:
            if (sl && sl->per_pixel == i) {
               INTEL_SAMPLE_POS_8X_ARRAY(sp._8xSample, sl->locations);
            } else {
               INTEL_SAMPLE_POS_8X(sp._8xSample);
            }
            break;
         default:
            unreachable("Invalid sample count");
         }
      }
   }
}
#endif

static uint32_t
vk_to_intel_tex_filter(VkFilter filter, bool anisotropyEnable)
{
   switch (filter) {
   default:
      unreachable("Invalid filter");
   case VK_FILTER_NEAREST:
      return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_NEAREST;
   case VK_FILTER_LINEAR:
      return anisotropyEnable ? MAPFILTER_ANISOTROPIC : MAPFILTER_LINEAR;
   }
}

static uint32_t
vk_to_intel_max_anisotropy(float ratio)
{
   return (CLAMP(ratio, 2, 16) - 2) / 2;
}

static const uint32_t vk_to_intel_mipmap_mode[] = {
   [VK_SAMPLER_MIPMAP_MODE_NEAREST]          = MIPFILTER_NEAREST,
   [VK_SAMPLER_MIPMAP_MODE_LINEAR]           = MIPFILTER_LINEAR
};

static const uint32_t vk_to_intel_tex_address[] = {
   [VK_SAMPLER_ADDRESS_MODE_REPEAT]          = TCM_WRAP,
   [VK_SAMPLER_ADDRESS_MODE_MIRRORED_REPEAT] = TCM_MIRROR,
   [VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE]   = TCM_CLAMP,
   [VK_SAMPLER_ADDRESS_MODE_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
   [VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
};

/* Vulkan specifies the result of shadow comparisons as:
 *     1     if   ref <op> texel,
 *     0     otherwise.
 *
 * The hardware does:
 *     0     if texel <op> ref,
 *     1     otherwise.
 *
 * So, these look a bit strange because there's both a negation
 * and swapping of the arguments involved.
 */
static const uint32_t vk_to_intel_shadow_compare_op[] = {
   [VK_COMPARE_OP_NEVER]                        = PREFILTEROP_ALWAYS,
   [VK_COMPARE_OP_LESS]                         = PREFILTEROP_LEQUAL,
   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROP_NOTEQUAL,
   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROP_LESS,
   [VK_COMPARE_OP_GREATER]                      = PREFILTEROP_GEQUAL,
   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROP_EQUAL,
   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROP_GREATER,
   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROP_NEVER,
};

VkResult genX(CreateSampler)(
    VkDevice                                    _device,
    const VkSamplerCreateInfo*                  pCreateInfo,
    const VkAllocationCallbacks*                pAllocator,
    VkSampler*                                  pSampler)
{
   ANV_FROM_HANDLE(anv_device, device, _device);
   struct anv_sampler *sampler;

   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);

   sampler = vk_object_zalloc(&device->vk, pAllocator, sizeof(*sampler),
                              VK_OBJECT_TYPE_SAMPLER);
   if (!sampler)
      return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY);

   sampler->n_planes = 1;

   uint32_t border_color_stride = GFX_VERx10 == 75 ? 512 : 64;
   uint32_t border_color_offset;
   ASSERTED bool has_custom_color = false;
   if (pCreateInfo->borderColor <= VK_BORDER_COLOR_INT_OPAQUE_WHITE) {
      border_color_offset = device->border_colors.offset +
                            pCreateInfo->borderColor *
                            border_color_stride;
   } else {
      assert(GFX_VER >= 8);
      sampler->custom_border_color =
         anv_state_reserved_pool_alloc(&device->custom_border_colors);
      border_color_offset = sampler->custom_border_color.offset;
   }

   const struct vk_format_ycbcr_info *ycbcr_info = NULL;
   vk_foreach_struct_const(ext, pCreateInfo->pNext) {
      switch (ext->sType) {
      case VK_STRUCTURE_TYPE_SAMPLER_YCBCR_CONVERSION_INFO: {
         VkSamplerYcbcrConversionInfo *pSamplerConversion =
            (VkSamplerYcbcrConversionInfo *) ext;
         VK_FROM_HANDLE(vk_ycbcr_conversion, conversion,
                        pSamplerConversion->conversion);

         /* Ignore conversion for non-YUV formats. This fulfills a requirement
          * for clients that want to utilize same code path for images with
          * external formats (VK_FORMAT_UNDEFINED) and "regular" RGBA images
          * where format is known.
          */
         if (conversion == NULL)
            break;

         ycbcr_info = vk_format_get_ycbcr_info(conversion->state.format);
         if (ycbcr_info == NULL)
            break;

         sampler->n_planes = ycbcr_info->n_planes;
         sampler->conversion = conversion;
         break;
      }
      case VK_STRUCTURE_TYPE_SAMPLER_CUSTOM_BORDER_COLOR_CREATE_INFO_EXT: {
         VkSamplerCustomBorderColorCreateInfoEXT *custom_border_color =
            (VkSamplerCustomBorderColorCreateInfoEXT *) ext;
         if (sampler->custom_border_color.map == NULL)
            break;

         union isl_color_value color = { .u32 = {
            custom_border_color->customBorderColor.uint32[0],
            custom_border_color->customBorderColor.uint32[1],
            custom_border_color->customBorderColor.uint32[2],
            custom_border_color->customBorderColor.uint32[3],
         } };

         const struct anv_format *format_desc =
            custom_border_color->format != VK_FORMAT_UNDEFINED ?
            anv_get_format(custom_border_color->format) : NULL;

         /* For formats with a swizzle, it does not carry over to the sampler
          * for border colors, so we need to do the swizzle ourselves here.
          */
         if (format_desc && format_desc->n_planes == 1 &&
             !isl_swizzle_is_identity(format_desc->planes[0].swizzle)) {
            const struct anv_format_plane *fmt_plane = &format_desc->planes[0];

            assert(!isl_format_has_int_channel(fmt_plane->isl_format));
            color = isl_color_value_swizzle(color, fmt_plane->swizzle, true);
         }

         memcpy(sampler->custom_border_color.map, color.u32, sizeof(color));
         has_custom_color = true;
         break;
      }
      case VK_STRUCTURE_TYPE_SAMPLER_BORDER_COLOR_COMPONENT_MAPPING_CREATE_INFO_EXT:
         break;
      default:
         anv_debug_ignored_stype(ext->sType);
         break;
      }
   }

   assert((sampler->custom_border_color.map == NULL) || has_custom_color);

   if (device->physical->has_bindless_samplers) {
      /* If we have bindless, allocate enough samplers.  We allocate 32 bytes
       * for each sampler instead of 16 bytes because we want all bindless
       * samplers to be 32-byte aligned so we don't have to use indirect
       * sampler messages on them.
       */
      sampler->bindless_state =
         anv_state_pool_alloc(&device->dynamic_state_pool,
                              sampler->n_planes * 32, 32);
   }

   const bool seamless_cube =
      !(pCreateInfo->flags & VK_SAMPLER_CREATE_NON_SEAMLESS_CUBE_MAP_BIT_EXT);

   for (unsigned p = 0; p < sampler->n_planes; p++) {
      const bool plane_has_chroma =
         ycbcr_info && ycbcr_info->planes[p].has_chroma;
      const VkFilter min_filter =
         plane_has_chroma ? sampler->conversion->state.chroma_filter : pCreateInfo->minFilter;
      const VkFilter mag_filter =
         plane_has_chroma ? sampler->conversion->state.chroma_filter : pCreateInfo->magFilter;
      const bool enable_min_filter_addr_rounding = min_filter != VK_FILTER_NEAREST;
      const bool enable_mag_filter_addr_rounding = mag_filter != VK_FILTER_NEAREST;
      /* From Broadwell PRM, SAMPLER_STATE:
       *   "Mip Mode Filter must be set to MIPFILTER_NONE for Planar YUV surfaces."
       */
      enum isl_format plane0_isl_format = sampler->conversion ?
         anv_get_format(sampler->conversion->state.format)->planes[0].isl_format :
         ISL_FORMAT_UNSUPPORTED;
      const bool isl_format_is_planar_yuv =
         plane0_isl_format != ISL_FORMAT_UNSUPPORTED &&
         isl_format_is_yuv(plane0_isl_format) &&
         isl_format_is_planar(plane0_isl_format);

      const uint32_t mip_filter_mode =
         isl_format_is_planar_yuv ?
         MIPFILTER_NONE : vk_to_intel_mipmap_mode[pCreateInfo->mipmapMode];

      struct GENX(SAMPLER_STATE) sampler_state = {
         .SamplerDisable = false,
         .TextureBorderColorMode = DX10OGL,

#if GFX_VER >= 8
         .LODPreClampMode = CLAMP_MODE_OGL,
#else
         .LODPreClampEnable = CLAMP_ENABLE_OGL,
#endif

#if GFX_VER == 8
         .BaseMipLevel = 0.0,
#endif
         .MipModeFilter = mip_filter_mode,
         .MagModeFilter = vk_to_intel_tex_filter(mag_filter, pCreateInfo->anisotropyEnable),
         .MinModeFilter = vk_to_intel_tex_filter(min_filter, pCreateInfo->anisotropyEnable),
         .TextureLODBias = CLAMP(pCreateInfo->mipLodBias, -16, 15.996),
         .AnisotropicAlgorithm =
            pCreateInfo->anisotropyEnable ? EWAApproximation : LEGACY,
         .MinLOD = CLAMP(pCreateInfo->minLod, 0, 14),
         .MaxLOD = CLAMP(pCreateInfo->maxLod, 0, 14),
         .ChromaKeyEnable = 0,
         .ChromaKeyIndex = 0,
         .ChromaKeyMode = 0,
         .ShadowFunction =
            vk_to_intel_shadow_compare_op[pCreateInfo->compareEnable ?
                                        pCreateInfo->compareOp : VK_COMPARE_OP_NEVER],
         .CubeSurfaceControlMode = seamless_cube ? OVERRIDE : PROGRAMMED,

         .BorderColorPointer = border_color_offset,

#if GFX_VER >= 8
         .LODClampMagnificationMode = MIPNONE,
#endif

         .MaximumAnisotropy = vk_to_intel_max_anisotropy(pCreateInfo->maxAnisotropy),
         .RAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
         .RAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
         .VAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
         .VAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
         .UAddressMinFilterRoundingEnable = enable_min_filter_addr_rounding,
         .UAddressMagFilterRoundingEnable = enable_mag_filter_addr_rounding,
         .TrilinearFilterQuality = 0,
         .NonnormalizedCoordinateEnable = pCreateInfo->unnormalizedCoordinates,
         .TCXAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeU],
         .TCYAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeV],
         .TCZAddressControlMode = vk_to_intel_tex_address[pCreateInfo->addressModeW],
      };

      GENX(SAMPLER_STATE_pack)(NULL, sampler->state[p], &sampler_state);

      if (sampler->bindless_state.map) {
         memcpy(sampler->bindless_state.map + p * 32,
                sampler->state[p], GENX(SAMPLER_STATE_length) * 4);
      }
   }

   *pSampler = anv_sampler_to_handle(sampler);

   return VK_SUCCESS;
}