aboutsummaryrefslogtreecommitdiff
path: root/pw_result/public/pw_result/result.h
diff options
context:
space:
mode:
Diffstat (limited to 'pw_result/public/pw_result/result.h')
-rw-r--r--pw_result/public/pw_result/result.h728
1 files changed, 649 insertions, 79 deletions
diff --git a/pw_result/public/pw_result/result.h b/pw_result/public/pw_result/result.h
index 2366e03e3..fe504dc76 100644
--- a/pw_result/public/pw_result/result.h
+++ b/pw_result/public/pw_result/result.h
@@ -1,4 +1,4 @@
-// Copyright 2020 The Pigweed Authors
+// Copyright 2022 The Pigweed Authors
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
@@ -11,130 +11,700 @@
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
+//
+// -----------------------------------------------------------------------------
+// File: result.h
+// -----------------------------------------------------------------------------
+//
+// An `Result<T>` represents a union of an `pw::Status` object and an object of
+// type `T`. The `Result<T>` will either contain an object of type `T`
+// (indicating a successful operation), or an error (of type `Status`)
+// explaining why such a value is not present.
+//
+// In general, check the success of an operation returning an `Result<T>` like
+// you would an `pw::Status` by using the `ok()` member function.
+//
+// Example:
+//
+// Result<Foo> result = Calculation();
+// if (result.ok()) {
+// result->DoSomethingCool();
+// } else {
+// PW_LOG_ERROR("Calculation failed: %s", result.status().str());
+// }
#pragma once
-#include <algorithm>
+#include <exception>
+#include <initializer_list>
+#include <new>
+#include <string>
+#include <type_traits>
#include <utility>
-#include "pw_assert/assert.h"
#include "pw_preprocessor/compiler.h"
+#include "pw_result/internal/result_internal.h"
#include "pw_status/status.h"
namespace pw {
-// A Result represents the result of an operation which can fail. It is a
-// convenient wrapper around returning a Status alongside some data when the
-// status is OK.
+// Returned Result objects may not be ignored.
+template <typename T>
+class [[nodiscard]] Result;
+
+// Result<T>
+//
+// The `Result<T>` class template is a union of an `pw::Status` object and an
+// object of type `T`. The `Result<T>` models an object that is either a usable
+// object, or an error (of type `Status`) explaining why such an object is not
+// present. An `Result<T>` is typically the return value of a function which may
+// fail.
+//
+// An `Result<T>` can never hold an "OK" status; instead, the presence of an
+// object of type `T` indicates success. Instead of checking for a `kOk` value,
+// use the `Result<T>::ok()` member function. (It is for this reason, and code
+// readability, that using the `ok()` function is preferred for `Status` as
+// well.)
+//
+// Example:
+//
+// Result<Foo> result = DoBigCalculationThatCouldFail();
+// if (result.ok()) {
+// result->DoSomethingCool();
+// } else {
+// PW_LOG_ERROR("Calculation failed: %s", result.status().str());
+// }
+//
+// Accessing the object held by an `Result<T>` should be performed via
+// `operator*` or `operator->`, after a call to `ok()` confirms that the
+// `Result<T>` holds an object of type `T`:
+//
+// Example:
+//
+// Result<int> i = GetCount();
+// if (i.ok()) {
+// updated_total += *i
+// }
+//
+// NOTE: using `Result<T>::value()` when no valid value is present will trigger
+// a PW_ASSERT.
+//
+// Example:
//
-// TODO(pwbug/363): Refactor pw::Result to properly support non-default move
-// and/or copy assignment operators and/or constructors.
+// Result<Foo> result = DoBigCalculationThatCouldFail();
+// const Foo& foo = result.value(); // Crash/exception if no value present
+// foo.DoSomethingCool();
+//
+// A `Result<T*>` can be constructed from a null pointer like any other pointer
+// value, and the result will be that `ok()` returns `true` and `value()`
+// returns `nullptr`. Checking the value of pointer in an `Result<T>` generally
+// requires a bit more care, to ensure both that a value is present and that
+// value is not null:
+//
+// Result<Foo*> result = LookUpTheFoo(arg);
+// if (!result.ok()) {
+// PW_LOG_ERROR("Unable to look up the Foo: %s", result.status().str());
+// } else if (*result == nullptr) {
+// PW_LOG_ERROR("Unexpected null pointer");
+// } else {
+// (*result)->DoSomethingCool();
+// }
+//
+// Example factory implementation returning Result<T>:
+//
+// Result<Foo> FooFactory::MakeFoo(int arg) {
+// if (arg <= 0) {
+// return pw::Status::InvalidArgument();
+// }
+// return Foo(arg);
+// }
template <typename T>
-class [[nodiscard]] Result {
+class Result : private internal_result::StatusOrData<T>,
+ private internal_result::CopyCtorBase<T>,
+ private internal_result::MoveCtorBase<T>,
+ private internal_result::CopyAssignBase<T>,
+ private internal_result::MoveAssignBase<T> {
+ template <typename U>
+ friend class Result;
+
+ using Base = internal_result::StatusOrData<T>;
+
public:
- constexpr Result(T&& value) : value_(std::move(value)), status_(OkStatus()) {}
- constexpr Result(const T& value) : value_(value), status_(OkStatus()) {}
+ // Result<T>::value_type
+ //
+ // This instance data provides a generic `value_type` member for use within
+ // generic programming. This usage is analogous to that of
+ // `optional::value_type` in the case of `std::optional`.
+ typedef T value_type;
- template <typename... Args>
- constexpr Result(std::in_place_t, Args&&... args)
- : value_(std::forward<Args>(args)...), status_(OkStatus()) {}
+ // Constructors
- constexpr Result(Status status) : unused_({}), status_(status) {
- PW_ASSERT(!status_.ok());
- }
- constexpr Result(Status::Code code) : unused_({}), status_(code) {
- PW_ASSERT(!status_.ok());
- }
+ // Constructs a new `Result` with an `pw::Status::Unknown()` status. This
+ // constructor is marked 'explicit' to prevent usages in return values such as
+ // 'return {};', under the misconception that `Result<std::vector<int>>` will
+ // be initialized with an empty vector, instead of a `Status::Unknown()` error
+ // code.
+ explicit constexpr Result();
+ // `Result<T>` is copy constructible if `T` is copy constructible.
constexpr Result(const Result&) = default;
+ // `Result<T>` is copy assignable if `T` is copy constructible and copy
+ // assignable.
constexpr Result& operator=(const Result&) = default;
+ // `Result<T>` is move constructible if `T` is move constructible.
constexpr Result(Result&&) = default;
+ // `Result<T>` is moveAssignable if `T` is move constructible and move
+ // assignable.
constexpr Result& operator=(Result&&) = default;
- [[nodiscard]] constexpr Status status() const { return status_; }
- [[nodiscard]] constexpr bool ok() const { return status_.ok(); }
+ // Converting Constructors
- constexpr T& value() & {
- PW_ASSERT(status_.ok());
- return value_;
- }
+ // Constructs a new `Result<T>` from an `pw::Result<U>`, when `T` is
+ // constructible from `U`. To avoid ambiguity, these constructors are disabled
+ // if `T` is also constructible from `Result<U>.`. This constructor is
+ // explicit if and only if the corresponding construction of `T` from `U` is
+ // explicit. (This constructor inherits its explicitness from the underlying
+ // constructor.)
+ template <
+ typename U,
+ std::enable_if_t<
+ std::conjunction<
+ std::negation<std::is_same<T, U>>,
+ std::is_constructible<T, const U&>,
+ std::is_convertible<const U&, T>,
+ std::negation<internal_result::
+ IsConstructibleOrConvertibleFromResult<T, U>>>::
+ value,
+ int> = 0>
+ constexpr Result(const Result<U>& other) // NOLINT
+ : Base(static_cast<const typename Result<U>::Base&>(other)) {}
+ template <
+ typename U,
+ std::enable_if_t<
+ std::conjunction<
+ std::negation<std::is_same<T, U>>,
+ std::is_constructible<T, const U&>,
+ std::negation<std::is_convertible<const U&, T>>,
+ std::negation<internal_result::
+ IsConstructibleOrConvertibleFromResult<T, U>>>::
+ value,
+ int> = 0>
+ explicit constexpr Result(const Result<U>& other)
+ : Base(static_cast<const typename Result<U>::Base&>(other)) {}
- constexpr const T& value() const& {
- PW_ASSERT(status_.ok());
- return value_;
- }
+ template <
+ typename U,
+ std::enable_if_t<
+ std::conjunction<
+ std::negation<std::is_same<T, U>>,
+ std::is_constructible<T, U&&>,
+ std::is_convertible<U&&, T>,
+ std::negation<internal_result::
+ IsConstructibleOrConvertibleFromResult<T, U>>>::
+ value,
+ int> = 0>
+ constexpr Result(Result<U>&& other) // NOLINT
+ : Base(static_cast<typename Result<U>::Base&&>(other)) {}
+ template <
+ typename U,
+ std::enable_if_t<
+ std::conjunction<
+ std::negation<std::is_same<T, U>>,
+ std::is_constructible<T, U&&>,
+ std::negation<std::is_convertible<U&&, T>>,
+ std::negation<internal_result::
+ IsConstructibleOrConvertibleFromResult<T, U>>>::
+ value,
+ int> = 0>
+ explicit constexpr Result(Result<U>&& other)
+ : Base(static_cast<typename Result<U>::Base&&>(other)) {}
- constexpr T&& value() && {
- PW_ASSERT(status_.ok());
- return std::move(value_);
- }
+ // Converting Assignment Operators
- constexpr T& operator*() const& {
- PW_ASSERT(status_.ok());
- return value_;
+ // Creates an `Result<T>` through assignment from an
+ // `Result<U>` when:
+ //
+ // * Both `Result<T>` and `pw::Result<U>` are OK by assigning
+ // `U` to `T` directly.
+ // * `Result<T>` is OK and `pw::Result<U>` contains an error
+ // code by destroying `Result<T>`'s value and assigning from
+ // `Result<U>'
+ // * `Result<T>` contains an error code and `pw::Result<U>` is
+ // OK by directly initializing `T` from `U`.
+ // * Both `Result<T>` and `pw::Result<U>` contain an error
+ // code by assigning the `Status` in `Result<U>` to
+ // `Result<T>`
+ //
+ // These overloads only apply if `Result<T>` is constructible and
+ // assignable from `Result<U>` and `Result<T>` cannot be directly
+ // assigned from `Result<U>`.
+ template <typename U,
+ std::enable_if_t<
+ std::conjunction<
+ std::negation<std::is_same<T, U>>,
+ std::is_constructible<T, const U&>,
+ std::is_assignable<T, const U&>,
+ std::negation<
+ internal_result::
+ IsConstructibleOrConvertibleOrAssignableFromResult<
+ T,
+ U>>>::value,
+ int> = 0>
+ constexpr Result& operator=(const Result<U>& other) {
+ this->Assign(other);
+ return *this;
}
-
- T& operator*() & {
- PW_ASSERT(status_.ok());
- return value_;
+ template <typename U,
+ std::enable_if_t<
+ std::conjunction<
+ std::negation<std::is_same<T, U>>,
+ std::is_constructible<T, U&&>,
+ std::is_assignable<T, U&&>,
+ std::negation<
+ internal_result::
+ IsConstructibleOrConvertibleOrAssignableFromResult<
+ T,
+ U>>>::value,
+ int> = 0>
+ constexpr Result& operator=(Result<U>&& other) {
+ this->Assign(std::move(other));
+ return *this;
}
- constexpr T&& operator*() const&& {
- PW_ASSERT(status_.ok());
- return std::move(value_);
- }
+ // Constructs a new `Result<T>` with a non-ok status. After calling this
+ // constructor, `this->ok()` will be `false` and calls to `value()` will
+ // crash, or produce an exception if exceptions are enabled.
+ //
+ // The constructor also takes any type `U` that is convertible to `Status`.
+ // This constructor is explicit if an only if `U` is not of type `Status` and
+ // the conversion from `U` to `Status` is explicit.
+ //
+ // REQUIRES: !Status(std::forward<U>(v)).ok(). This requirement is DCHECKed.
+ // In optimized builds, passing OkStatus() here will have the effect of
+ // passing Status::Internal() as a fallback.
+ template <
+ typename U = Status,
+ std::enable_if_t<
+ std::conjunction<
+ std::is_convertible<U&&, Status>,
+ std::is_constructible<Status, U&&>,
+ std::negation<std::is_same<std::decay_t<U>, Result<T>>>,
+ std::negation<std::is_same<std::decay_t<U>, T>>,
+ std::negation<std::is_same<std::decay_t<U>, std::in_place_t>>,
+ std::negation<internal_result::
+ HasConversionOperatorToResult<T, U&&>>>::value,
+ int> = 0>
+ constexpr Result(U&& v) : Base(std::forward<U>(v)) {}
- T&& operator*() && {
- PW_ASSERT(status_.ok());
- return std::move(value_);
- }
+ template <
+ typename U = Status,
+ std::enable_if_t<
+ std::conjunction<
+ std::negation<std::is_convertible<U&&, Status>>,
+ std::is_constructible<Status, U&&>,
+ std::negation<std::is_same<std::decay_t<U>, Result<T>>>,
+ std::negation<std::is_same<std::decay_t<U>, T>>,
+ std::negation<std::is_same<std::decay_t<U>, std::in_place_t>>,
+ std::negation<internal_result::
+ HasConversionOperatorToResult<T, U&&>>>::value,
+ int> = 0>
+ constexpr explicit Result(U&& v) : Base(std::forward<U>(v)) {}
- constexpr T* operator->() const {
- PW_ASSERT(status_.ok());
- return &value_;
+ template <
+ typename U = Status,
+ std::enable_if_t<
+ std::conjunction<
+ std::is_convertible<U&&, Status>,
+ std::is_constructible<Status, U&&>,
+ std::negation<std::is_same<std::decay_t<U>, Result<T>>>,
+ std::negation<std::is_same<std::decay_t<U>, T>>,
+ std::negation<std::is_same<std::decay_t<U>, std::in_place_t>>,
+ std::negation<internal_result::
+ HasConversionOperatorToResult<T, U&&>>>::value,
+ int> = 0>
+ constexpr Result& operator=(U&& v) {
+ this->AssignStatus(std::forward<U>(v));
+ return *this;
}
- T* operator->() {
- PW_ASSERT(status_.ok());
- return &value_;
+ // Perfect-forwarding value assignment operator.
+
+ // If `*this` contains a `T` value before the call, the contained value is
+ // assigned from `std::forward<U>(v)`; Otherwise, it is directly-initialized
+ // from `std::forward<U>(v)`.
+ // This function does not participate in overload unless:
+ // 1. `std::is_constructible_v<T, U>` is true,
+ // 2. `std::is_assignable_v<T&, U>` is true.
+ // 3. `std::is_same_v<Result<T>, std::remove_cvref_t<U>>` is false.
+ // 4. Assigning `U` to `T` is not ambiguous:
+ // If `U` is `Result<V>` and `T` is constructible and assignable from
+ // both `Result<V>` and `V`, the assignment is considered bug-prone and
+ // ambiguous thus will fail to compile. For example:
+ // Result<bool> s1 = true; // s1.ok() && *s1 == true
+ // Result<bool> s2 = false; // s2.ok() && *s2 == false
+ // s1 = s2; // ambiguous, `s1 = *s2` or `s1 = bool(s2)`?
+ template <
+ typename U = T,
+ typename = typename std::enable_if<std::conjunction<
+ std::is_constructible<T, U&&>,
+ std::is_assignable<T&, U&&>,
+ std::disjunction<
+ std::is_same<std::remove_cv_t<std::remove_reference_t<U>>, T>,
+ std::conjunction<
+ std::negation<std::is_convertible<U&&, Status>>,
+ std::negation<
+ internal_result::HasConversionOperatorToResult<T, U&&>>>>,
+ internal_result::IsForwardingAssignmentValid<T, U&&>>::value>::type>
+ constexpr Result& operator=(U&& v) {
+ this->Assign(std::forward<U>(v));
+ return *this;
}
+ // Constructs the inner value `T` in-place using the provided args, using the
+ // `T(args...)` constructor.
+ template <typename... Args>
+ explicit constexpr Result(std::in_place_t, Args&&... args);
+ template <typename U, typename... Args>
+ explicit constexpr Result(std::in_place_t,
+ std::initializer_list<U> ilist,
+ Args&&... args);
+
+ // Constructs the inner value `T` in-place using the provided args, using the
+ // `T(U)` (direct-initialization) constructor. This constructor is only valid
+ // if `T` can be constructed from a `U`. Can accept move or copy constructors.
+ //
+ // This constructor is explicit if `U` is not convertible to `T`. To avoid
+ // ambiguity, this constructor is disabled if `U` is a `Result<J>`, where
+ // `J` is convertible to `T`.
+ template <
+ typename U = T,
+ std::enable_if_t<
+ std::conjunction<
+ internal_result::IsDirectInitializationValid<T, U&&>,
+ std::is_constructible<T, U&&>,
+ std::is_convertible<U&&, T>,
+ std::disjunction<
+ std::is_same<std::remove_cv_t<std::remove_reference_t<U>>, T>,
+ std::conjunction<
+ std::negation<std::is_convertible<U&&, Status>>,
+ std::negation<
+ internal_result::
+ HasConversionOperatorToResult<T, U&&>>>>>::value,
+ int> = 0>
+ constexpr Result(U&& u) // NOLINT
+ : Result(std::in_place, std::forward<U>(u)) {}
+
+ template <
+ typename U = T,
+ std::enable_if_t<
+ std::conjunction<
+ internal_result::IsDirectInitializationValid<T, U&&>,
+ std::disjunction<
+ std::is_same<std::remove_cv_t<std::remove_reference_t<U>>, T>,
+ std::conjunction<
+ std::negation<std::is_constructible<Status, U&&>>,
+ std::negation<
+ internal_result::
+ HasConversionOperatorToResult<T, U&&>>>>,
+ std::is_constructible<T, U&&>,
+ std::negation<std::is_convertible<U&&, T>>>::value,
+ int> = 0>
+ explicit constexpr Result(U&& u) // NOLINT
+ : Result(std::in_place, std::forward<U>(u)) {}
+
+ // Result<T>::ok()
+ //
+ // Returns whether or not this `Result<T>` holds a `T` value. This
+ // member function is analagous to `Status::ok()` and should be used
+ // similarly to check the status of return values.
+ //
+ // Example:
+ //
+ // Result<Foo> result = DoBigCalculationThatCouldFail();
+ // if (result.ok()) {
+ // // Handle result
+ // else {
+ // // Handle error
+ // }
+ [[nodiscard]] constexpr bool ok() const { return this->status_.ok(); }
+
+ // Result<T>::status()
+ //
+ // Returns a reference to the current `Status` contained within the
+ // `Result<T>`. If `pw::Result<T>` contains a `T`, then this function returns
+ // `OkStatus()`.
+ constexpr const Status& status() const&;
+ constexpr Status status() &&;
+
+ // Result<T>::value()
+ //
+ // Returns a reference to the held value if `this->ok()`. Otherwise,
+ // terminates the process.
+ //
+ // If you have already checked the status using `this->ok()`, you probably
+ // want to use `operator*()` or `operator->()` to access the value instead of
+ // `value`.
+ //
+ // Note: for value types that are cheap to copy, prefer simple code:
+ //
+ // T value = result.value();
+ //
+ // Otherwise, if the value type is expensive to copy, but can be left
+ // in the Result, simply assign to a reference:
+ //
+ // T& value = result.value(); // or `const T&`
+ //
+ // Otherwise, if the value type supports an efficient move, it can be
+ // used as follows:
+ //
+ // T value = std::move(result).value();
+ //
+ // The `std::move` on result instead of on the whole expression enables
+ // warnings about possible uses of the result object after the move.
+ constexpr const T& value() const& PW_ATTRIBUTE_LIFETIME_BOUND;
+ constexpr T& value() & PW_ATTRIBUTE_LIFETIME_BOUND;
+ constexpr const T&& value() const&& PW_ATTRIBUTE_LIFETIME_BOUND;
+ constexpr T&& value() && PW_ATTRIBUTE_LIFETIME_BOUND;
+
+ // Result<T>:: operator*()
+ //
+ // Returns a reference to the current value.
+ //
+ // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
+ //
+ // Use `this->ok()` to verify that there is a current value within the
+ // `Result<T>`. Alternatively, see the `value()` member function for a
+ // similar API that guarantees crashing or throwing an exception if there is
+ // no current value.
+ constexpr const T& operator*() const& PW_ATTRIBUTE_LIFETIME_BOUND;
+ constexpr T& operator*() & PW_ATTRIBUTE_LIFETIME_BOUND;
+ constexpr const T&& operator*() const&& PW_ATTRIBUTE_LIFETIME_BOUND;
+ constexpr T&& operator*() && PW_ATTRIBUTE_LIFETIME_BOUND;
+
+ // Result<T>::operator->()
+ //
+ // Returns a pointer to the current value.
+ //
+ // REQUIRES: `this->ok() == true`, otherwise the behavior is undefined.
+ //
+ // Use `this->ok()` to verify that there is a current value.
+ constexpr const T* operator->() const PW_ATTRIBUTE_LIFETIME_BOUND;
+ constexpr T* operator->() PW_ATTRIBUTE_LIFETIME_BOUND;
+
+ // Result<T>::value_or()
+ //
+ // Returns the current value if `this->ok() == true`. Otherwise constructs a
+ // value using the provided `default_value`.
+ //
+ // Unlike `value`, this function returns by value, copying the current value
+ // if necessary. If the value type supports an efficient move, it can be used
+ // as follows:
+ //
+ // T value = std::move(result).value_or(def);
+ //
+ // Unlike with `value`, calling `std::move()` on the result of `value_or` will
+ // still trigger a copy.
template <typename U>
- constexpr T value_or(U&& default_value) const& {
+ constexpr T value_or(U&& default_value) const&;
+ template <typename U>
+ constexpr T value_or(U&& default_value) &&;
+
+ // Result<T>::IgnoreError()
+ //
+ // Ignores any errors. This method does nothing except potentially suppress
+ // complaints from any tools that are checking that errors are not dropped on
+ // the floor.
+ constexpr void IgnoreError() const;
+
+ // Result<T>::emplace()
+ //
+ // Reconstructs the inner value T in-place using the provided args, using the
+ // T(args...) constructor. Returns reference to the reconstructed `T`.
+ template <typename... Args>
+ T& emplace(Args&&... args) {
if (ok()) {
- PW_MODIFY_DIAGNOSTICS_PUSH();
- // GCC 10 emits -Wmaybe-uninitialized warnings about value_.
- PW_MODIFY_DIAGNOSTIC_GCC(ignored, "-Wmaybe-uninitialized");
- return value_;
- PW_MODIFY_DIAGNOSTICS_POP();
+ this->Clear();
+ this->MakeValue(std::forward<Args>(args)...);
+ } else {
+ this->MakeValue(std::forward<Args>(args)...);
+ this->status_ = OkStatus();
}
- return std::forward<U>(default_value);
+ return this->data_;
}
- template <typename U>
- constexpr T value_or(U&& default_value) && {
+ template <
+ typename U,
+ typename... Args,
+ std::enable_if_t<
+ std::is_constructible<T, std::initializer_list<U>&, Args&&...>::value,
+ int> = 0>
+ T& emplace(std::initializer_list<U> ilist, Args&&... args) {
if (ok()) {
- return std::move(value_);
+ this->Clear();
+ this->MakeValue(ilist, std::forward<Args>(args)...);
+ } else {
+ this->MakeValue(ilist, std::forward<Args>(args)...);
+ this->status_ = OkStatus();
}
- return std::forward<U>(default_value);
+ return this->data_;
}
- // Ignores any errors. This method does nothing except potentially suppress
- // complaints from any tools that are checking that errors are not dropped on
- // the floor.
- constexpr void IgnoreError() const {}
-
private:
- struct Unused {};
+ using Base::Assign;
+ template <typename U>
+ constexpr void Assign(const Result<U>& other);
+ template <typename U>
+ constexpr void Assign(Result<U>&& other);
+};
- union {
- T value_;
+// operator==()
+//
+// This operator checks the equality of two `Result<T>` objects.
+template <typename T>
+constexpr bool operator==(const Result<T>& lhs, const Result<T>& rhs) {
+ if (lhs.ok() && rhs.ok()) {
+ return *lhs == *rhs;
+ }
+ return lhs.status() == rhs.status();
+}
- // Ensure that there is always a trivial constructor for the union.
- Unused unused_;
- };
- Status status_;
-};
+// operator!=()
+//
+// This operator checks the inequality of two `Result<T>` objects.
+template <typename T>
+constexpr bool operator!=(const Result<T>& lhs, const Result<T>& rhs) {
+ return !(lhs == rhs);
+}
+
+//------------------------------------------------------------------------------
+// Implementation details for Result<T>
+//------------------------------------------------------------------------------
+
+template <typename T>
+constexpr Result<T>::Result() : Base(Status::Unknown()) {}
+
+template <typename T>
+template <typename U>
+constexpr inline void Result<T>::Assign(const Result<U>& other) {
+ if (other.ok()) {
+ this->Assign(*other);
+ } else {
+ this->AssignStatus(other.status());
+ }
+}
+
+template <typename T>
+template <typename U>
+constexpr inline void Result<T>::Assign(Result<U>&& other) {
+ if (other.ok()) {
+ this->Assign(*std::move(other));
+ } else {
+ this->AssignStatus(std::move(other).status());
+ }
+}
+template <typename T>
+template <typename... Args>
+constexpr Result<T>::Result(std::in_place_t, Args&&... args)
+ : Base(std::in_place, std::forward<Args>(args)...) {}
+
+template <typename T>
+template <typename U, typename... Args>
+constexpr Result<T>::Result(std::in_place_t,
+ std::initializer_list<U> ilist,
+ Args&&... args)
+ : Base(std::in_place, ilist, std::forward<Args>(args)...) {}
+
+template <typename T>
+constexpr const Status& Result<T>::status() const& {
+ return this->status_;
+}
+template <typename T>
+constexpr Status Result<T>::status() && {
+ return ok() ? OkStatus() : std::move(this->status_);
+}
+
+template <typename T>
+constexpr const T& Result<T>::value() const& {
+ PW_ASSERT(this->status_.ok());
+ return this->data_;
+}
+
+template <typename T>
+constexpr T& Result<T>::value() & {
+ PW_ASSERT(this->status_.ok());
+ return this->data_;
+}
+
+template <typename T>
+constexpr const T&& Result<T>::value() const&& {
+ PW_ASSERT(this->status_.ok());
+ return std::move(this->data_);
+}
+
+template <typename T>
+constexpr T&& Result<T>::value() && {
+ PW_ASSERT(this->status_.ok());
+ return std::move(this->data_);
+}
+
+template <typename T>
+constexpr const T& Result<T>::operator*() const& {
+ PW_ASSERT(this->status_.ok());
+ return this->data_;
+}
+
+template <typename T>
+constexpr T& Result<T>::operator*() & {
+ PW_ASSERT(this->status_.ok());
+ return this->data_;
+}
+
+template <typename T>
+constexpr const T&& Result<T>::operator*() const&& {
+ PW_ASSERT(this->status_.ok());
+ return std::move(this->data_);
+}
+
+template <typename T>
+constexpr T&& Result<T>::operator*() && {
+ PW_ASSERT(this->status_.ok());
+ return std::move(this->data_);
+}
+
+template <typename T>
+constexpr const T* Result<T>::operator->() const {
+ PW_ASSERT(this->status_.ok());
+ return &this->data_;
+}
+
+template <typename T>
+constexpr T* Result<T>::operator->() {
+ PW_ASSERT(this->status_.ok());
+ return &this->data_;
+}
+
+template <typename T>
+template <typename U>
+constexpr T Result<T>::value_or(U&& default_value) const& {
+ if (ok()) {
+ return this->data_;
+ }
+ return std::forward<U>(default_value);
+}
+
+template <typename T>
+template <typename U>
+constexpr T Result<T>::value_or(U&& default_value) && {
+ if (ok()) {
+ return std::move(this->data_);
+ }
+ return std::forward<U>(default_value);
+}
+
+template <typename T>
+constexpr void Result<T>::IgnoreError() const {
+ // no-op
+}
namespace internal {